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Abstract 
The mathematical model is presented for the flow of peristaltic pumping of a conducting non- 
Newtonian fluid obeying Sisko model through a porous medium under the effect of magnetic field 
with heat and mass transfer. The solutions of the system of equations which represent this motion 
are obtained analytically using perturbation technique after considering the approximation of 
long wave length. The formula of the velocity with temperature and concentration of the fluid is 
obtained as a function of the physical parameters of the problem. The effects of these parameters 
on these solutions are discussed numerically and illustrated graphically through some graphs. 
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1. Introduction 
Peristalsis is a form of fluid transport induced by a progressive wave of area contraction or expansion along the 
walls of distensible duct containing a liquid or mixture. A peristaltic pump is a device for pumping fluids, gen-
erally from a region of lower to higher pressure, by means of a contraction wave traveling along a tube like 
structure. Shapiro et al. [1] explained the basic principles and brought out clearly the significances of the various 
parameters governing the flow. The non-Newtonian effects in peristaltic motion were included in Kaimal [2]. 
Later several mathematical and experimental models have been developed to understand the fluid mechanical 
aspects of peristaltic motion. A large body of work already exists on mathematical and experimental models 
containing a Newtonian or non-Newtonian fluid in a channel. 
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Peristalsis also have industrial and biological applications like sanitary fluid transport blood pumps in heart 
lungs machines and peristaltic transport of toxic liquid is used in nuclear industries. Some recent investigations 
made to discuss the mechanism of peristalsis include the works. Radhakrishnamacharya and Srinivasulu [3] stu-
died the influence of wall properties on peristaltic transport with heat transfer. Mekheimer and Abd Elmaboud [4] 
analyzed the influence of heat transfer and magnetic field on peristaltic transport of Newtonian fluid in a vertical 
annulus. Hayat et al. [5] studied the effect of heat transfer on the peristaltic flow of an electrically conducting 
fluid in a porous space. Krishna Kumari et al. [6] studied the peristaltic pumping of a magnetohydrodynamic 
Casson fluid in an inclined channel. Ravi Kumar et al. [7] considered power-law fluid in the study of peristaltic 
transport. 

The effect of porous medium on the motion of the fluid has been studied by many authors. Elshehawey et al. 
[8] studied the effect of porous medium on peristaltic motion of a Newtonian fluid. Eldabe [9] studied magne-
tohydrodynamic flow through a porous medium fluid at a rear stagnation point. Eldabe et al. [8] studied MHD 
flow and heat transfer in a viscoelastic incompressible fluid confined between a horizontal stretching sheet and a 
parallel porous wall. Elshehawey et al. [9] studied the peristaltic motion of a Generalized Newtonian fluid 
through a porous medium. El-Dabe et al. [10] studied the magnetohydrodynamic flow and heat transfer for a pe-
ristaltic motion of Carreau fluid through a porous medium. 

The study of the influence of mass and heat transfer on Newtonian and non-Newtonian fluids has become 
important in the last few years. This importance is due to a number of industrial processes. Examples are 
food-processing, biochemical operations and transport in polymers. Eldabe et al. [11] studied the heat and mass 
transfer in hydromagnetic flow of the non-Newtonian fluid with heat source over an accelerating surface through 
a porous medium. Srinivas and Kothandapani [12] dealt with peristalsis and heat transfer. Hayat et al. [13]-[15] 
analyzed the peristaltic mechanism with heat transfer. Eldabe et al. [16] studied the effect of couple stresses on 
the MHD of a non-Newtonian unsteady flow between two parallel porous plates. The main aim of this study is 
to investigate the problem of the peristaltic flow of a conducting Sisko fluid in a porous channel with heat and 
mass transfer; the system of non-linear partial differential equations which describe this motion with heat and 
mass transfer subjected to the appropriate boundary conditions is solved analytically by using perturbation me-
thod. The expressions of the velocity, the temperature and the concentration are determined. The effects of dif-
ferent parameters on these expressions are discussed through graphs. 

2. Basic Equations 

The basic equations governing the flow of an incompressible fluid are expressed as follows: 
The continuity equation 

* 0,V∇⋅ =                                            (1) 
The momentum equation 

*
**

* *

d ,
d e
V div J B V
t k

µρ τ µ= + ∧ −                                  (2) 

where * * *,P I Sτ = − +  and 

( ) 1
*

1

n

S m Aη
−

∗ 
= + ∏ 
 

, * *T
1 ,A L L∗ = +  * *,L grad V=  ( )2

1
1 ,
2

tr A∗∏ =                (3) 

where ,m η  and n  are the material parameters of the fluid. Note that for n o<  the fluid describes shear 
thinning, for n o>  the fluid describes shear thicking, for 1n =  the Newtonian fluid is recovered and for 
m o=  the generalized power-law model can be obtained. 

The temperature equation 

( )* 2
* ,p

Tc V T T
t

ρ κ∂ + ⋅∇ = ∇ +Φ ∂ 
                              (4) 

The concentration equation 

( ) ( )* 2 2
2* ,T

m

C DV C D C T A C C
t T

κ∂ + ⋅∇ = ∇ + ∇ − − ∂ 
                       (5) 
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The dissipation function Φ  
*

* ,i
ij

j

V
X

τ ∗ ∂Φ =
∂

                                         (6) 

Maxwell s equations 

,eB Jµ∇× =                                          (7) 

,BE
t

∂
∇× = −

∂
 

0,B∇⋅ =  

Ohm’s equation 

( )*J E V Bσ= + ×                                       (8) 

where *V  is the velocity vector, ρ  is the density, *

d
dt

 
 
 

 is the material time derivative, *k  is the permea- 

bility, J  is the current density, σ  is the electrical conductivity, eµ  is the magnetic permeability, * 0E =   
is the electric field and *τ  is the Cauchy stress, T and C are temperature and concentration of the fluid, κ  is 
the thermal conductivity, pc  is the specific heat capacity at constant pressure, D is the coefficient of mass dif-
fusivity, Tκ  is the thermal diffusion ratio, mT  is the mean fluid temperature and A is the reaction rate con-
stant. 

3. Mathematical Formulation 
Consider the two-dimensional motion of an incompressible Sisko fluid in an infinite channel of width a , see 
Figure 1. In the upper wall we assume an infinite sinusoidal wave train moving ahead with constant velocity c 
along it while the lower plate is fixed at * 0Y = . The wavy surface is defined as 

( ) ( )* * * * * *2π, Sin ,Y H X t a b X ct
λ

 = = + −  
                          (9) 

where b is the wave amplitude, λ  is the wave length and *t  is the time. 
Now, Equations (2)-(6) can be written in two-dimensional ( )* *,X Y  as follows: 

* *

* * 0,U V
X Y
∂ ∂

+ =
∂ ∂

                                    (10)  

* * * *
**

* * * * 2 *
* * * * * * * ,X X X Y

o

S SPU V U U B U
t X Y X X Y k

µρ σ
∗∂ ∂∂ ∂ ∂ ∂ + + = − + + − − ∂ ∂ ∂ ∂ ∂ ∂ 

           (11) 

 

 
Figure 1. Sketch of the problem.                   
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* * * *
*

* * * *
* * * * * * * ,X Y Y Y

S SPU V V V
t X Y Y X Y k

µρ
∗ ∗∂ ∂∂ ∂ ∂ ∂ + + = − + + − ∂ ∂ ∂ ∂ ∂ ∂ 

                (12) 

* * * * * *

2 2 * * * *
* * *

* * * *2 *2 * * * * ,p X X X Y Y Y

T T T T T U V U Vc U V S S S
t X Y X Y X X Y Y

ρ κ ∗ ∗   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
     (13) 

( )
2 2 2 2

* *
2* * * *2 *2 *2 *2 ,T

m

C C C C C D T TU V D A C C
t X Y X Y T X Y

κ   ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + = + + + − −    ∂ ∂ ∂ ∂ ∂ ∂ ∂     
         (14) 

where 

* *

1
2 2 2 2* * * * *

*
* * * * *2 2 2 ,

n

X X

U U V V US m
X Y X Y X

η

− 
       ∂ ∂ ∂ ∂ ∂ = + + + +       ∂ ∂ ∂ ∂ ∂        

 

               (15) 

* *

1
2 2 2 2* * * * * *

* * * * * *2 2 ,

n

X Y

U U V V U VS m
X Y X Y Y X

η

−

∗

 
         ∂ ∂ ∂ ∂ ∂ ∂ = + + + + +         ∂ ∂ ∂ ∂ ∂ ∂          

 

              (16) 

* *

1
2 2 2 2* * * * *

* * * * *2 2 2 ,

n

Y Y

U U V V VS m
X Y X Y Y

η

−

∗

 
       ∂ ∂ ∂ ∂ ∂ = + + + +       ∂ ∂ ∂ ∂ ∂        

 

                 (17) 

* * * * * *

* * * *
*

* * * * ,
X X X Y Y Y

U V U VS S S
X X Y Y

∗ ∗ ∂ ∂ ∂ ∂
Φ = + + + ∂ ∂ ∂ ∂ 

                        (18) 

Subjected to the following appropriate boundary conditions: 

( )

*
*

1 1*

* * * * *
2 2

0, , at 0,

2π0, , at Sin

U T T C C Y
Y

U T T C C Y h a b X ct
λ

∂
= = = =

∂
 = = = = = + −  

                   (19) 

Choose the wave frame ( )* *,x y  moving with speed c, where 

( ) ( )* * * * * * * * * * * * * * * *, , , , , , , .x X ct y Y u U c v V p x y P X Y t= − = = − = =                (20) 

In which ( )* *,u v  are components of the velocity in the moving coordinates system. 
Then, the Equations (10)-(19) can be written as: 

* *

* * 0,u v
x y
∂ ∂

+ =
∂ ∂

                                      (21) 

* ** *
***

* * * * 2 *
* * * * * * ,x yx x

o

sspu v u u B u
x y x x y k

µρ σ
∂∂ ∂ ∂ ∂

+ = − + + − − ∂ ∂ ∂ ∂ ∂ 
                 (22) 

* * * *
* **

* * * *
* * * * * * ,x y y y

s spu v v v
x y y x y k

µρ
∂ ∂ ∂ ∂ ∂

+ = − + + − ∂ ∂ ∂ ∂ ∂ 
                     (23) 

* * * * * *

2 2 * * * *
* * * * *

* * *2 *2 * * * * ,p x x x y y y

T T T T u v u vc u v s s s
x y x y x x y y

ρ κ
    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ = + + + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
           (24) 
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( )
2 2 2 2

* *
2* * *2 *2 *2 *2 ,T

m

C C C C D T Tu v D A C C
x y x y T x y

κ   ∂ ∂ ∂ ∂ ∂ ∂
+ = + + + − −   ∂ ∂ ∂ ∂ ∂ ∂   

               (25) 

where 

* *

1
2 2 2 2* * * * *

*
* * * * *2 2 2 ,

n

x x

u u v v us m
x y x y x

η

− 
       ∂ ∂ ∂ ∂ ∂ = + + + +       ∂ ∂ ∂ ∂ ∂        

 

                 (26) 

* *

1
2 2 2 2* * * * * *

*
* * * * * *2 2 ,

n

x y

u u v v u vs m
x y x y y x

η

− 
         ∂ ∂ ∂ ∂ ∂ ∂ = + + + + +         ∂ ∂ ∂ ∂ ∂ ∂          

 

               (27) 

* *

1
2 2 2 2* * * * *

*
* * * * *2 2 2 ,

n

y y

u u v v vs m
x y x y y

η

− 
       ∂ ∂ ∂ ∂ ∂ = + + + +       ∂ ∂ ∂ ∂ ∂        

 

                 (28)  

The boundary conditions are: 
*

*
1 1*

* * * *
2 2

0, , at 0,

2π, , at Sin

u T T C C y
y

u c T T C C y h a b x
λ

∂
= = = =

∂

 = − = = = = +  
 

                   (29) 

In order to simplify the governing equations of the motion, we may introduce the following dimensionless 
transformations: 

* * * 2 *
* * * 2 2

1 2 1 2

2π 2π, , , , , , , , ,y u v a a h C C T Tx x y u v s s p p h
a c c c c a C C T T

φ θ
λ µ λµ

− −
= = = = = = = = =

− −
        (30) 

where, 1T  and 1C  are the temperature and the concentration of the fluid at the lower wall of the channel, 2T  
and 2C  are the temperature and the concentration of the fluid at the upper wall of the channel. 

Substituting (30) into Equations (21)-(29) we obtain the following non-dimensional equations after dropping 
the star mark: 

0,u v
x y

δ ∂ ∂
+ =

∂ ∂
                                      (31) 

1 ,xyxx
e

a

sspR u v u u Mu
x y x x y D

δ δ
∂  ∂∂ ∂ ∂

+ = − + + − − ∂ ∂ ∂ ∂ ∂ 
                      (32) 

2 ,xy yy
e

a

s spR u v v v
x y y x y D

δδ δ δ δ
∂ ∂ ∂ ∂ ∂

+ = − + + − ∂ ∂ ∂ ∂ ∂ 
                       (33) 

2 2
2

2 2

1 ,e c xx xy yy
r

u v u vR u v E s s s
x y P x y x x y y
θ θ θ θδ δ δ δ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = + + + − +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

            (34) 

2 2 2 2
2 2

2 2 2 2

1 ,e r c
c

R u v S R
x y S x y x y
φ φ φ φ θ θδ δ δ φ

    ∂ ∂ ∂ ∂ ∂ ∂
+ = + + + −    ∂ ∂ ∂ ∂ ∂ ∂     

                  (35) 

1
2 22 2

22 1 2 2 ,

n

xx
u u v v us
x y x y x

η δ δ

− 
     ∂ ∂ ∂ ∂ ∂  = + + + +     ∂ ∂ ∂ ∂ ∂       

 

                    (36) 
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1
2 22 2

22 1 2 2 ,

n

xy
u u v v u vs
x y x y y x

η δ δ δ

− 
       ∂ ∂ ∂ ∂ ∂ ∂  = + + + + +       ∂ ∂ ∂ ∂ ∂ ∂         

 

                 (37) 

1
2 22 2

22 1 2 2 ,

n

yy
u u v v vs
x y x y y

η δ δ

− 
     ∂ ∂ ∂ ∂ ∂  = + + + +     ∂ ∂ ∂ ∂ ∂       

 

                     (38) 

The boundary conditions are: 

0, 1, 1 at 0,

1, 0, 0 at

u y
y

u y h

θ φ

θ φ

∂
= = = =

∂
= − = = =

                                (39) 

where, the dimensionless parameters are defined by: 
2πaδ
λ

=  is the Wave number, e
caR ρ
µ

=  is the Reynolds number, 
*

2

kK
a

=  is the Darcy number, 

2 2 2
e H aM σµ
µ

=  is the Magnetic field parameter, *
1n

l
am
c

η −=
 
 
 

 is the Non-Newtonian parameter, p
r

c
P

νρ
κ

=  

is the Prandtle number, 
( )

2

1 2
c

p

CE
c T T

=
−

 is the Eckert number, cS
D
ν

=  is the Schmidt number, 

( )
( )

1 2

1 2

T
r

m

D T T
S

T C C
κ
ν

−
=

−
 is the Soret number and 

( )1 2
c

A C C
R

ν
−

=  is the chemical reaction parameter. 

By using the following definition of stream function ψ  as: 

, .u v
y x
ψ ψδ∂ ∂

= = −
∂ ∂

                                      (40) 

The system of Equations (3.30)-(3.38) can be written as: 

1 ,xyxx
e

sspR M
y x x y y x x y K y
ψ ψ ψ ψδ δ

∂   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ − = − + + − −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
                 (41) 

2
3 2 ,xy yy

e

s spR
y x x y x y x y K x
ψ ψ ψ δ ψδ δ δ

∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂
− + = − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

                 (42) 

2 2 2 2 2 2
2 2

2 2 2 2

1
e c xx xy yy

r

R E s s s
y x x y P x y x y y x x y
ψ θ ψ θ θ θ ψ ψ ψ ψδ δ δ δ δ

         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− = + + + − −         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           

     (43) 

2 2 2 2
2 2

2 2 2 2

1 ,e r c
c

R S R
y x x y S x y x y
ψ φ ψ φ φ φ θ θδ δ δ φ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− = + + + −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

                 (44) 

*

1
2 2 2 22 2 2 2 2

2 2 2
2 22 1 2 2 ,

n

xxs
x y y x x y x y
ψ ψ ψ ψ ψδ η δ δ δ

− 
       ∂ ∂ ∂ ∂ ∂ = + + − +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

 

              (45) 

1
2 2 2 22 2 2 2 2 2

* 2 2 2 2
2 2 2 21 2 2 ,

n

xys
x y y x x y y x
ψ ψ ψ ψ ψ ψη δ δ δ δ

− 
         ∂ ∂ ∂ ∂ ∂ ∂ = + + − + −        ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

 

          (46) 
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The boundary conditions for the dimensionless stream function in the moving frame are given by: 
2

20, 0, 1, 1 at 0,

1, , 0, 0 at .

y
y

F y h
y

ψψ θ φ

ψ ψ θ φ

∂
= = = = =

∂
∂

= − = = = =
∂

                       (47) 

The dimensionless form of the surface of the peristaltic wall can be written as:  
1 Sinh xχ= +  

where b
a

χ =  is the amplitude ratio or the occlusion. and  

( ) ( )
0 0

d d 0
h h

F u y y h
y
ψ ψ ψ∂

= = = −
∂∫ ∫  is the total flux number                 (48) 

4. Solution of the Problem 
According to long wavelength approximation ( )1δ   [1], Equations (41)-(46) after eliminating the pressure 
gradient become: 

2 2
2

2 2 0,xys
L

y y
ψ∂ ∂

− =
∂ ∂

                                     (49) 

2 2

2 2

1 0,c xy
r

E S
P y y

θ ψ ∂ ∂
+ = ∂ ∂ 

                                 (50) 

2 2

2 2

1 0,r c
c

S R
S y y

φ θ φ
   ∂ ∂

+ − =   ∂ ∂   
                               (51) 

0, 0,xx yyS S= =                                      (52) 

1
2 22 2

2 21 ,

n

xys
y y
ψ ψη

− 
     ∂ ∂ = +     ∂ ∂      

 

                              (53) 

2 2

2 2 ,
n

xys
y y
ψ ψη

 ∂ ∂
= +  ∂ ∂ 

                                    (54) 

In order to solve the Equations (49)-(51) subjected to the boundary conditions, we suppose the following per-
turbation for small non-Newtonian parameter η : 

1

1

1

o

o

o

ψ ψ ηψ
θ θ ηθ
φ φ ηφ

= + +

= + +

= + +







                                      (55) 

Substituting (55) into (49)-(54) and comparing the coefficient of zero and first order of η  we get. 

4.1. Zero Order System of η 
4 2

20 0
4 2 0,L

y y
ψ ψ∂ ∂

− =
∂ ∂

                                    (56) 

22 2
0 0

2 2

1 0,c
r

E
P y y

θ ψ ∂ ∂
+ = ∂ ∂ 

                                  (57) 
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2 2
0 0

02 2

1 0,r c
c

S R
S y y

φ θ
φ

∂ ∂
+ − =

∂ ∂
                                 (58) 

With the respective boundary conditions  
2

0
0 0 02

0
0 0 0

0, 0, 1, 1 at 0,

, 1, 0, 0 at 1 Sin .

y
y

F y h x
y

ψ
ψ θ φ

ψ
ψ θ φ φ

∂
= = = = =

∂
∂

= = − = = = = +
∂

                     (59) 

4.2. First Order System of η 
We shall consider the case of Dielatent fluids when n > 1, and we choose (n = 3), then we have the following 
system of first order of η  

324 2 2
2 01 1

4 2 2 2 ,L
y y y y

ψψ ψ  ∂∂ ∂ ∂
− = −  ∂ ∂ ∂ ∂ 

                               (60) 

42 22 2
0 01 1

2 2 2 2

1 2 0,c
r

E
P y y y y

ψ ψθ ψ  ∂ ∂∂ ∂ + + =  ∂ ∂ ∂ ∂  
                           (61) 

2 2
1 1

12 2

1 0,r c
c

S R
S y y

φ θ φ∂ ∂
+ − =

∂ ∂
                                (62) 

with the respective boundary conditions  
2

1
1 1 12

1
1 1 1

0, 0, 0, 0 at 0,

0, 0, 0, 0 at 1 Sin .

y
y

y h x
y

ψψ θ φ

ψψ θ φ χ

∂
= = = = =

∂
∂

= = = = = = +
∂

                         (63) 

4.3. Solution for System of Zero Order 

( )0 Sinh Cosh ,y G Ly yL Lhψ = − + −                               (64) 

2 4
2 2

0 2 2 2 2

1 1 1 1Cosh2 Cosh2 1,
4 2 2 2 2

r cP E G L y yLy y Lh h
L L h L L h

θ   = − − − − − − − +  
  

           (65) 

( ) ( )
2 4 2 4 2 4 2 4

0 2 2
2 Sinh 1 e + Cosh2 .

2 22 4 2 2
c cS R yr c r c r c r c r c r c

c c
r c r c

P E S S G L P E G L P E S S G L P E G L
A S R y Ly

L S S L S R
φ −

 
 = + − − +
 − − 

    (66) 

4.4. Solution for System of First Order 

( ) 3 4
1 1

2 2

3Cosh Cosh Cosh3 2 Cosh
16 2

2 Sinh Cosh3 2 Cosh 2 Sinh ,
2

LG L Ly L Lh G L Lh L Lh

LL h Lh Ly L Ly L y Ly

ψ = − − − +


+ − + + 


                (67) 

2 2 3 4
1 1 2 2

3 6 2

Cosh2 1 32 Sinh2
2 16 4

19 5 3Cosh2 Cosh4 ,
16 64 32

r c
Ly yLA y B P E GL A y G L Ly

L

Ly Ly G L y

θ    = + − − +   
  

− − + 
 

               (68) 
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( )

2 2
1 1 2 2

3 6
3

2 Cosh2 22 Sinh 2 e 2
4

3 19 5 3Sinh2 Cosh2 3 Sinh2 Cosh2 Sinh4
2 4 4 16

c cR S y
c c r c r c r c r c

c c c c

L LyA R S y P E GL S S Z P E GL S S A
L R S R S

A Ly Ly Ly Ly Ly Ly G L

φ −   = − + +  
−  

 + + + − − −  
  

      (69) 

5. Results and Discussions 
The problem of the peristaltic flow of a Sisko fluid through a porous medium with heat and mass transfer has 
been discussed. The effects of non-Newtonian dissipation and chemical reaction on the fluid flow have been 
considered. We obtained the solutions of the momentum, heat and mass equations analytically by using the per-
turbation technique for small non-Newtonian parameter η  after considering the long wave approximations. 

Figure 2 illustrates the relation between the value of stream function ψ  and the magnetic parameter M , it 
is clear that ψ  increases with increasing the magnetic parameter, while it decreases with increasing the per-
meability parameter K  which seen through Figure 3. 

In Figure 4, the relation between the value of stream function ψ  and the amplitude ratio χ  has been illu-
strated. it is clear that ψ  decreases with the decrease of χ . 

Figure 5, illustrates the relation between the value of temperature θ  and the magnetic parameter M , it is 
clear that increases with increasing the magnetic parameter. 

In Figure 6, we can observe that the value of temperature increases with increasing the Prandtle number pa-
rameter rP , while in Figure 7, the relation between the value of temperature θ  and the Eckert number cE  
has been illustrated. It is clear that θ  increases with the increase of cE . 

 

 
Figure 2. Stream function profiles ( )yψ  for some values of M .              

 

 
Figure 3. Stream function profiles ( )yψ  for some values of K .              



N. T. M. El-Dabe et al. 
 

 
313 

 
Figure 4. Stream function profiles ( )yψ  for some values of χ .      

 

 
Figure 5. Temperature profiles ( )yθ  for some values of M .           

 

 
Figure 6. Temperature profiles ( )yθ  for some values of rP .            

 

 
Figure 7. Temperature profiles ( )yθ  for some values of cE .              
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In Figure 8, the relation between the value of concentration φ  and the magnetic parameter M , it is clear 
that φ  decreases with increasing the magnetic parameter. But we can observe from Figure 9 that φ  decreases 
with increasing the Schmidt parameter cS , also in Figure 10, the relation between the value of concentration 
function φ  and the Soret value rS  has been illustrated. It is clear that φ  increases with the increase of cR  
as in Figure 11. 

6. Conclusion and Applications 
In this work, we study the peristaltic motion of magneto-hydrodynamics flow with heat and mass transfer for 
incompressible non-Newtonian fluid through a porous medium. The governing partial differential equations of 
this problem, subjected to the boundary conditions are solved analytically by using perturbation technique. The  

 

 
Figure 8. Concentration profiles ( )yφ  for some values of M .           

 

 
Figure 9. Concentration profiles ( )yφ  for some values of cS .          

 

 
Figure 10. Concentration profiles ( )yφ  for some values of rS .             
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Figure 11. Concentration profiles ( )yφ  for some values of cR .           

 
analytical forms for the stream distribution ψ , the temperature θ  and the concentration φ  are obtained. The 
effects of various physical parameters of the problem on these formulas are discussed and have been shown 
graphically. It is seen that the ψ  increases with increasing the magnetic parameter M , while it decreases with 
increasing the permeability parameter K . Also it is clear that θ  increases with the increase of cE , 

The study of this phenomenon is very important, because the study of flow through porous medium has many 
applications. It has an important role in agricultural, extracting pure petrol from crude oil and chemical engi-
neering. There are examples of natural porous media such as wood, filter paper, cotton, leather and plastics. As a 
good biological example on the porous medium, the human lung galls bladder and the walls of vessels. The pe-
ristaltic motion has been found to involve in many biological organs such as esophagus, small and large intestine, 
stomach, the human ureter, lymphatic vessels and small blood vessels. Also, peristaltic transport occurs in many 
practical applications involving biomechanical systems such as finger pumps. 
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2 1 ,L M
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= +  
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Sinh Cosh

F hG
Lh hL Lh

+
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−
 

4 3
2

1
3 Cosh3 2 Cosh 2 Sinh ,

16 Sinh Cosh 2
hL G LG Lh L Lh L Lh

Lh hL Lh
 = − + + −  

 

2
3 4

1
15 ,

4 128
r cP E GLB G G L = − 
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2 2
3 6 21

1 2

3 4 3 6 2

2 3 Cosh2
4 16 2

1 3 19 5 3Sinh2 Cosh2 Cosh4 ,
16 4 16 64 32

r cP E GL G L LhA G L h
h L

hL BG L Lh Lh Lh G L h
h
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2 3 6
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2 2
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