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Abstract 
In this paper, we assess how to recover the volatility of interest rates in the euro area money 
market, on the sole basis of the zero-coupon yield curve. Our primary result is that there exists an 
empirical regularity (linking rates and volatility) that takes a relatively simple mathematical form. 
We also show that the existence of such regularity cannot be explained by a reasoning based on 
the hypothesis of absence of opportunities of arbitrage since a continuous-time arbitrage-free 
model may produce instances of curves that are consistent with a continuum of level of volatilities. 
We exhibit an example for this. 
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1. Introduction 
Estimating volatility of financial assets is essential to accurately assess the underlying risk and uncertainties 
attached to a particular investment. Recent developments in the sovereign debt market in the euro area (with 
skyrocketting volatility in the aftermath of the ECB asset purchase program) remind us of the importance of this 
parameter in asset pricing and hedging. Although long debated in the literature, various volatility models co- 
exist and none seems to be dominant. However, the main non-model-based approach rooted in the paper [1], 
which was written by Litterman, Scheinkman and Weiss in 1991. In their paper, very interestingly, implicit 
volatility can be to a large extent recovered from the sole observation of the yield curve alone. 

Similarly motivated as ours, their paper asserted that “understanding the effect of the interest rate volatility 
implicit in the yield curve is essential to comprehending the behavior of fixed-income securities”. It presented a 
regression of the implied volatility from options on Treasury bond futures on the level of the 1-month, 3-year, 
and 10-year zero-coupon rates (from the Treasury curve). Their data sample covered four years and a half and 
contained weekly observations, so slightly less than 250 observation dates. They found a 2R  of 70%. They 
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concluded that the mere shape of the yield curve did contain a sizeable amount of information about implied 
volatilities of interest rates. 

Two questions emerge naturally: Where could the 2R  originate from, and how could the result be refined? 
The first question can be reformulated in terms of arbitrage-free model: can it be that the absence of arbitrage 

opportunities induces some relationship between the curve shape and its volatility, in a way that could be made 
apparent in a formalized arbitrage-free model of the curve’s dynamics? The most positive way to answer this 
question would be to exhibit a fully-fledged arbitrage-free model such that no link can exist between the curve 
shape and its volatility. Ideally, it should be able to produce theoretical curves that are consistent with several 
risk-neutral distributions and several volatility levels. It turns out that such examples actually exist and we will 
present what is probably the simplest one in the continuous-time framework, and certainly the simplest one in 
the sub-class of affine models. 

The second question aims at identifying the mathematical structure of the link existing between rates and 
volatility. This identification would have some market relevance since its knowledge would permit to construct 
trading strategies arbitraging the volatility against its value such as predicted by the curve. This second question 
falls into the category of pattern recognition or pattern indentification. Therefore, to adress it, it is necessary to 
rely on a very large data set. We will use a data sample with daily observations made on the euro money market. 
We will refine the specification of the exercise so as to eliminate as much as possible the dust of technical 
premia and of the aforementioned arbitrary choices. The curve shall be derived from overnight indexed swaps 
(OIS). The volatility shall be the consol volatility defined in [2], namely the instantaneous one of a perpetual 
bond (consol bond) priced on the curve, instead of having the positive and decaying times to maturity of a 
T-bond option or the 10-year maturity of its underlying asset. We will also give a simple expres- sion to the 
functional of the yield curve that replicates the volatility. That proxy achieves a somewhat better 2R  of 84%, 
and, more importantly, it achieves it on 10 years of daily observations, which represent about ten times the 
number of observations of the original exercise of [1]. 

In summary, the proposed exercise highlights two elements of information. There is a recognizable empirical 
regularity linking the volatility to the shape of the curve, and this regularity cannot boil down to the absence of 
arbitrage opportunities. 

The paper is organized as follows. In Section 2, we will briefly introduce the consol volatility indicator. In 
Section 3, we will show an example of affine model such that a given curve corresponds to infinitely many 
specifications of that model. In today’s terminology, one says that the yield curve does not span interest rate 
volatility risk. The example we exhibit here is thought to be the simplest possible one in the frame of continuous- 
time affine models. We will show that such a curve is realistic and is coincident with the actual curve observed 
on the euro OIS market at a certain date. The curve is consistent with a large range of consol volatilities and we 
will calculate that range in the case of this observation date. Volatilities thus cannot in general be inferred from 
the shape of the curve if one relies on the hypothesis that the curve is generated by this affine model or by any 
more general model containing it as a subcase. In Section 4, we will exhibit an affine functional of the yield 
curve—which is of a-theoretical origin and thus is not justified by any arbitrage-free modeling argument—which is 
nevertheless a surprisingly good proxy of the consol volatility of the euro OIS curve. Volatilities thus may be 
inferred from the shape of the curve, although the volatility proxy may not have a justification grounded on 
arbitrage-free curve modeling. The reason that explains this empirical regularity linking shape and volatility has 
then to be researched outside the frame of arbitrage-free modeling, as the last section concludes. 

2. The Consol Volatility 
The volatility indicator that we will focus on is termed as the consol volatility. That indicator is extensively 
described in [2]; we only briefly introduce it here. 

A consol bond is defined here as a perpetual bond paying continuously a constant rate of money, which is 
called the coupon flow.1 The consol price C is defined as the price of the consol bond divided by the coupon 
flow. The consol price is a function of the yield curve, which determinates it entirely. Indeed it can be expressed 
as follows: 

 

 

1In the context of other pieces of literature, the consol bond is still defined as perpetual, but pays an annual or semi-annual coupon frequency 
instead of a continuous constant money flow. We choose to use the definition that is mathematically the simplest one. 
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( )
0

dC P θ θ
∞

∫                                       (1) 

where ( )P θ  is the price of a zero-coupon bond of residual maturity θ . The consol volatility is the 
instantaneous Black and Scholes volatility of C. In what follows, we will skip the terms “instantaneous” and 
“Black and Scholes” and simply refer to it as to the consol volatility. As shown in [2], it is possible to recover 
the market-implied consol volatility of the OIS curve of the euro on the basis of various market data including, 
but not limited to, Euribor swaptions. 

Contrarily to the T-bond options used in [1], neither consol rate nor consol volatility are directly traded, but 
both of them can be priced and hedged, thus synthetically traded-which amounts at saying that both of them are 
implied by actual market data. Our choice to focus specifically on the consol volatility is primarily justified by 
the fact that the consol bonds remains identical to themselves as time elapses, while actual bonds and swaps 
have a declining time to maturity (as they have a fixed date of maturity). Furthermore, consol indicators are free 
from arbitrary choices such as 10-year maturity or 6-month frequency of coupon/of repayment. Finally, when 
priced on the OIS curve, they are not affected by factors other than interest rate risk, such as liquidity risk, credit 
risk, redenomination risk,2 or usability as collateral. 

It is also worth to emphasize the following: the ratio between an interest rate volatility and the duration of the 
instrument underlying that option can be approximated at first order by the ratio of the consol volatility and of 
the consol bond duration. Therefore, the consol volatility summarizes into one unique number a large part of the 
information contained in the complete market-implied volatility structure. 

The question of the proposed exercise can then be reformulated in specific terms: “Can the consol volatility of 
the OIS curve be inferred from the shape of that curve?” 

3. Degenerate Case in an Affine Model 
In this section, we will show that it is possible to have a curve generated by an arbitrage-free model which could 
also have been generated by the same model with different parameters, and is consistent with several (different) 
risk-neutral distributions. We will furthermore show, yet only numerically, that it is consistent with a large range 
consol volatilities. The strategy for inferring the volatility from the curve shape, which consists into fitting it to 
an arbitrage-free model and then computing the volatility, will fail in such cases. 

3.1. The Mathematical Example of the Degeneracy 
The possibility that arbitrage-free affine models may contain situations where a given yield curve is consistent 
with more than one risk-neutral distribution is known since the early nineties. We read in [3], pp. 31-32, “cela 
entrane que [the variance covariance matrix and the drift vector] doivent être des fonctions affines de [the state 
vector] dès que cette équation peut être inversée. Ceci n’est plus garanti par l'hypotèse 1 et peut ne pas être 
vérifié dans certains cas non-génériques”.3 To our knowledge however, the concrete example that we now 
present of such a degeneracy is the first to be known in the continuous-time framework. It is a particular case of 
the parabolic model of Gourieroux and Sufana [4], which is the generic case of the 2-factor affine model. 

Following [2], the parabolic model can be rewritten as follows: There are two factors r and p, r being the 
short-term rate. The risk-neutral probability can be seen as the solution of the SDE: 
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with tW  a two-dimensional Wiener process. The short-term rate process tr  evolves in [ [min ,r +∞ , with: 

 

 

2In the case of the euro, the redenomination risk refers to the risk of being reimbursed in a currency that is no longer legal tender in Germany 
at the time of repayement. This is an important component of the spreads of government bonds to the German government curve or to the 
OIS curve. 
3This reservation made by Frachot and Lesne (1995) may have been overseen in the sequel. It is not uncommon to find in the literature 
claims that the risk-neutral distribution of an affine model can always be determined by the curve. 
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min 2

cr
ν

= −                                            (3) 

The second parameter process tp  evolves in  . The state vector ( ),r p  evolves in the convex domain 
where the variance-covariance matrix is positive-semidefinite. This domain is delimited by a parabola, hence the 
name of the model. We shall exclude cases where the short term rate has a finite upper bond, as they are of low 
relevance. Parameters 1a , 2a , 11b , 12b , 22b , c , ν  must then satisfy specific constraints, namely: 
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where: 
2
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1min 11 min 4

a b r ν
= +                                        (8) 

It will be convenient to introduce two auxiliary parameters γ  and  : 
2 2
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Note that the conditions (5) ∨ (7) imply that 0γ >  and 0≥ . Furthermore, since 22 112b b= − , those 
conditions reduce either to (5) if 0> , or to (7) if 0= . 

The zero-coupon bond price of maturity t takes the form of the expectation: 

( ) 0 d
0 0, , e ,

t
sr sP t r p r r p p−∫ = = =  

E                               (10) 

where the expectation E  is taken under the risk-neutral probability (2). Therefore the zero-coupon bond price 
depends of the seven parameters 1a , 2a , 11b , 12b , 22b , c , ν , of the two variables r and p, and does not 
depend explicitly on time. 

Since P has the form (10), the model is arbitrage-free. The drift and the variance-covariance matrix in (2) are 
affine functions of the state vector ( ),r p . Thus for any fixed 0t > , ( )( )log , ,P t r p  is an affine function of 
the state vector ( ),r p . Then the model is by definition affine. 

We make the hypothesis: 
3γ=  (11) 

That hypothesis implies that 0> , since one has always 0γ > . 
We introduce a continuous group of transformations T acting on the 9-tuple ( )1 2 11 12 22, , , , , , , ,r p a a b b b c ν , 

indexed by a parameter h∈ , as follows: 
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where: 
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So ( )0T  is the identity. We denote with ( )M h  the transformed model in which each parameter or 
variable has been replaced by its transformation under ( )T h . The parameters of the original model 

( )0M M=  satisfy (5) since 0> . Thus, by continuity, there exists some bound 0H >  such that, for 
h H< , the model ( )M h 's parameters also satisfy (5). 

We denote with ( )R h  the probability law of the process tr  for the risk-neutral distribution of the model 
( )M h . We denote with hP  the zero-coupon bond price of the model ( )M h . 

Lemma 1 Assuming (5), 3γ=  and 12 0b ≠ , for any 1h , 2h  such that ( )1M h  and ( )2M h ’s para- 
meters satisfy (5) and 1 2h h≠ , one has ( ) ( )1 2R h R h≠ . 

The proof can be found in the Annex. 
This lemma ensures that the transformation T truly affects the risk-neutral law of the short-term rate unless 

12b  is zero. 
Lemma 2 Assuming (5), 3γ=  and 12 0b ≠ , for any 1h , 2h  such that ( )1M h  and ( )2M h ’s 

parameters satisfy (5) and 1 2h h≠ , for any 0t ≥ , ( ) ( )( ) ( ) ( )( )1 2
1 1 2 2, , , ,h hP t r h p h P t r h p h= . 

The proof can be found in the Annex. 
This lemma ensures that the transformation T does not affect the yield curve. 
The two lemmas yield the following: 
Theorem Assuming (5), 3γ=  and 12 0b ≠ , the yield curve is consistent with infinitely many specifications 

of the parabolic model. 
The proof can be found in the Annex. 

3.2. Numerical Examination with Actual Market Data 
The degenerate case is realistic. We pick up in our data sample an example of the OIS curve that is well-fitted 
by a parabolic model curve fullfilling the hypothesis of the Theorem, so corresponding to not only one 9-tuple 
( )1 2 11 12 22, , , , , , , ,r p a a b b b c ν  of state variables and parameters, but to a continuum of those and to infinitely 
many risk-neutral distributions. In other terms, the curve does not span the interest rate volatility risk. The 
following Figure 1 depicts the actual curve together with the model curve. 

Define the goodness-of-fit as the 2L  norm of the difference of the zero-coupon rates of the two curves 
between maturity 0 and 20-year. We compute it and find it to be equal to 2 basis points. 

As the fitting curve is consistent with infinitely many specifications of the model, it might be consistent with a 
continuum of consol volatilities. For h describing the set of admissible values such that ( )M h  satisfies the 
conditions (5), we compute those volatilities and find that they range from 4.7% to slightly more than 250%. 
The consol volatility actually implied by the market on that day was 16.5%. That value falls within the range, 
yet that range is too large to convey any information. 

4. Proxying the Volatility from the Shape of the Curve 
In this section, we will show that the shape of an actual curve, observed in the market, nevertheless contains a 
considerable amount of information about the volatility. Working with the euro OIS curve, we will present a 
proxy constructed uniquely from the curve that closely matches the consol volatility. 
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Figure 1. Euro OIS curve on 11 February 2008 (bold line), model curve (thin line) 
(zero-coupon rates, continuously compounded, day count act/365).                    

4.1. Data 
The data sample is the same as in [2], covering all 3816 TARGET days from the start of the euro to 21 
November 2013. It includes all the instruments needed for obtaining the euro OIS curve and the market-implied 
consol volatility. For a detailed description of the bootstrapping of the curve, we refer to [5],4 [6].5 For a detailed 
description of the reconstruction of the consol volatility, we refer to [2].6 

4.2. The Proxy 
The proxy of the logarithm of the consol volatility is defined as an affine function of the curve. Denote with P 
the zero-coupon price, with f the instantaneous forward rate: 

t Pf
P
∂

−                                           (14) 

Denote with σ  the consol volatility and with λ  the proxy of ( )log σ . We will look for a proxy depending 
of the function ( )f ⋅  in an affine manner (it would have been equivalent to replace the forward rate by the 
zero-coupon rate or by the log zero-coupon price, since the conversion between any two of those three functions 
is linear). 

Let us first briefly explain how we could get a specific expression for such a proxy. To guess what could be 
the form of the proxy, we rely on the method developed in [6] which will allow to express the function ( )f ⋅  in 
an affine manner in function of a small number of factors. For the curve under study, the euro OIS curve, [6] 
finds that 7 factors are sufficient to limit the loss of accuracy to the typical size of the bid-ask spread (to only 1 
basis point for maturities at or above 2-month, and only slightly larger for short-term maturities). One can then 
regress ( )log σ  on those factors. As the factor loadings of those 7 factors are known functions of the time to 
maturity, the regression leads to an expression of ( )log σ  of the form: 

( ) ( ) ( ) ( )( )1

0
0 1log d

T

T
F t F t f t tσ +∫                                (15) 

with 0 10 T T≤ < < +∞  and ( )0F ⋅  and ( )1F ⋅  are functions of the time to maturity only. We are looking here 
for an a-theoretical proxy, not grounded on an underlying model and in particular on an arbitrage-free model of 
the form (15), so the last step is to try and recognize some simple mathematical expression in ( )0F ⋅  and ( )1F ⋅ , 
which at this stage are known only as purely numerical data. 

It turns out that this recognition is easy and we obtain therefore the mathematical shape of our proxy λ  as 
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4See Brousseau (2002) § 3.2.2. pp. 21-22. 
5See Brousseau and Durré (2014) § 4.2.3. pp. 302-303. 
6See Brousseau and Durré (2015) Annex, § 2.2. pp. 70-72. 
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follows: 

( )( ) ( )1
3
4

0
cos 2log d

T
t t f t tλ α β

−
= + ∫                              (16) 

still with 1T < +∞ . Observe that the convergence of the integral would be problematic if 1T  was +∞ 7 (This is 
a symptom that a proxy of that form cannot be derived from continuous-time curve modeling). We will then fix 
the value of 1T  to 30-year, because the longest OIS present in the whole sample is 30-year. Linear regression 
over the 10 last years of the available sample of σ  on the integral in (16) will then determine the remaining 
constants α  and β . 

Regarding those two constants, one should be attentive to the fact that both rates of volatilities are frequently 
expressed as percentages rather than as pure numbers. If the forward rate f in input is expressed as percentage 
rather than as pure number, the constant β  should be divided by 100; if the volatility σ  in output is 
expressed as percentage rather than as pure number, the constant α  should be augmented by ( )log 100 . To 
avoid confusion, the following Table 1 reports the values of constants α  and β  depending of the four 
possible choices of either pure number or percentage for the forward f  and the volatility σ . 

It turns out that the proxy works well only over the 10 last years of the available sample. For prior years, 
neither the proxy nor any other function of the yield curve only seems to be able to reproduce the volatility with 
a comparable explanatory power, or at least, our attempts to find one have failed. For the 10 last years, however, 
which represent a subsample covering 2565 observations, the proxy does a surprisingly good job. 

The following Figure 2 depicts the logarithm of the actual market-implied consol volatility together with its 
proxy. 

 
Table 1. Values of constants α and β.                                                                                  

Forward rate Volatility α β 

as pure number as pure number −57.680,785,09 4.214,443,943 

as percentage as pure number −57.680,785,09 0.042,144,439 

as pure number as percentage −53.075,614,9 4.214,443,943 

as percentage as percentage −53.075,614,9 0.042,144,439 

 

 
Figure 2. Log of the actual consol vol (bold line), proxy (thin line).                                                         
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7Convergence of the integral in 0 is ensured since 
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4.3. Statistical Properties 
By computing the correlation and 2R  of the log volatility and its proxy, we find: 

2

91.7%

84.2%

Corr
R

=

=
                                      (17) 

The standard deviation of the error ( )logλ σ−  is: 
0.232StDev =                                       (18) 

which means that the proxying will typically overestimate or underestimate the consol volatility by a factor of 
4/5 or 5/4. This is remarkable if one take into account that the proxy relies only on the shape of the curve and 
does not contain any market volatility data, but also that over the 10 years of the subsample, the behavior of the 
volatility has been extremely hectic. 

4.4. Comparison with the Fitting of the Curve to an Affine Model 
Let us consider the case of the example seen above in Section 3.2. The observation date was 11 February 2008. 
The consol volatility actually implied by the market on that day was 16.5%. Fitting the curve on the 2-factor 
affine model could be achieved with a high accuracy, but the model curve was consistent with a large range of 
volatilities from 4.7% to slightly more than 250%. The computation of the proxy from the actual curve leads to a 
value of 14.8%. While both methods rely on the sole knowledge of the curve, it is clear that the second one 
obtains better results. 

4.5. Practical Implications: Trading Strategies 
The error, or difference between the log vol and its proxy, exhibits a strong mean reversion. This opens the way 
for building trading strategies. We will not enter here into a detailed description, but we will briefly explain the 
principle. 

The curve motion is empirically dominated by parallel shifts, as this is well-known since [7]. Therefore, one 
can approximate the volatility (even the non-instantaneous volatility) of an interest rate instrument by the consol 
volatility multiplied by the duration of the instrument and divided by the consol duration. It follows that any 
interest rate option can be deemed either cheap or rich with respect to the actual state of the OIS curve, just by 
considering the sign of the error. That sign of the error is observable in real time. 

For instance, if the proxy is lower than the actual log volatility, then one should expect a convergence of the 
two figures towards each other. One should then sell the volatility and enter in a portfolio of swap rates 
constructed so as to be sensitive to that combination of interest rates defined in (16) and hedged against other 
components of the curve’s motion. The construction of such a portfolio rate relies of course on a principal 
component analysis of the curve motion. The relative size of the option selling position and of the portfolio of 
swaps is then determined by the vega of the option and by the sensitivity of the portfolio to the proxy. 

5. Concluding Remarks 
This article has examined the role of the shape of the yield curve in determining interest rate volatility. It focuses 
on a particular volatility indicator called consol volatility. The sole hypothesis of arbitrage-freeness cannot 
explain the existence of such a connection. In effect, there exist arbitrage-free models where a given curve shape 
is consistent with a continuum of volatility levels, and we gIve an example drawn from the category of continuous- 
time affine models. Nevertheless, the shape of the zero-coupon curve of OIS for the euro is shown to contain a 
substantial amount of information about the volatility level, and we have shown how to recover it by con- 
structing explicitly a proxy of the consol volatility from the curve only,. 
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Annex  
Proofs of Lemmas and Theorem  
1.1. Proof of Lemma 1 
Let 0T > . The set of all trajectories of r is [ ]( )0,C T , the set of continuous functions from [ ]0,T  to  , and 
it is endowed with its Borel σ -algebra. A probability law of tr  is a measure on it which is positive and sums 
up to 1. Denote with ( )D h  the set of functions f of t such that the quadratic variation of f exists for any 0t ≥ , 
is differentiable for any 0t ≥ , and its derivative is ( ) ( ) 2c h f t ν+  for any 0t ≥ .  

( ) [ ]( ) [ ] ( ) ( ) ( ) ( ){ }20, / 0, , , tD h f C T t T f t f t c h f t ν∈ ∀ ∈ < +∞ ∂ = +               (19) 

If 3γ=  the expression (13) of the transformation of c reduces to: 

( ) 2
12

9
2

c h c hb ν= +                                         (20) 

so, as 1 2h h≠  and 12 0b ≠ , one has ( ) ( )1 2c h c h≠ . ( )D h  is a measurable set. The measure of ( )D h  under 
( )R h  is 1 if 1 2h h= , 0 if 1 2h h≠ . Hence, if 1 2h h≠ , then ( ) ( )1 2R h R h≠ . 

1.2. Proof of Lemma 2 
Let ( ) ( )( ), , log , ,U t r p P t r p= − , ( ) ( )( ), , log , ,h hU t r p P t r p= − . Applying Feynman-Kac formula to (10) 
and then expressing the P as ( )exp U−  yields that U satisfies the PDE: 

( )

2
2

2 2

1 11 12

2 22

1 2
2

2 4

0
0

r
r p

p

r
t

p

pc r U
U U

Up

Ua b b r
U r

Ua b p

νν

ν ν

 
+  ∂  ∂ ∂  ∂  

 
 

∂       
− − ⋅ + ∂ − =        ∂       

                            (21) 

with the limit condition: 

( )0, , 0U r p ≡                                            (22) 

and conversely, if U satisfies (21)-(22), then ( )expP U= −  is the zero-coupon price of the model M. 
The proof of the lemma will not require us to solve explicitly (21)-(22). Instead, we just have to find the 

expressions of ( ),r pU U∂ ∂ . Recall that the model is affine, so rU∂  and pU∂  are functions of t  only, and 
not of ( ),r p . Differentiating (21) w.r.t. ( ),r p  yields: 

( ) ( )

( )

22
11

2
12 22

11 0
2

1 0
2

r r t r

r p r t p

b U U U

b U U b U U

ν

ν

− + ∂ + ∂ + ∂ ∂ =

 ∂ + ∂ + ∂ + ∂ ∂ = 
 

                             (23) 

Those are standard Ricatti equations whose solutions are found directly for the first one, and for the second 
one after having reported in it the solution of the first one. 

( )
( ) ( ) ( )

( )( ) ( )

( ) ( ) ( )

11 11

12
11 11

1 exp
2

exp

1 2 1exp exp
2

4
exp

r

p

t
U

b b t

t t
U b

b b t

γ
γ γ γ

γ γ γ
γ γ γ γ

γ γ γ

− −
∂ =

+ + − −

+ + − + − + + − + 
∂ = −

+ + − −


   

                   (24) 

At this point, we make use of the hypothesis 3γ= . pU∂  simplifies to 

( )
12

1 exp
2p r

t
U b U

γ
γ

− −
∂ = − ∂                                     (25) 
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Thus ( ),r pU U∂ ∂  also satisfies a second PDE: 

( )
( )

( )

12 11

11

1
01 2 0

1 12 0
2

r r
r p

p p

b b U U
U U

U U
b

γ

γ

 −  ∂ ∂    
∂ ∂ − ⋅ =     ∂ ∂−      − 

 

                (26) 

Multiplying (26) by ( )( )11 22 11 222b b b b h− − +  and adding the result term to (21) yields a third PDE. One 
recognizes in it the original (21) in which the seven parameters 1 2 11 12 22, , , , , ,a a b b b c ν  have been substituted by 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 11 12 22, , , , , ,a h a h b h b h b h c h hν  such as given in (13). As a consequence, ( )expP U= −  is 
also the zero-coupon price of the model ( )M h , which concludes the proof. 

1.3. Proof of Theorem 
For h H< , the application ( )h M h→  is injective by Lemma 1, hence the set [ ]( ),M H H−  is infinite. 
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