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Abstract

In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied.
When the system has periodic solution is investigated, and three different conditions have been
found, which are necessary for the periodic solution of the predator-prey dynamic systems with
Beddington-DeAngelis type functional response. For this study the main tools are time scales cal-
culus and coincidence degree theory. Also the findings are beneficial for continuous case, discrete
case and the unification of both these cases. Additionally, unification of continuous and discrete
case is a good example for the modeling of the life cycle of insects.
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1. Introduction

The relationships between species and the outer environment, and the connections between different species are
the description of the predator-prey dynamic systems which is the subject of mathematical ecology in bioma-
thematics. Various types of functional responses in predator-prey dynamic system such as Monod-type, semi-ratio-
dependent and Holling-type have been studied. [1] is an example for the study about Holling-type functional re-
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sponse. In this paper, we consider the predator-prey system with Beddington DeAngelis type functional re-
sponse and impulses. This type of functional response first appeared in [2] and [3]. At low densities this type of
functional response can avoid some of the singular behavior of ratio-dependent models. Also predator feeding
can be described much better over a range of predator-prey abundances by using this functional response.

In a periodic environment, significant problem in population growth model is the global existence and stabili-
ty of a positive periodic solution. This plays a similar role as a globally stable equilibrium in an autonomous
model. Therefore, it is important to consider under which conditions the resulting periodic nonautonomous sys-
tem would have a positive periodic solution that is globally asymptotically stable. For nonautonomous case there
are many studies about the existence of periodic solutions of predator-prey systems in continuous and discrete
models based on the coincidence theory such as [4]-[12].

Impulsive dynamic systems are also important in this study and we try to give some information about this
area. Impulsive differential equations are used for describing systems with short-term perturbations. Its theory is
explained in [13]-[15] for continuous case and also for discerete case there are some studies such as [16]. Impul-
sive differential equations are widely used in many different areas such as physics, ecology, and pest control.
Most of them use impulses at fixed time such as [17] [18]. By using constant functions, some properties of the
solution of predator-prey system with Beddington-DeAnglis type functional response and impulse impact are
studied in [19] for continuous case.

In this study unification of continuous and discrete analysis is also significant. To unify the study of differen-
tial and difference equations, the theory of Time Scales Calculus is initiated by Stephan Hilger. In [20] [21], un-
ification of the existence of periodic solutions of population models modelled by ordinary differential equations
and their discrete analogues in form of difference equations, and extension of these results to more general time
scales are studied.

The unification of continuous and discrete case is a good example for the modeling of the life cycle of insects.
Most of the insects have a continuous life cycle during the warm months of the year and die out in the cold
months of the year, and in that period their eggs are incubating or dormant. These incubating eggs become new
individuals of the new warm season. Since insects have such a continuous and discrete life cycle, we can see the
importance of models obtained by the time scales calculus for the species that have unusual life cycle. Therefore,
in this paper we try to generalize periodic solutions of predator-prey dynamic systems with Beddington-DeAn-
glis type functional response and impulse to general time scales.

2. Preliminaries

Below informations are from [20]. Let X, Z be normed vector spaces, L:DomL c X — Z be a linear mapping,
N:X — Z be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if
dimKerL = codimImL <+ and ImL is closed in Z. If L is a Fredholm mapping of index zero and there exist
continuous projections P: X — X and Q:Z — Z such that ImP =KerL, ImL=KerQ= Im(l —Q), then
it follows that L|D0mmKerP :(I - P)X — ImL is invertible. We denote the inverse of that map by K, . If Qs
an open bounded subset of X, the mapping N will be called L-compact on Q if QN (Q) is bounded and
K, (I —Q) N :Q — X is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism
J:ImQ — KerL.

The above informations are important for the Continuation Theorem that we give below.

Theorem 1. (Continuation Theorem). Let L be a Fredholm mapping of index zero and N be L-compact on Q.
Suppose

(a) Foreach 1 €(0,1), every solutionzof Lz=ANz issuchthat z ¢ &2 ;

(b) QNz =0 for each ze &2 KerL and the Brouwer degree deg {JQN 2N KerL,O} #0. Then the
operator equation Lz = Nz has at least one solution lying in DomLN&X2.

We will also give the following lemma, which is essential for this paper.

Lemma 1. Let t,t, €[0,0] and teT.If g:T - R is w-periodic, then

g(t)< g(t1)+'[0w|gA (s)|As and g(t)> g(tZ)—_[ow|gA (s)|As.

3. Main Result

The equation that we investigate is:
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REN QD

teq =t +w, a(t+w)=a(t), b(t+w)=b(t), c(t+w)=c(t), d(t+w)=d(t), f(t+w)=f(t),
a(t+w)=a(t), B(t+w)=B(t), m(t+w)=m(t), vki1>g,>-1 and p >0. Here T is periodic, i.e
if teT then t+weT, and [‘a(t)at>0, ['b(t)At>0, ['d(t)At>0 A" =min g, A1),
m' =min g, ,m(t), B =max, g, A(t), m'=max, g, m(t), m(t)>0 and c(t), f(t)>0, b(t)a(t)=0,
B(t)>0. Each functions are from C, (T,R).

Lemma 2. If jowa(t)At+InH?:1(l+gi)<O and —fowd )at+InTTp, +j At<0 then all positive

solutions (exp(x(t)),exp(y(t))) are tends to 0 as t tends to infinity.

Proof. If we using the first equation of (1) we obtain,
exp(x(t)) <exp(x(0))[T(1+g, )exp(ﬁa(s)As)
ti<t

since [“a(t)At+InJ],(1+9;)<0. Hence lim,, exp(x(t))=0.

Similarly lim,_,, exp(y(t))=0.
Theorem 2. In addition to conditions on coefficient functions
If

[a(t)at+ T (1+ gi)_jf%& 50

and

b0 exp{ [j la(t)]at+ [ a( At+InH(1+g )H

{jowf (t)at-p" [jowd (t)At—lnf[( p )D—a” [jowd (t)at—In f[( p )J >0
then there exist at least a w-periodic solution.

Proof. X = {ﬂ ePC (T,RZ)ZU(t+W) =u(t),v(t+w)= v(t)} with the norm:
H

Y {H:Hﬂ{:ﬂe PC(T,RZ)x(Rz)q,u(t+w)=u(t),v(t+w)=v(t)}

{f ()At+InH(1+g) j:(:((t))At

=SUP, (o, (|U (t)| ; |V(t)|)

and
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with the norm:

HRENEHINEN

Let us define the mappings L and N by L:DomLc X —Y such that

e ]
and N:X —Y suchthat

a(t)-b(t)exp(u(t)) - c(t)exp(v(t))
e T . )

a(t)+B(t)exp(u(t))+m(t)exp(v(t))

Y R R
: ]| R 2
[l

f(:vv(s)As+§1:bi

|0
=loll
ImL isclosedin Y and dimKerL =codimimL =2, therefore L isa Fredholm mapping of index zero.
There exist continuous projectors P: X — X and Q:Y —Y such that

<l

].

[yv(s)as
and
u 2 fju(s)as+Da
QGVHE}""MDme;(w)ujfv(s)As+§b mmJ
where mes(t)= ['1At. =

The generalizeJ)inverse Ks = ImL — DomL c KerP is given,

. a f;u(s)ASJrgi:ai — sl - J-UVVJSU(S)AsAt—gai +— le iZ::aimes(ti )_
KP[MZ]WL“DLv@)m@b el( )I:“I;v(s>Asm§b,+ el( | |
)
(
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Let
() —b(Oexo(u(E)) - c(t)exp(v(t)) _
(t)-b(t) p( (t)) a(t)+ﬁ(t)exp(u(t))+m(t)exp(v( )) N
s f (t)exp(u(t)) _
N = Ao () s mUep(v() 2
1o o c(s)exp(v(s)) s
mes(w)I (s)-b(s) p( ()) a(s)+p eXp( ) +m( exp( S))A M
and
B f(s)exp(u(s)) [
mes ( -[ a(s)+A(s )exp(u(s))+m(s)exp(v(s))A N
) ) (NN ] [n(+g)]  [In(i+g,)
Ko (1 Q)NGVD—KPHN _,\—]]{ In(p,) } [ |n(pq) D
R e I AR O P G =L L
IN As+Ian _mes J'J' $) AsAt — InHP A — )qu:m(p) :

Clearly, QN and K, (I-Q)N are continuous. Since X and Y are Banach spaces, then by using Arzela-
Ascoli theorem we can find K, (I —Q)N(ﬁ) is compact for any open bounded set Q c— X. Addition-

ally, QN (Ez) is bounded. Thus, N isL-compacton Q with any open bounded set Q c X.
To apply the continuation theorem we investigate the below operator equation.

c(t)exp(y(1)) } ot
a(t)+ A(t)exp(x (1) +m(t)exp(y (1) |
)

x*(t) = /{a(t)—b(t)exp(x(t))—

(@)

AX(t)=2In(1+g,)
Ay(t)=2In(py)

X
Let {y} € X be any solution of system (2). Integrating both sides of system (2) over the interval [O,W] we

obtain,

c(t)exp(y(1))
a(t)+B(t)exp(x(t))+m(t)exp(y(t))

n f (t)exp(x(t))
I d(t)At—I H )= J. a(t)+p(t )exp(x(t))-i-m(t)eXp(y(t))At’

j()At+InH1+g jb (t)exp(x(t))+

At,

©)

From (2) and (3) we get
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“IxA <[ |a +[b(t)exp(x(t))+ c(Vexp(y(1))
N (t)|At_ﬂ|:Jo| (1) At+ [b(t)exp(x(t)) a(t)+ﬂ(t)EXp(X(t))+m(t)exp(y(t))m} .

< ADOW|a(t)|At + [ a(t)At+1n ﬁ(u g)|<M

where M, := ["[a(t)| At+ [a(t) At+ Inﬁ(1+ g;)-
i=1

" F(Hexp(x(1))
y At <A d At+ At
L @ et o (t)+ B(t)exp (x(t))+ m(t)exp(y (1)) ©)
w w 9
SADO |d(t)|At+j0d (t)At—Inli:!pi <M,;
w w a
where M, = ["|d (t)|At+[ d (t)At—In] ]p;.
i=1
Note that since [ﬂ e X and there are g impulses which are constant, then there exist 7,,&,, i=12 such
that
(&) = minfinf, o, X(0),inf, g X(0). i, x(0)
(6)
x(n1)=max{supt€[ovt1] x(t),supte(tlvtz] X(t), supte(t o] (t)}
y(§2 ) =min {infte[o,tl] y(t)’ infte(tl,tz] y
()
V(1) = M Su g Y (1), 5U, 1) V(1) 0P, y(t)}
By the second equation of (3) and (6) and the first assumption of Theorem 2, we have
w 9 w c(t
IO a(t)at+InJJ(1+g;)< jo {b(t)exp(x(nl))Jr%}At
i=1
_exp 771 Jb At+ . m((t))At
.[ a(t)at+InJTL (1+9,)- .[Wr:]((tt)At
and x(7,)=1; where | :=In ) :
[Tb(t)at
Using the second inequality in Lemma 1 we have
x(t)= x(nl)—.[ow|xA (t)|At
w w 9
ZX(”l)‘Uo |a(t)|At+j0a(t)At+InH(1+gi)J (8)
i=1

>2H, =, -M,

By the first equation of (3) and (6) we get x(&)<I,, where
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_:m[IJ”a<t>At+mH?.1<1+gi>J_

l,: i
,b(t)At
using the first inequality in Lemma 1 and (4), we have
x(t) < x(gl)+jow|xA (t)]At
U la(t |At+f At+InH(1+g )j 9)
<H, =1, +M,.

By (8) and (9) max,,,

of (7), we can derive that

]|x(t)| < B, :=max{|H,|,|H,|}. Using (9), second equation of (3) and first equation

At

[d (t)At—Inﬁ(pi)gJW f()exp(x(1))

o pexp(x(t))+m'exp(y(t))
<[ f (t)e" g w
k Bl +m e><|0(y(¢52))At ple +m exlo(y(éz))J"f(t)At

Therefore

1 eHZIWf

jd At—InH p)

exp(y(&))=— ~plet

By the assumption of the theorem we can show that

.L:Nf(t)At_ﬂl (J'Owd (t)At—InH?:l(pi))>O and y(&)<L

I o™ ['f (t)At g
where Ll.l[ [fd N InH ) y/j H

Hence, by using the first inequality in Lemma 1 and the second equation of (3),
y(1)<y(&)+ [y (t)|at
w w q
)| Flao)acs fa)a-n[1(n) @0
i=1

<H, =L +M,.

We can also derive from the second equation of (3) that

i f(t)exp(x(t))
[d(t)at-] H( )z A ep(x() ' ep(y(0)
" f(t)et: ~ e
_J° a’+ e +mexp(y(n ))At_a“+ﬂ“eH1+m exp(y j ft
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[Td(t) AtIH )

Again using second assumption of Theorem 2 we obtai

eHl[J'(;Nf(t)At—ﬁu(J.od t)At— IH j] [Id At— IH )J

and y(n,)>L, where L,:=In| — L If -ple™—a" ||
jd )At— InHiq:l(pi)

By using the second inequality in Lemma 1 and (5), we obtain

y(t)2 y(n,) -, |v* (t)]at
2 y(ﬂz)-UoW jd(t)]at+[d (t)At—'nlf!(pi )] (11)

>H,=L,-M,.

exo(y(m))> 1{ " () At et

By (10) and (11) we have maxte[ovw]|y(t)| < B, :=max{|H,|,|H,|}. Obviously, B, and B, are both inde-

JH IR
NE

pendent of 1. Let M =B, +B,+1. Then max,,,, H{X}
LY

<M. Let Q= {

X X
verifies the requirement (a) in Theorem 1. When { }e KerLNoQ, { } is a constant with M, then
y y

_ "a(s)—b(s)ex c(s)ep(y) s+In[[(1+
QNHXD: Jya(s)=b(s)exp (x) oz(s)+ﬂ(s)exp(x)+m(s)eXp(y)A | g(l %) [O}
g jw—d(s) F(s)exp(x) As+|nﬁ(p.) Lo
| 0 a(s)+p(s)exp(x)+m(s)exp(y) i
[0 0
dHEH)
“a(s)-b(s)exp(x(s c(s)ep(y(s) s+In[[(1+
son( [ o) () BT n(s) - ey ML)
el IR RN CC R—, T
0 a(s)+B(s)exp(x(s))+m(s)exp(y(s)) i1

where J:ImQ — KerL such that J[{X}{O}[OD:[X}
y]'L0 0 y

Define the homotopy H, =v(JQN)+(1-v)G where

X Iow""(s)—'O(S)GXIO(X)AS+Inﬁ(pr g)
£

Hs)exp(x) s+In[T(p,
a(S)J’ﬁ(S)EXp(X)Jrm(S)exp(y)A Ig(pu)
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X
Take DJ, as the determinant of the jacobian of G. Since [y} € KerL , then jacobian of G is

—exfowb(s)As 0

X —e*f (s) ase ]! (ex)2 f(s)B(s) As [ e*e’ f (s)m(s) 2
(s)+B(s)e* +m(s)e’ " (a(s)+B(s)e* +m(s)ey)2 * (a(s)+B(s)e* +m(s)e’)

All the functions in jacobian of G is positive then signDJ; is always positive. Hence

As

deg (JON, QN KerL,0) = deg (G, Q2N KerL,0) = meGzﬂmsignDJG (DD #0.

Thus all the conditions of Theorem 1 are satisfied. Therefore system (1) has at least a positive w-periodic so-
lution.
Theorem 3. If same conditions are valid for the coefficient functions in system (1) and

J':a(t)At+Inlij(1+ 9)
["b(t)At

.Uowf t)At— " U d(t)At- InH(p. D (I d t)At—'nH(P.))

is satisfied then there exist at least a w-periodic solution.
Proof. First part of the proof is very similar with the proof of Theorem 2. By (2), (3) and (6)

. it o f (t)exp(x(t)) < exo(x w it (t)
[ya(t)at-1 li:ll(pi) I, a(t)+ﬂ(t)exp(x(t))+m(t)EXp(y(t))At_ P(x(m); O!(t)At

exp{ ( [Ta(t)at+ InH 1+g)ﬂ

By (3) jwd t)At—InJ",(p;)>0. Also by the assumption of Theorem 3 f (t),&(t)>0. Then we get

. [j'd At—ln]‘[?_l(pi)}

X(n,) =1 =
(n)=h. L joftatAt

And using the second inequality in Lemma 1 we have
X(t)=x(m,) j |x |At
> x(m,) U la(t |At+I:Va(t)At+lnﬁ(l+ gi)j (12)
i=1

=H =1 -

By the first equation of (3) and (6)

J'(:Va(t)At+In1§(1+gi)2J'va(t)exp(x(gl))At—exp (&) jb

 where [ {j “a(t)at+In[ ¢, (1+gi)}

Then we get x(& )<l
(&)<t ["b(t)at
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Using the first inequality in Lemma 1 we have

)<x(&)+ ], | (1)]at
( At+I At+|nf[(1+ gi)J (13)
I +M

By (12) and (13) max,g,, |x | B, == ax{|H | |H |} From the second equation of (3) and the second
equation of (7), we can derlve that

a < w T (t)exp(x(1)) o f(t)e™
[a®at-iT](p)<], WM‘L nOep(y(&)
- exp(y(éz))jf’w Homa

Therefore

exp(y(&,)) <eM(—>

ince e m(t) > en <[ where [ =Inle" L;Nf(t)/m(t)At
s F(t),m(t)>0, then y(¢&,)<L;, where L =1 [ [Ifd(t)Atlanl(pi)H

Hence, by using the first inequality in Lemma 1 and the second equation of (3),
y(t)< y(§2)+.[(;lv|yA (t)|At
§Z)+['f;’|d (t)|At+_[0Wd (t)At—Inlj( pi)j (14)
<H,=[+M, 7

By the assumption of Theorem 3 there exists n, suchthat ¥ nxn,

J;Va(t)At+|n1ii(1+ gi) ) ) q
b atsn[e(t) a(t)at eXpHL |a(t)|“+foa(t)At+'”H(1+gJﬂ

-[jowf(t)At—ﬁ“(jowd t)At— InH p) D (jd t)At— InH p.)}

is true. We need to get H, suchthat Vte[O,w]. y(t)>H,. Letusassume there exists t,se[0,w] such
that y(s)>x(t)—In(ny) Then by using (6) and (7) we obtain

y(17,) 2 y(s)=x(t)=In(ny) = x(&)-In(ny) = H, = In(ny ) := M.

If such t, s does not exists then V't,se[0,w]_, y(s)<x(t)—In(n,). Also from the first equation of (3), we
have
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a0+ < n(xn) (01t rp(v () L0

1 <ex b(t)At+(1/n Wﬂm
(x| ot ) e

By using first inequality in Lemma 1, we have exp(x(t))=K , where

L;Na(t)At-i-ln ﬁ(1+ g) . . q
K = i-1 — exp—U0 |a(t)|At+I0a(t)At+lnH(l+ gi)j.
[jfb(t)AH(l/no)jowa((t))AtJ -

Using the second equality in (3) and the assumption of the Theorem 4, we obtain

[Ca(t At—InH Pz K j f(

a'+p'K+m exp

This implies y(77,) > M7, where

- _[ ()At+InH(1+g) |
T T s ) et (o) o] Lol pagacs )|

Uf t)At— ,B[jd At—InH n Ud )At - InH )]

el o)

Hence, according to the above discussion we have y(n,)>M, = min{Mj, Mf} Using second inequality
in Lemma 1 we have y(t)<H, where H,:=M, —(jow|d (t)|At+J'OWd (at=InT(p ))

Thus maxtE[O’W]T|y(t)|sB2 = max{|l:|3|,|H4|}. Obviously, B, and B, are both independent of 4. Let

) MRSH

(@) in Theorem 1. Rest of the proof is similar to Theorem 2.

Let there are two insect populations (one of them the predator, the other one the prey) both continuous while
in season (say during the six warm months of the year), die out in (say) winter, while their eggs are incubating or
dormant, and then both hatch in a new season, both of them giving rise to nonoverlapping populations. This sit-
uation can be modelled using the time scale

T=J[2k, 2k +1], with =1

keZ

=B, +B,+1. Then max [

te O,W]

<

e X

<M. Let Q:{

} then Q verifies the requirement

Here impulsive effect of the pest population density is after its partial destruction by catching, poisoning with
chemicals used in agriculture (can be shown by -1< g, <0) and impulsive increase of the predator population
density is by artificially breeding the species or releasing some species (pk > 0). In addition to these, if the
model assumes a BeddingtonDeAngelis functional response as in (1) and if the assumptions in Theorem 2 or 3
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are satisfied then there exists a 1-periodic solution of (1).
Corollary 1. If «(t)=0 in the system (1) and

jowf (t)at-p° (jowd ()Aat-InTT (b, )) >0

is satisfied then the system (1) has at least one w-periodic solution.
Example 1. T=[2k,2k+1],k e N k start with 0.

x* (t) =(0.2sin (2t )+0.3)—(0.2sin (2t ) +0.2)exp(x)
) (0.1+0.1cos(2nt))exp(y) ot
(0.5sin(2nt)+0.7)+(1+0.5cos (2xt))exp(x) +exp(y)’ “
(4cos(2nt)+6.5)exp(x)

(0.5sin(2nt)+0.7)+(1+0.5cos(2nt))exp(x)+exp(y)

R

y* (t) = —(0.3sin(2nt) +1) +
AX(t)=In(1+g,)
Ay(t)=In(p,)

Impulse points: t, =2k +1/4, t, =2k+3/4 and q=2.
g, = e 00 _q g, = e 00 _1

D, = g0t D, = g0l
1= ’ 2

Example 1 satisfies all the conditions of Theorem 2, thus it has at least one periodic solution.
Example 2. T =[2k,2k+1],k e N k start with 0.

x* (t) =(0.2sin(2nt)+0.3) - (0.1sin(2xt)+0.2) exp(x)
(3+cos(2xt))exp(y) .
(sin(2nt)+2)+(1+0.5cos (2xt))exp(x)+1.5exp(y)’
(4cos(2nt)+6.5)exp(x)
(sin(2nt)+2)+(1+0.5cos(2nt))exp(x)+1.5exp(y)

=1,

REA W

y* (t)=—(0.3sin(2nt)+1)+

Ax(t)=In(1+g,)

Ay(t)=In(p,)
Impulse points: t, =2k +1/4, t,=2k+3/4 and q=2.
gl:efom 1, gzzefo'Ol 1

_ 01 .01
p=€¢", p,=¢€
Example 2 satisfies all the conditions of Theorem 3, thus it has at least one periodic solution.
Theorem 4. If all the coefficient functions in system (1) is positive, w-periodic, from C,, (T,R*) and im-
pulses are 0; also

al I ufqu /Rl u u I
[b—u)exp(y(a -b (a /b (exp(ua )))—c /m ))
(J'Uwf (t)At-p° (jowd (t)At))—a” (J’Owd (t)At) >0
is satisfied then there exist at least a w-periodic solution.  x = max, u(t)

Proof. First part of the proof is similar to Theorem 2, only difference is the zero impulses. If the assumption
of Theorem 4 is true then there exists n, such that forall n>n,
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[ () Jexp( (a —b“(a“/b' (exp(ﬂaU)))_cu/w))
(IO f(t)At-p" (jowd (t)At))_a“ (.[(;Nd (t)m) o

is satisfied. Suppose there exist s,t [0,w]_ suchthat y(s)=x(t)—In(n,). Then similar to proof of Theorem 4
we can find M

If such s, t does not exist y(s)<x(t)—In(ny). Using the first equation of (1) and assuming o () is the
minimum of x(t). Then

0= (x(F))" =a(f)-b(E)exp(x(f))- c(f)exp(y(f))

a(f)+p(F)exp(x(T))+m(f)exp(y(f))

Thus we get
a' <b’ exp(x(f))+cue*(ly(t))s (b +(1/ny )c*/a" Jexp(x(F)).
Then exp(x(f))zm.

If £ is a right dense point then exp(x(a(f)))z . If T is right scattered, we interested

&
b +(1/ny)c" /!

with the maximum of the solution. Let a(f) be the maximum of x(t).
<(x(6))" =a(f)-b(f)exp(x(f)) - c(f)exp( (A))
0<(x(E)) =a(t)-b(E)exp(x(f)) o (§)+ B (E)exp (x(0))+ m(
Then exp( ())<a/b' (f) . then exp(x(o()))<a’/b".

If =0
If fc(f), then exp( ()) a'/b' (exp ua" )
Thus

—)
SN—
@D
x
o
—
<
—~

—)

S —
P
|

exp(x(a(f))) 2M::Wexp(ﬂ(a' —p (a”/b' (exp(ya“ )))—c“/ml )) =

Using (3) and (7) above results we obtain
[d(t)at>

Kl
a'+BK +m’exp(y(n,))

['f(t)at.

This implies

y(7,)>In Hmexp(u(a' b (a“/b' (exp(sa” )))—C“/m' ))]
{510 a0 (o] - nfo ) -1
(MM

Hence, according to the above discussion we have y(nz)> M =min 4}. Using second inequality in

Lemma 1 we have y(t)<M (ZJ' d t)At) H,. Thus max,_ o [Y (O] max{|H3|,‘ﬁ4‘}. Rest of the proof
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is similar to Theorem 2.
Corollary 2. In Theorem 4 if we take T as R then we get Theorem 3 in [21].

Example 3. T =[2k,2k+1],k e N k start with 0.
x* (t)=(0.1sin(2xt)+0.2)—(0.1sin (2t ) +0.25)exp(x)
(0.1+0.1cos(2xt))exp(y)
(0.2sin(2nt)+0.2)+(1+0.5cos (2nt))exp(x)+exp(y)’
(4cos(2nt)+6.5)exp(x)
(0.2sin(2nt)+0.2)+(1+0.5cos(2nt))exp(x)+exp(y)

y* (t) = —(0.3sin(2nt) +1) +

Example 3 satisfies all the conditions of Theorem 4, thus it has at least one periodic solution.
All the graphs that we see in Figures 1-3 are obtained by Mathlab.

4. Discussion

In this paper, the impulsive predator-prey dynamic systems on time scales calculus are studied. We investigate
when the system has periodic solution. Furthermore, three different conditions have been found which are ne-
cessary for the periodic solution of the predator-prey dynamic systems with Beddington-DeAngelis type func-
tional response. Also by using graphs, we are able to show that the conditions that are found in Theorem 2, 3

j”m”mmwmm“‘m I
| L
J

o R T

-02
0.5f 1
-0.25 (
0 4
-05 : : -03 : :
0 20 40 60 0 20 40 60

Figure 1. Numeric solution of Example 1 shows the periodicity.
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0.35 0.42

0.25 0.36

Y pone

-0.8 -0.8

—-0.85

-14 -1

f——

0 20 40 60 0 20
Figure 2. Numeric solution of Example 2 shows the periodicity.

ey(m)
3 0.3

i oz I

1 J 0.26
0 0.24
0 20 40 60 0 20
y(m)
1 -1.2

-1 -1.35

0 20 40 60 0 20
Figure 3. Numeric solution of Example 3 shows the periodicity.

60

and 4 are enough for the periodic solution of the given system. In this work, since our system can model the life
cycle of the such species like insects, what we have done new is finding necessary condition for the periodic so-
lution of the given predator-prey system with sudden changes. In addition to these, according to the structure of

the given time scale T, the conditions that are found in Theorem 2, 3 and 4 become useful.
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