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Abstract 
In this paper we propose a mathematical model to evaluate the impact of public health sensitiza-
tion campaign on the spread of HIV-AIDS in Mali. We analyse rigorously this model to get insight 
into its dynamical features and to obtain associated epidemiological thresholds. If R0 < 1, we show 
that the disease-free equilibrium of the model is globally asymptotically stable when the public 
health sensitization program is 100% effective. The impact of public health sensitization strate-
gies is assessed numerically by simulating the model with a reasonable set of parameter values 
(mostly chosen from the literature) and initial demographic data from Mali. 
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1. Introduction 
AIDS is the most deadly disease caused by a human immunodeficiency virus (HIV). The virus destroys all the 
immune system and leaves individuals susceptible to any other infections. It multiplies inside lymphocytes and 
finally destroys them. When the lymphocytes are reduced to a certain numbers, the immune system stops func-
tioning correctly. Therefore, the individual can catch any kind of disease that might kill him easily because of 
the failure of the immune system. However, there exist drugs that can slow down the evolution of the virus. HIV 
is usually transmitted in three different ways: sexual contacts, blood transfusion, and exchange between mother 
and child during pregnancy, childbirth and breastfeeding. 

Many mathematical models are used to study the impact of preventive control strategies on the spread of 
HIV-AIDS in given populations (cf. [1]-[11], etc.). Some of these models showed that a change in risky beha-
viour was necessary to prevent the spread of HIV even in the presence of a treatment (see for example [12]-[16]). 
Thus, it is instructive to study models that focus on non-pharmaceutical interventions, such as the use of public 
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health sensitization campaign. 
The models developed in [15] [17]-[19] study the impact of public health sensitization campaign on the 

spread of HIV-AIDS. In this paper we propose and study a mathematical model to estimate the impact of public 
health sensitization campaign on the spread of HIV-AIDS in Mali. We divide for it the population into two 
classes: “class with high-risk behavioral or class without public health sensitization” and “class with low risk 
behavioral or class with public health sensitization”. Every class consists of susceptible individuals and infected 
individuals. The class of the individuals at high-risk behavioral is split into susceptibles individuals ( )hS , indi-  
viduals who are in stage 1 of the infection ( )1

hI , individuals who are in stage 2 of the infection ( )2
hI  and  

individuals who are in stage AIDS ( )3
hI  while the class of the individuals at low-risk behavioral is split into 

susceptibles individuals ( )fS , individuals who are in stage 1 of the infection ( )1
fI , individuals who are in  

stage 2 of the infection ( )2
fI  and individuals who are in stage AIDS ( )3

fI . The total population (Figure 1) at  

time t is denoted by ( )N t  and can be expressed as the following sum: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3 .h f h f h f h fN t S t S t I t I t I t I t I t I t= + + + + + + +                 (1) 

Our model is given by the following system of ODEs with constant coefficients: 

( ) ( )d
d

h
h h f h

S bN S K K S
t

µ θ= − + − +                             (2) 

( ) ( )
1

1
1 1

d
d

h
h h f h

I S K K I
t

µ α γ= + − + +                             (3) 

( )
2

1 2
1 2 2

d
d

h
h h

I I I
t

α µ α γ= − + +                                   (4) 

( )
3

2 3
2 3

d
d

h
h h

I I I
t

α µ γ= − +                                       (5) 

( )d
d

f
h f h f f

S
S S K K S

t
θ κ µ= − + −                               (6) 

( ) ( )
1

1 1
3 1

d
d

f
f h f f h

I
S K K I I

t
κ µ α γ= + − + +                         (7) 

( )
2

1 2 2
3 4 2

d
d

f
f f h

I
I I I

t
α µ α γ= − + +                                 (8) 

 

 
Figure 1. Behavioral representation of the HIV-AIDS model. 
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3
2 3 3

4 3

d
d

f
f f h

I
I I I

t
α µ γ= − +                                  (9) 

with 
1 2 31 2 3

and .f f fh h h
h h f f

I I II I IK K
N N

β β
+ ++ +

= =                      (10) 

By adding of (2) to (9), we obtain: ( )d .
d
N b N
t

µ= −  where the parameters of the model are defined in Table 

1. 
Our mathematical model is an extension of the models developed in [15] [17]-[19]. In our model, we suppose: 
H1: that he mode of transmission of the virus is the horizontal transmission; 
H2: that every individual is susceptible at high risk before his recruitment in the compartment hS  and that 

the rate of mortality induced by the HIV is neglected; 
H3: that κ , hη  and fη  are in [ ]0,1 , the parameters b , µ , θ , 1α , 2α , 3α , 4α , 1γ , 2γ , 3γ , hc , fc  

are in +  and that h fβ β> .  

2. Analysis of the Complete Model 
2.1. Existence of Solutions 
To show that the model is mathematically and biologically possible, we begin by rewriting it in terms of propor-
tions. So, we introduce the following scalings: 

1 2 31 2 3
1 2 3 1 2 3, , , , , , , .f f f fh h h h

h f h h h f f f

S I I IS I I Is s i i i i i i
N N N N N N N N

= = = = = = = =                (11) 

Consequently: 
1 2 3 1 2 3 1.h h h h f f f fs i i i s i i i+ + + + + + + =                             (12) 

By using what precedes, the rates of infection (10) become: 

( ) ( )1 2 3 1 2 3and .h h h h h f f f f fk i i i k i i iβ β= + + = + +                        (13) 

If we introduce the following parameters: 

1 2 1 1 3 2 2 4 3 5 3 6 4, , , , , .b b b b b bφ θ φ α γ φ α γ φ γ φ α φ α= + = + + = + + = + = + = +          (14) 

In the new variables, (2)-(9) reduces to: 

( ) 1
d
d

h
h h f h

s b s k k s
t

φ= − + −                                (15) 

( )
1

1
2

d
d

h
h h f h

i s k k i
t

φ= + −                                   (16) 

 
Table 1. Model parameters. 

Parameters Biological description 

b , µ  Recruitment rate, natural mortality rate. 

θ , 1γ , 2γ , 3γ  Sensitization rates. 

1α , 2α , 3α , 4α  Transfer rates. 

κ  Reduction probability of the susceptible contamination fS . 

hβ , fβ  Transmission rates. 
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2
1 2

1 3
d
d

h
h h

i i i
t

α φ= −                                            (17) 

3
2 3

2 4
d
d

h
h h

i i i
t

α φ= −                                           (18) 

( )d
d

f
h f h f f

s
s s k k bs

t
θ κ= − + −                                (19) 

( )
1

1 1
5 1

d
d

f
f h f f h

i
s k k i i

t
κ φ γ= + − +                                (20) 

2
1 2 2

3 6 2

d
d

f
f f h

i
i i i

t
α φ γ= − +                                      (21) 

3
2 3 3

4 3

d
d

f
f f h

i
i bi i

t
α γ= − +                                      (22) 

We suppose that the initial conditions belong in Ω  where 

( ) [ ]{ }81 2 3 1 2 3 1 2 3 1 2 3, , , , , , , 0,1 0 1 .h h h h f f f f h h h h f f f fs i i i s i i i s i i i s i i iΩ = ∈ ≤ + + + + + + + ≤            (23) 

Now we can enounce the following result: 
Theorem 1. For any initial condition in Ω , the system has a unique solution globally defined and which 

stays in Ω  for any time 0t ≥ . 
Before giving the proof of this theorem, we give at first a technical result which we shall use after. 
Lemma 1. Let a(t) and y(t) be n X n matrices of bounded measurable functions on [ )0,∞ , if 

( ) ( ) ( ) ( )d
d

x t a t x t y t
t

+ =                                (24) 

with ( ) 0y t ≥  for 00 t t≤ <  and ( )0 0x ≥  then ( ) 0x t ≥  for all 00 t t≤ < . 
Proof. Indeed, this follows from the integrated form of the differential Equation (24), 

( ) ( ) ( ) ( ) ( ) ( )0 0 0d d d

0
0 e e e d .

t t tta x x a x x a x xx t x y z z− −∫ ∫ ∫= + ∫                          □ 

We rewrite the system (15)-(22) in the form 

( )d
, 1, ,8.

d
i

i
x f x i
t
= = 

                               (25) 

Now we can give the proof of the theorem 1. 
Proof. Step 1: Local existence of the solutions. 
The local existence of the solutions ensues directly from the regularity of the function ( )1 8, ,f f f=   which 

is of class 1C  in Ω . 
Step 2: We show that Ω  is positively invariant. 
A. ( ) 0hs t ≥ , ( )1 0hi t ≥ , ( )2 0hi t ≥ , ( )3 0hi t ≥ , ( ) 0fs t ≥ , ( )1 0fi t ≥ , ( )2 0fi t ≥ , ( )3 0fi t ≥ , 0t∀ ≥ . 

Let’s suppose that it exists [ ]0 0,t T∈  such 00 t t∀ ≤ < , ( )1 0hi t ≥  and ( )1 0fi t ≥  and let’s rewrite the 
Equations (15), (17)-(22) in the form: 

( )1
d
d

h
h h f

s s k k b
t

φ+ + + =                               (26) 

2
2 1

3 1
d
d

h
h h

i i i
t

φ α+ =                                       (27) 

3
3 2

4 2
d
d

h
h h

i i i
t

φ α+ =                                       (28) 
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( )d
d

f
f h f h

s
s k k b s

t
θ+ + + =                              (29) 

2
2 2 1

6 2 3

d
d

f
f h f

i
i i i

t
φ γ α+ = +                                 (30) 

3
3 3 2

3 4

d
d

f
f h f

i
bi i i

t
γ α+ = +                                  (31) 

By Lemma 1, ( )2 0hi t ≥ , ( )3 0hi t ≥ , ( )2 0fi t ≥ , ( )3 0fi t ≥ , ( ) 0hs t ≥  et ( ) 0fs t ≥  for 00 t t≤ < . 
We next show that ( )1

hi t  and ( )1
fi t  remains positive for all 0t > . 

Proceding by contradiction: 
We suppose that ( )1 0hi t >  and ( )1 0fi t >  for 00 t t≤ <  and ( ) ( )1 1

0 0 0h fi t i t= = . 

Then, ( )1
0

d 0
d hi t
t

≤  and ( )1
0

d 0
d fi t
t

≤ . By considering the Equation (26) in time 0t t= , we have: 

( ) ( )
2

0 2
3 0

d
0

d
h

h

i t
i t

t
φ+ =                                             (32) 

( ) ( ) ( )
3

0 3 2
4 0 2 0

d
d

h
h h

i t
i t i t

t
φ α+ =                                       (33) 

( ) ( ) ( )
2

0 2 2
6 0 2 0

d
d
f

f h

i t
i t i t

t
φ γ+ =                                       (34) 

( ) ( ) ( ) ( )
3

0 3 3 2
0 3 0 4 0

d
d
f

f h f

i t
bi t i t i t

t
γ α+ = +                               (35) 

( ) ( ) ( ) ( )( )0
0 0 0 1

d
d
h

h h f

s t
s t k t k t b

t
φ+ + + =                             (36) 

( ) ( ) ( ) ( )( ) ( )0
0 0 0 0

d
.

d
f

f h f h

s t
s t k t k t b s t

t
θ+ + + =                        (37) 

By Lemma 1, ( )2 0hi t ≥  , ( )3 0hi t ≥ , ( )2 0fi t ≥ , ( )3 0fi t ≥ , ( ) 0hs t ≥  and ( ) 0fs t ≥  for 0t t= . 
Now we consider the Equations (16) and (20) in time 0t t=  

( ) ( ) ( ) ( )( )
1

0
0 0 0

d
0

d
h

h h f

i t
s t k t k t

t
= + ≥                            (38) 

( ) ( ) ( ) ( )( )
1

0
0 0 0

d
0

d
f

f h f

i t
s t k t k t

t
= + ≥                            (39) 

which is a contradiction, Consequently 1
hi  and 1

fi  remains positive for all 0t > . 
B. The following inequalities hold: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 1, for all 0.h h h h f f f fs t i t i t i t s t i t i t i t t+ + + + + + + = >  

Adding all the equations of (15), we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3d 0.
d h h h h f f f fs t i t i t i t s t i t i t i t

t
 + + + + + + + =                  (40) 

By integrating (40) between 0 and t, we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 1 2 3
2

1 2 3 1 2 3
20 0 0 0 0 0 0 0 0.

h h h h f f f

h h h h f f f

s t i t i t i t s t i t i t i t

s i i i s i i i

 + + + + + + + 
 − + + + + + + + = 
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So if the initial condition verifies 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3
20 0 0 0 0 0 0 0 1,h h h h f f fs i i i s i i i+ + + + + + + =  

then the relation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3
2 1,h h h h f f fs t i t i t i t s t i t i t i t+ + + + + + + =  

will be verified for all 0t > . 
This second stage shows that the solutions are limited for everything 0t ≥ . We can conclude that the solu-

tions of the model exist globally in Ω .                                                         □ 

2.2. Desease Free Equilibruim 
There will be absence of desease in the population if the proportions 1

hi , 2
hi , 3

hi , 1
fi , 2

fi  et 3
fi  are nil. Let be 

dfex  (resp. dfeX ) a desease free equilibruim of the model (15)-(22) (resp. (2)-(9)). The following theorem gives 
us the existence and the uniqueness of this desease free equilibruim. Given that the models (2)-(9) and (15)-(22) 
are equivalent, then dfex  and dfeX  are also equivalent. 

Theorem 2. The model of HIV-SIDA (2)-(9) or (15)-(22) possesses a unique desease free equilibruim in Ω  
where 

( )* *,0,0,0, ,0,0,0dfe h fx s s=                               (41) 

( )* *,0,0,0, ,0,0,0dfe h fX S S=                              (42) 

and 

* *

1 1

,h f
bs s θ
φ φ

= =                                     (43) 

* * * * * *, .h h f fS s N S s N= =                                (44) 

Proof. Let be dfex  a desease free equilibruim of the model (15)-(22). There will be absence of desease in the 
population if 1 2 3 1 2 3 0h h h f f fi i i i i i= = = = = = . If we substitute these useless values in 0if = , 1, ,8i =  , we find 
that the unique free equilibruim for hs  in Ω  from (15) is *

hs , the unique free equilibruim for fs  in Ω  
from (19) is *

fs . Consequently the unique desease free equilibruim in Ω  is dfex . 
Let be dfeX  desease free equilibruim for the model (2)-(9). By substituting dfex  in (11), we obtain: 

( ) ( )1 2 3 1 2 3 * *, , , , , , , ,0,0,0, ,0,0,0 ,dfe h h h h f f f f h fX S I I I S I I I S S= =  

where 
* * * * * *, et .h h f fS s N S s N= =                                  □ 

2.3. Local Stability of Disease Free Equilibrium 
By using the method of Van den Drissche and Watmough, we denote by F the rate of appearance of new 
infections in compartments of the infectious, and by Vs the rate of transfer of individuals in and out the com-
partments of the infectious by all other means. Then 

* * * * * *
2

1 3

2 4
* * * * * *

1 5

2 3 6

3 4

0 0 0 0 0
0 0 0 00 0 0 0 0 0

0 0 0 00 0 0 0 0 0
and .

0 0 0 0
0 0 00 0 0 0 0 0
0 0 00 0 0 0 0 0

h h h h h h f h f h f h

h f h f h f f f f f f f

s s s s s s

F V
s s s s s s

b

φβ β β β β β
α φ

α φ
γ φβ β β β β β

γ α φ
γ α

   
   −   
   −

= =   
−   

   − −
   

− −     

 

The next-generation matrix is defined by: 
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1 2 3 4 5 6

1

1 2 3 4 5 67

0 0 0 0 0 0
0 0 0 0 0 01

0 0 0 0 0 0
0 0 0 0 0 0

M b M b M b M b M b M b

K FV
M M M M M MM κθ κθ κθ κθ κθ κθ

−

 
 
 
 

= =  
 
 
 
  

 

where 1M , 2M , 3M , 4M , 5M , 6M  and 7M  are defined by the equations of (45) to (51). 

1 3 4 5 6 1 4 5 6 1 2 5 6 1 3 4 6 2 1 4 5

3 1 3 4 3 2 1 5 6 4 1 2 4 5 4 3 1 3 4

h h h f f

f f f f

M b b b b b

b

β φ φ φ φ α β φ φ φ β α α φ φ β γ φ φ φ β γ α φ φ

β α γ φ φ β γ α α φ φ β α α γ φ φ β α α γ φ φ

= + + + +

+ + + +
          (45) 

2 2 4 5 6 2 2 5 6 2 2 4 5 3 2 2 5 6 4 2 2 4 5h h f f fM b b bβ φ φ φ φ β α φ φ φ β γ φ φ φ β γ α φ φ φ β α γ φ φ φ= + + + +         (46) 

3 2 3 5 6 3 2 3 5 6h fM bβ φ φ φ φ β γ φ φ φ φ= +                                             (47) 

4 2 3 4 6 3 2 3 4 3 4 2 3 4f f fM b bβ φ φ φ φ β α φ φ φ β α α φ φ φ= + +                                (48) 

5 2 3 4 5 4 2 3 4 5f fM bβ φ φ φ φ β α φ φ φ φ= +                                             (49) 

6 2 3 4 5 6fM β φ φ φ φ φ=                                                        (50) 

7 1 2 3 4 5 6M bφ φ φ φ φ φ=                                                        (51) 

Proposition 3. The basic reproduction ratio for HIV-SIDA model (15)-(22) is explicitly given by the formula 
(52) where 1M , 4M  and 7M  are explicitly defined by equations (45), (48) and (51): 

( ) 1 4
0

7

bM MR K
M
κθ

ρ
+

= =                               (52) 

Theorem 4. The disease free equilibrium dfex  of the model (15) is locally-asymptotically stable if 0 1R <  
and unstable if 0 1R > . 

2.4. Global Stability of the Disease Free Equilibrium 
We have the following theorem. 

Theorem 5. For the system (15)-(22), if 0 1R <  then the disease free equilibrium is globally asymptotically 
stable. 

Proof. We begin by rewriting the system (15)-(22) in the form: 

( )( ) ( )1 11
1 1 1 1 1

d
d h f
x b b x k k b x
t

φ φ φ− −= − + − + + −                           (53) 

( )( )
1

1 1
1 1 2

d
d

h
h f h

i b x k k i
t

φ φ−= − + −                                      (54) 

2
1 2

1 3
d
d

h
h h

i i i
t

α φ= −                                                   (55) 

3
2 3

2 4
d
d

h
h h

i i i
t

α φ= −                                                   (56) 

( ) ( )( ) ( )1 1 12
1 1 1 2 1 2

d
d h f
x b x x k k b x
t

θ φ κ θφ θφ− − −= − − + − + + −                (57) 

( )( )
1

1 1 1
1 2 5 1

d
d

f
h f f h

i
x k k i i

t
κ θφ φ γ−= − + − +                               (58) 
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2
1 2 2

3 6 2

d
d

f
f f h

i
i i i

t
α φ γ= − +                                             (59) 

3
2 3 3

4 3

d
d

f
f f h

i
i bi i

t
α γ= − +                                              (60) 

where 1
1 1 hx b sφ−= −  and 1

2 2 fx sθφ−= − , the disease free equilibrium dfex  for the system (53)-(60) corres-
ponds to the point ( )0,0,0,0,0,0,0,0 . 

Now, let us consider the following function: 

( ) ( )
( )

1 1 1 2 1 1 2 1 2 3
2 7 4 2 2 2 3 1 2

1 1 1 2 1 1 2 3 1 2
2 4 2 5 2 6 1 2 .

h h h h f f f

f f h h h f f

V M M i b M i b M x x i i i i i

b M i b M i b M x x i i i i i

φ κθ φ φ

φ φ φ

− − −

− − −

= − + + + − − − − −

+ + + + − − − − −
 

If 0 1R < , 7 4M Mκθ− , 2M , 3M , 4M , 5M  and 6M  are positives. Consequently the function V is posi-
tive, and it nulle at the disease free equilibrium. The derivative of this Lyapunov function V along the trajecto-
ries of the ordinary differentiel system is: 

( ) ( )( ) ( )
( ) ( )( )
( ) ( )

1 1 1 1 1 2
2 7 4 1 1 2 2 2 1 3

1 2 3 1 1 1 1
2 3 2 4 2 4 1 2 5 1

1 1 2 2 1 2 3 3
2 5 3 6 2 2 6 4 3 .

h f h h h

h h h f f h

f f h f f h

V M M b x k k i b M i i

b M i i b M x k k i i

b M i i i b M i bi i

φ κθ φ φ φ α φ

φ α φ φ κ θφ φ γ

φ α φ γ φ α γ

− − −

− − −

− −

 = − − + − + − 
 + − + − + − + 

+ − + + − +



 

We can also write 

( ) ( ) ( )( )
( )

( ) ( )

1 1
2 7 4 2 7 4 1

1
1 1 1 1 2 1 2

7 4 2 2 1 2 2 3 2 3 2

1 3 1 1 1
2 3 4 2 4 1 2 4 2

1 1 1 1 1 1 1 2
2 4 5 2 4 1 2 5 3 2 5 6

1
2 5

h f h f

h h h h

h h f h f

f h f f

bV M M k k M M k k x

M M i b M i b M i b M i

b M i b M k k b M k k x

b M i b M i b M i b M i

b M

φ κθ φ κθ
φ

κθ φ α φ φ φ α

φ φ φ κθ φ φ κ

φ φ φ γ φ α φ φ

φ γ

− −

− − −

− − − −

− − − −

−

= − + − − +

− − + − +

− + + − +

− + + −

+



2 1 2 1 3 1 3
2 2 6 4 2 6 2 6 3 .h f f hi b M i b M bi b M iφ α φ φ γ− − −+ − +

 

Algebraic manipulations give 

( )( ) ( )
( )

1 1
2 7 4 1 2 4 2

1 1 1 1 1
7 4 2 2 1 2 4 1 1 2 7

h f h f

h h

V M M k k x b M k k x

M M b M b M b M i

φ θκ φ κ

θκ φ α φ γ β φ φ

− −

− − − −

= − − + − +

+ − + + + +



 

or 

( )( ) ( ) ( )1 1 1
2 7 4 1 2 4 2 7 4 1 .h f h f hV M M k k x b M k k x M M bM iφ κθ φ κ κθ− −= − − + − + − − −  

If 0 1R < , 7 4M Mκθ−  and 7 4 1M M bMκθ− −  are positives, consequently V  is negative definite along 
the trajectories. This ends the proof of the theorem.                                                □ 

2.5. Numerical Simulations 
Before closing this section, we verify numerically the theoretical results obtained in subsections 2, 2 and 2 for an 
initial condition 0.96104hs = , 1 0.01872hi = , 2 0.00374hi = , 3 0.00094hi = , 0.0091fs = , 1 0.00468fi = , 

2 0.00094fi = , 3 0.00023fi = . For numerical simulations, the system (15) (22) is discretized with a Runge-  
Kutta’s method (ODE45). We collect a set of values of biological parameters for the model corresponding to the 
data on the spread of the HIV-SIDA in two cases: 

First case: the disease goes extinct in the population (see Figure 2). 
Second case: the disease persists in the population (see Figure 3). 
These parameters are obtained in the literature and are summarized in the Table 2. 
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(a)                                                       (b) 

  
(c)                                                       (d) 

Figure 2. Dynamics of the system (15)-(22) in case where the disease goes extinct in the population. With the parameters of 
the Table 2 (first case), we have R0 = 0.5826. Figure 2(a) shows the evolution of susceptibles individuals, whereas Figures 
2(b)-(d) show the evolution of infected individuals. The system converges towards the desease free equilibruim (0.226, 0, 0, 
0, 0.774, 0, 0, 0). The simulation was realized with the MATLAB logiciel. 

3. Model without Public Health Sensitization 
In this section all sensitization-related parameters and variables are fixed to zero in order to understand the dy-
namic behavior of the population without public health sensitization campaign. 

So, we pose 1 2 3
1 2 3 0f f f fs i i i θ γ γ γ κ= = = = = = = = = . the model (15)-(22) reduces to: 

1
d
d

h
h h h

s b s k s
t

φ= − −                                    (61) 

1
1

2
d
d

h
h h h

i s k i
t

φ= −                                       (62) 

2
1 2

1 3
d
d

h
h h

i i i
t

α φ= −                                       (63) 

3
2 3

2 4
d
d

h
h h

i i i
t

α φ= −                                       (64) 
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(a)                                                       (b) 

  
(c)                                                       (d) 

Figure 3. Dynamics of the system (15)-(22) in case where the disease persists in the population. With the parameters of the 
Table 2 (second case), we have R0 = 1.2928. Figure 3(a) shows the evolution of susceptibles individuals, whereas Figures 
3(b)-(d) show the evolution of infected individuals. The system converges towards the endemic equilibrium (0.6609, 0.0423, 
0.021, 0.0206, 0.2251, 0.0072, 0.007, 0.0158). The simulation was realized with the MATLAB logiciel. 
 
Table 2. Biological parameters. 

Parameters First case Second case 

b ; µ  0.0146; 0.014 0.0146; 0.014 

θ ; κ  0.05; 0.07 0.005; 0.007 

1α ; 2α  0.02; 0.02 0.02; 0.02 

3α ; 4α  0.02; 0.02 0.02; 0.02 

1γ ; 2γ  0.01; 0.01 0.005; 0.005 

3γ  0.01 0.005 

hβ ; fβ  0.015; 0.0075 0.028; 0.0075 
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where 

1 4 2 1 3 2, ,b b bφ φ φ α φ α= = = + = +  

with 1 2 3 1h h h hs i i i+ + + = . For this sub-model by using the same reasoning in the theorem 1, we demonstrate that 
for any initial condition in hΩ , the system has a unique solution globally defined and which stays in hΩ  for 
any time 0t ≥  where 

( ) [ ]{ }41 2 3 1 2 3, , , 0,1 0 1 .h h h h h h h h hs i i i s i i iΩ = ∈ ≤ + + + ≤                       (65) 

3.1. Local Stability of Disease Free Equilibrium 
The desease free equilibruim dfex  of the sub-model (61)-(64) is: 

( ) ( )* 1* 2* 1*, , , 1,0,0,0 .dfe h h h hx s i i i= =  

By using the method of Van den Drissche and Watmough, we denote by F the rate of appearance of new in-
fections in compartments of the infectious, and by Vs the rate of transfer of individuals in and out the compart-
ments of the infectious by all other means. Then: 

2

1 3

2 4

0 0
0 0 0 and 0 .
0 0 0 0

h h h

F V
β β β φ

α φ
α φ

   
   = = −   
   −   

 

the next-generation matrix is defined by: 

( ) ( )3 4 1 4 1 2 2 4

2 3 4 3 4 4
1 0 0 0 .

0 0 0

h h h

K FV

β φ φ α φ α α β α φ β
φ φ φ φ φ φ

−

 + + +
 
 
 = =
 
 
 
 

 

Proposition 6. The basic reproduction ratio for the sub-model (61)-(64) is given by the formula (66): 

( ) ( )3 4 1 4 1 21
0

2 3 4

h
hR FV

β φ φ α φ α α
ρ

φ φ φ
− + +

= =                           (66) 

Theorem 7. The disease free equilibrium dfex  of the sub-model (61)-(64) is locally-asymptotically stable if 
0hR  and unstable if 0 1hR > . 

3.2. Global Stability of the Disease Free Equilibrium 
Theorem 8. For the system (61)-(64), if 0 1hR <  then the disease free equilibrium dfex  is globally asymptoti-
cally stable. 

Proof. We begin by rewriting the system (61)-(64) in the form: 

( ) ( )1
d

1 1
d

h
h h h

x b x k x
t

φ= − + − + −                             (67) 

( )
1

1
2

d
1

d
h

h h h
i x k i
t

φ= − −                                     (68) 

2
1 2

1 3
d
d

h
h h

i i i
t

α φ= −                                          (69) 

3
2 3

2 4
d
d

h
h h

i i i
t

α φ= −                                          (70) 
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where 1
1h hx b sφ−= − . 

The disease free equilibrium dfex  for the system (67)-(70) corresponds to the point ( )0,0,0,0 . 
Now, let us consider the following function: 

( )( ) ( )1 1 3 1 2
3 4 4 2 3 .h h h h h h hV i x i i x i iφ φ β φ α β φ= + + − − + − −  

The function V is positive, and it nulle at the disease free equilibrium. The derivative of this Lyapunov func-
tion V along the trajectories of the ordinary differentiel system is: 

( ) ( )( ) ( )1 1 2 2 3
3 4 2 4 2 1 3 3 2 41 .h h h h h h h h hV x k i i i i iφ φ φ β φ α α φ β φ α φ = − − + + − + − 

  

We can also write 

( )
( ) ( )

1
3 4 2 3 4 1 4 1 2 3 4

2 3
3 4 2 3 3 4 2 3 3 4 3 4 .
h h h h h h

h h h h

V k x i

i i

φ φ φ φ φ β α φ β α α β φ φ

β φ φ α φ φ φ α φ β φ φ φ φ

= − + − + + +

− + − − + −



 

Algebraic manipulations give 

( ) 1
3 4 1 4 1 2 3 4 2 3 4h h h h h hV k x iφ φ β α φ β α α β φ φ φ φ φ= − + + + −  

or 

( ) 1
3 4 0 1 .h h h hV k x R iφ φ= − + −  

If 0 1hR < , then V  is negative along the trajectories. This ends the proof of the theorem.               □ 

3.3. Existence and Uniqueness of an Endemic Equilibrium 
It is found that an unique endemic equilibrium of (61)-(64) for 0 1hR > . Thus, we solve the system: 

* * *
1 0h h hb s k sφ− − =                                    (71) 

* * 1*
2 0h h hs k iφ− =                                      (72) 

1* 2*
1 3 0h hi iα φ− =                                     (73) 

2* 3
2 4 0.h hi iα φ− =                                     (74) 

From (72), we have: 
1*

* 2
* .h

h
h

i
s

k
φ

=                                        (75) 

From (73), we have: 
1*

2* 1

3

.h
h

i
i

α
φ

=                                        (76) 

From (74) et (76), we have: 
1*

3* 1 2

3 4

.h
h

i
i

α α
φ φ

=                                      (77) 

From (75), (76) and (77), we have: 

( )
* 2 3 4

3 4 1 2 1 4 0

1 .h
h h

s
R

φ φ φ
β φ φ α α α φ

= =
+ +

                            (78) 

(76), (77) and (78) in (71) give: 

( )
( )

1 3 4 01*

3 4 1 2 1 4

1
;h

h
h

R
i

φ φ φ
β φ φ α α α φ

−
=

+ +
                              (79) 
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(79) dans (76) give: 

( )
( )
1 1 3 4 02*

3 3 4 1 2 1 4

1
;h

h
h

R
i

α φ φ φ
β φ φ φ α α α φ

−
=

+ +
                             (80) 

(79) in (77) give 

( )
( )

1 2 1 3 4 03*

3 4 3 4 1 2 1 4

1
.h

h
h

R
i

α α φ φ φ
β φ φ φ φ α α α φ

−
=

+ +
                            (81) 

If 0 1hR > , the system (61)-(64) admits a unique endemic equilibrium. 

3.4. Numerical Simulations 
Before closing this section, we verify numerically the theoretical results obtained in this section for an initial 
condition 0.97075hs = , 1 0.0232hi = , 2 0.00468hi = , 3 0.00137hi = . For numerical simulations, the system 
(61)-(64) is discretized with a Runge-Kutta’s method (ODE45). We collect a set of values of biological parame-
ters for the sub-model (61)-(64) corresponding to the data on the spread of the HIV-SIDA in two cases: 

First case: the disease goes extinct in the population (see Figure 4). 
Second case: the disease persists in the population (see Figure 5). 
These parameters are obtained in the literature and are summarized in the Table 3. 

4. Evaluation of Impact of Public Health Sensitization 
Before using the model (15)-(22) to evaluate the impact of public health sensitization in combatting HIV-AIDS 
spread in a population, it is instructive to evaluate the behaviour of the model under the worst case scenario (i.e., 
the case where no public health sensitization is provided in the population). By setting all sensitization related 
parameters to zero (i.e., 1 2 3 0θ γ γ γ= = = = ) and using the data in Table 4 and Table 5, simulations of the 
model (15)-(22) show that in Mali the proportion of infected individuals would reach approximately 0.0686 (let 
499550 cas) in 9 years from 2001 (Figure 6(b)). These projections of the model are compatible with the EDSM 
III projections over the year 2010 which predicted that by the year 2010 in Mali, if measures are not taken to 
control the epidemic of the HIV-AIDS, about 50000 people could be infected by the virus (see Figure 6). 

We resume in Table 4 and Table 5, data of Mali concerning the spread of the HIV-AIDS. 
 

  
(a)                                                       (b) 

Figure 4. Dynamics of the system (61)-(64) in case where the disease goes extinct in the population. With the parameters of 
the Table 3 (first case), we have Rh0 = 0.3077. Figure 4(a) shows the evolution of susceptibles individuals, whereas Figures 
4(b)-(d) show the evolution of infected individuals. The system converges towards the desease free equilibruim (1, 0, 0, 0). 
The simulation was realized with the MATLAB logiciel. 
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(a)                                                       (b) 

Figure 5. Dynamics of the system (61)-(64) in case where the disease persists in the populationn. With the parameters of the 
Table 3 (second case), we have Rh0 = 1.6. Figure 5(a) shows the evolution of susceptibles individuals, whereas Figures 
5(b)-(d) show the evolution of infected individuals. The system converges towards the endemic equilibrium (0.6298, 0.038, 
0.0195, 0.0111). The simulation was realized with the MATLAB logiciel. 
 

Table 3. Biological parameters. 

Parameters First case Second case 

b  0.01625 0.01625 

µ  0.014 0.014 

1α  0.02 0.02 

2α  0.015 0.015 

hβ  0.005 0.026 

 
Table 4. Mali epidemiological data for the model (15). 

Parameters Values 

θ , κ  0.05, 0.7 

1α , 2α , 3α , 4α  0.04, 0.02, 0.04, 0.02 

1γ , 2γ , 3γ  0.05, 0.05, 0.05 

hβ , fβ  0.0026 0.00718 

 
Table 5. Mali demographic data of 2001 used as initial conditions. 

Demographic data Values 

( )0N , µ  5812498, 0.014 

( )0i , b  170000, 0.0146 

( )0hs , ( )0fs  0.96104, 0.00971 

( )1 0hi , ( )1 0fi  0.01872, 0.00468 

( )2 0hi , ( )2 0fi  0.00374, 0.00094 

( )3 0hi , ( )3 0fi  0.00094, 0.00023 
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(a)                                                       (b) 

Figure 6. Dynamics of the system (15)-(22) in the nose of the cases, Rh0 = 1.6. Figure 6(a) shows the evolution of suscep-
tibles individuals, whereas Figure 6(b) shows the evolution of infected individuals. We use the parameters of the Table 4. 
The simulation was realized with the MATLAB logiciel. 
 

  
(a)                                                       (b) 

  
(c)                                                       (d) 

Figure 7. Dynamics of the system (15) in case the population of Mali is submitted to Public Health sensitization compaign 
on the spread of HIV-AIDS, R0 = 0.5109. Figure 7(a) shows the evolution of susceptibles individuals, whereas Figures 
7(b)-(d) show the evolution of infected individuals. We use the parameters of the Table 4. The simulation was realized with 
the MATLAB logiciel. 
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We evaluate now the behavior of the model (15)-(22) by considering the impact of Public Health sensitization 
compaign on the spread of HIV-AIDS in Mali. Using the data in Table 4 and Table 5, simulations of the model 
(15)-(22) show that in Mali the proportion of infected individuals would reach approximately 0.0137 (soit 
100020 cas) in 9 years from 2001 (Figure 6(b)). These projections of the model are compatible with the data 
found in the literature (Source CIA factbook). According to this source, in Mali the individuals infected by the 
HIV-AIDS in 2010 were 100000 (see Figure 7). 
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