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Abstract 
In this study, the impulsive predator-prey dynamic systems on time scales calculus are studied. 
When the system has periodic solution is investigated, and three different conditions have been 
found, which are necessary for the periodic solution of the predator-prey dynamic systems with 
Beddington-DeAngelis type functional response. For this study the main tools are time scales cal-
culus and coincidence degree theory. Also the findings are beneficial for continuous case, discrete 
case and the unification of both these cases. Additionally, unification of continuous and discrete 
case is a good example for the modeling of the life cycle of insects. 
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1. Introduction 
The relationships between species and the outer environment, and the connections between different species are 
the description of the predator-prey dynamic systems which is the subject of mathematical ecology in bioma-
thematics. Various types of functional responses in predator-prey dynamic system such as Monod-type, semi-ratio- 
dependent and Holling-type have been studied. [1] is an example for the study about Holling-type functional re-
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sponse. In this paper, we consider the predator-prey system with Beddington DeAngelis type functional re-
sponse and impulses. This type of functional response first appeared in [2] and [3]. At low densities this type of 
functional response can avoid some of the singular behavior of ratio-dependent models. Also predator feeding 
can be described much better over a range of predator-prey abundances by using this functional response. 

In a periodic environment, significant problem in population growth model is the global existence and stabili-
ty of a positive periodic solution. This plays a similar role as a globally stable equilibrium in an autonomous 
model. Therefore, it is important to consider under which conditions the resulting periodic nonautonomous sys-
tem would have a positive periodic solution that is globally asymptotically stable. For nonautonomous case there 
are many studies about the existence of periodic solutions of predator-prey systems in continuous and discrete 
models based on the coincidence theory such as [4]-[12]. 

Impulsive dynamic systems are also important in this study and we try to give some information about this 
area. Impulsive differential equations are used for describing systems with short-term perturbations. Its theory is 
explained in [13]-[15] for continuous case and also for discerete case there are some studies such as [16]. Impul-
sive differential equations are widely used in many different areas such as physics, ecology, and pest control. 
Most of them use impulses at fixed time such as [17] [18]. By using constant functions, some properties of the 
solution of predator-prey system with Beddington-DeAnglis type functional response and impulse impact are 
studied in [19] for continuous case. 

In this study unification of continuous and discrete analysis is also significant. To unify the study of differen-
tial and difference equations, the theory of Time Scales Calculus is initiated by Stephan Hilger. In [20] [21], un-
ification of the existence of periodic solutions of population models modelled by ordinary differential equations 
and their discrete analogues in form of difference equations, and extension of these results to more general time 
scales are studied. 

The unification of continuous and discrete case is a good example for the modeling of the life cycle of insects. 
Most of the insects have a continuous life cycle during the warm months of the year and die out in the cold 
months of the year, and in that period their eggs are incubating or dormant. These incubating eggs become new 
individuals of the new warm season. Since insects have such a continuous and discrete life cycle, we can see the 
importance of models obtained by the time scales calculus for the species that have unusual life cycle. Therefore, 
in this paper we try to generalize periodic solutions of predator-prey dynamic systems with Beddington-DeAn- 
glis type functional response and impulse to general time scales. 

2. Preliminaries 
Below informations are from [20]. Let X, Z be normed vector spaces, :L DomL X Z⊂ →  be a linear mapping, 

:N X Z→  be a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if 
dimKerL codimImL= < +∞  and ImL is closed in Z. If L is a Fredholm mapping of index zero and there exist 
continuous projections :P X X→  and :Q Z Z→  such that ImP KerL= , ( )ImL KerQ Im I Q= = − , then 
it follows that ( ):DomL KerPL I P X ImL− →



 is invertible. We denote the inverse of that map by PK . If Ω is 
an open bounded subset of X, the mapping N will be called L-compact on Ω if ( )QN Ω  is bounded and 

( ) :PK I Q N X− Ω→  is compact. Since ImQ is isomorphic to KerL, there exists an isomorphism 
:J ImQ KerL→ . 
The above informations are important for the Continuation Theorem that we give below. 
Theorem 1. (Continuation Theorem). Let L be a Fredholm mapping of index zero and N be L-compact on Ω. 

Suppose 
(a) For each ( )0,1λ ∈ , every solution z of Lz Nzλ=  is such that z δ∉ Ω ; 
(b) 0QNz ≠  for each z KerLδ∈ Ω  and the Brouwer degree { }, ,0 0.deg JQN KerLδΩ ≠  Then the 

operator equation Lz Nz=  has at least one solution lying in DomL δΩ . 
We will also give the following lemma, which is essential for this paper. 
Lemma 1. Let [ ]1 2, 0,t t ω∈  and t∈ . If :g T R→  is ω-periodic, then 

( ) ( ) ( ) ( ) ( ) ( )1 20 0
and .g t g t g s s g t g t g s s

ω ω∆ ∆≤ + ∆ ≥ − ∆∫ ∫  

3. Main Result 
The equation that we investigate is: 
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Proof. If we using the first equation of (1) we obtain, 
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exp exp 0 1 exp
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x t x g a s s
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ln 1 0.
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then there exist at least a w-periodic solution. 

Proof. ( ) ( ) ( ) ( ) ( )2: , : ,
u

X PC u t w u t v t w v t
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   = ∈ + = + =  
   

  with the norm: 
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with the norm: 
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Let us define the mappings L  and N  by :L DomL X Y⊂ →  such that 
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ImL  is closed in Y  and 2dimKerL codimImL= = , therefore L  is a Fredholm mapping of index zero. 
There exist continuous projectors :P X X→  and :Q Y Y→  such that 
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where ( )
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The generalized inverse PK ImL DomL KerP= → ⊂  is given, 
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Clearly, QN  and ( )PK I Q N−  are continuous. Since X  and Y  are Banach spaces, then by using Arzela-  
Ascoli theorem we can find ( ) ( )PK I Q N− Ω  is compact for any open bounded set .XΩ ⊂  Addition-  

ally, ( )QN Ω  is bounded. Thus, N  is L-compact on Ω  with any open bounded set .XΩ ⊂  
To apply the continuation theorem we investigate the below operator equation. 
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From (2) and (3) we get 
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By the second equation of (3) and (6) and the first assumption of Theorem 2, we have 
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Using the second inequality in Lemma 1 we have 
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By the first equation of (3) and (6) we get ( )1 2 ,x lξ ≤  where 
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( )( ) ( )( )
( )

( )( ) ( )( ) ( )
1 1

1 1

0 0
1

0 0
2 2

exp
ln

exp exp

e e
e exp e exp

qw w
i u u u

i

H Hw w

H Hu u u u u u

f t x t
d t t p t

x t m y t

f t
t f t t

m y m y

α β

α β η α β η

=

∆ − ≥ ∆
+ +

≥ ∆ = ∆
+ + + +

∏∫ ∫

∫ ∫
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( )( )
( )

( ) ( )

1

10
2

0
1

e1exp e .
ln

wH
Hu u

u qw
i

i

f t t
y

m d t t p
η β α

=

 
 ∆
 ≥ − −
 

∆ − 
 

∫

∏∫
 

Again using second assumption of Theorem 2 we obtain 

( ) ( ) ( ) ( ) ( )1
0 0 0

1 1
e ln ln 0

q qw w wH u u
i i

i i
f t t d t t p d t t pβ α

= =

    
∆ − ∆ − − ∆ − >    

    
∏ ∏∫ ∫ ∫  

and ( )2 2y Lη ≥  where 
( )

( ) ( )

1

10
2

10

e1: ln e .
ln

wH
Hu u

u w q
ii

f t t
L

m d t t p
β α

=

  ∆  = − −   ∆ −  

∫
∏∫

 

By using the second inequality in Lemma 1 and (5), we obtain 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 0

2 0 0
1

4 2 2

ln

: .

w

qw w
i

i

y t y y t t

y d t t d t t p

H L M

η

η

∆

=

≥ − ∆

 
≥ − ∆ + ∆ − 

 
≥ = −

∫

∏∫ ∫                     (11) 

By (10) and (11) we have [ ] ( ) { }2 3 40,max : max , .t w y t B H H∈ ≤ =  Obviously, 1B  and 2B  are both inde-  

pendent of λ . Let 1 2 1M B B= + + . Then [ ]0,max .t w

x
M

y∈

 
< 

 
 Let :

x x
X M

y y
     Ω = ∈ <    
     

 and Ω  

verifies the requirement (a) in Theorem 1. When 
x

KerL
y
 

∈ ∂Ω 
 

 , 
x
y
 
 
 

 is a constant with ,
x

M
y
 

= 
 

 then 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0
1

0
1

exp
exp ln 1

exp exp 0
, ,

0exp
ln

exp exp

0 0
, , .

0 0

qw
i

i

qw
i

i

c s y
a s b s x s g

s s x m s yx
QN

y f s x
d s s p

s s x m s y

α β

α β

=

=

  
− − ∆ + +  + +      =             − + ∆ + + +   

    
≠     

    

∏∫

∏∫




 

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( )
( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( ) ( )

0
1

0
1

exp
exp ln 1

exp exp
,

exp
ln

exp exp

qw
i

i

qw
i

i

c s y s
a s b s x s s g

s s x s m s y sx
JQN

y f s x s
d s s p

s s x s m s y s

α β

α β

=

=

 
− − ∆ + + 

+ +    
=    

    − + ∆ + + + 

∏∫

∏∫
 

where :J ImQ KerL→  such that 
0 0

, , , .
0 0

x x
J

y y
        

=        
        


 

Define the homotopy ( ) ( )1H JQN Gν ν ν= + −  where 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0
1

0
1

exp ln 1

exp
ln

exp exp

qw
i

i

qw
i

i

a s b s x s g
x

G
f s xy

d s s p
s s x m s yα β

=

=

 
− ∆ + +     =       − ∆ + 

+ +  

∏∫

∏∫
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Take GDJ  as the determinant of the jacobian of G. Since 
x

KerL
y
 

∈ 
 

, then jacobian of G is 

( )

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( )

0
2

2 20 0 0

e 0

.ee e e
e e e e e e

wx

xx x y
w w w

x y x y x y

b s s

f s sf s f s m s
s s s

s s m s s s m s s s m s

β

α β α β α β

 − ∆
 
 

− ∆ + ∆ − ∆ + + + + + +  

∫

∫ ∫ ∫
 

All the functions in jacobian of G is positive then GsignDJ  is always positive. Hence 

( ) ( )
1 0

0

, ,0 , ,0 0.G
x

G
y

x
deg JQN KerL deg G KerL signDJ

y
−     

∈          

  
Ω = Ω = ≠  

  
∑   

Thus all the conditions of Theorem 1 are satisfied. Therefore system (1) has at least a positive w-periodic so-
lution. 

Theorem 3. If same conditions are valid for the coefficient functions in system (1) and 

( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( )

0
1

0
1

0

0 0 0
1 1

ln 1
exp 2 ln 1

ln ln 0

qw
i qwi

iw
i

q qw w wu u
i i

i i

a t t g
a t t g

b t t

f t t d t t p d t t pβ α

=

=

= =

 
∆ + +      − ∆ + +     ∆  

 
 
    
⋅ ∆ − ∆ − − ∆ − >    

    

∏∫
∏∫

∫

∏ ∏∫ ∫ ∫

 

is satisfied then there exist at least a w-periodic solution. 
Proof. First part of the proof is very similar with the proof of Theorem 2. By (2), (3) and (6) 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( )10 0 0
1

exp
ln exp

exp exp

qw w w
i

i

f t x t f t
d t t p t x t

tt t x t m t y t
η

αα β=

∆ − = ∆ ≤ ∆
+ +∏∫ ∫ ∫  

By (3) ( ) ( )10
ln 0.

w q
iid t t p

=
∆ − >∏∫  Also by the assumption of Theorem 3 ( ) ( ), 0.f t tα >  Then we get 

( )1 1,x lη ≥   
( ) ( )

( ) ( )
10

1

0

ln
: ln

w q
ii

w

d t t p
l

f t t tα
=

 ∆ − =
 ∆ 

∏∫
∫

 . 

And using the second inequality in Lemma 1 we have 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 0

1 0 0
1

1 1 1

ln 1

: .

w

qw w
i

i

x t x x t t

x a t t a t t g

H l M

η

η

∆

=

≥ − ∆

 
≥ − ∆ + ∆ + + 

 
= = −

∫

∏∫ ∫


 

                    (12) 

By the first equation of (3) and (6) 

( ) ( ) ( ) ( )( ) ( )( ) ( )1 10 0 0
1

ln 1 exp exp .
qw w w

i
i

a t t g b t x t x b t tξ ξ
=

∆ + + ≥ ∆ = ∆∏∫ ∫ ∫  

Then we get ( )1 2x lξ ≤   where 
( ) ( )

( )
10

2

0

ln 1
: ln .

w q
ii

w

a t t g
l

b t t
=

 ∆ + + =
 ∆ 

∏∫
∫
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Using the first inequality in Lemma 1 we have 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 0

1 0 0
1

2 2 1

ln 1

: .

w

qw w
i

i

x t x x t t

x a t t a t t g

H l M

ξ

ξ

∆

=

≤ + ∆

 
≤ + ∆ + ∆ + + 

 
≤ = +

∫

∏∫ ∫


 

                    (13) 

By (12) and (13) [ ] ( ) { }1 1 20,max : max , .t w x t B H H∈ ≤ =    From the second equation of (3) and the second 
equation of (7), we can derive that 

( ) ( ) ( ) ( )( )
( ) ( )( )

( )
( ) ( )( )

( )( ) ( ) ( )

2

2

0 0 0
1 2

0
2

exp e
ln

exp exp

e .
exp

Hqw w w
i

i

H w

f t x t f t
d t t p t t

m t y t m t y

f t m t t
y

ξ

ξ

=

∆ − ≤ ∆ ≤ ∆

= ∆

∏∫ ∫ ∫

∫





 

Therefore 

( )( )
( ) ( )

( ) ( )
2 0

2

0
1

exp e (
ln

w

H
qw

i
i

f t m t t
y

d t t p
ξ

=

∆
≤

∆ −

∫
∏∫

  

Since ( ) ( )2e , , 0,H f t m t >
  then ( )2 1,y Lξ ≤   where 

( ) ( )
( ) ( )

2 0
1

10

: ln e .
ln

w

H
w q

ii

f t m t t
L

d t t p
=

  ∆  =    ∆ −  

∫
∏∫



  

Hence, by using the first inequality in Lemma 1 and the second equation of (3), 

( ) ( ) ( )

( ) ( ) ( ) ( )

2 0

2 0 0
1

3 1 2

ln

: .

w

qw w
i

i

y t y y t t

y d t t d t t p

H L M

ξ

ξ

∆

=

≤ + ∆

 
≤ + ∆ + ∆ − 

 
≤ = +

∫

∏∫ ∫
  

                    (14) 

By the assumption of Theorem 3 there exists 0n  such that 0n n∀ ≥  

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0
1

0 0
1

0 0

0 0 0
1 1

ln 1
exp ln 1

1

ln ln 0

qw
i qw wi

iw w
i

q qw w wu u
i i
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a t t g
a t t a t t g

b t t n c t t t

f t t d t t p d t t p

α

β α

=

=

= =

 
∆ + +      − ∆ + ∆ + +     ∆ + ∆  

 
 
    
⋅ ∆ − ∆ − − ∆ − >    

    

∏∫
∏∫ ∫

∫ ∫

∏ ∏∫ ∫ ∫

 

is true. We need to get 4H  such that [ ]0,t w∀ ∈   ( ) 4 .y t H≥   Let us assume there exists [ ], 0,t s w∈   such  
that ( ) ( ) ( )0lny s x t n≥ −  Then by using (6) and (7) we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1
2 0 1 0 1 0 4ln ln ln : .y y s x t n x n H n Mη ξ≥ ≥ − ≥ − ≥ − =  

If such t, s does not exists then [ ], 0, ,t s w∀ ∈   ( ) ( ) ( )0lny s x t n< − . Also from the first equation of (3), we 
have 
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( ) ( ) ( )( ) ( ) ( )( ) ( )
( )

( )( ) ( ) ( ) ( )
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1 00 0
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exp 1 .
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η η
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By using first inequality in Lemma 1, we have ( )( )exp x t K≥ , where 
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( ) ( ) ( )
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0
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1
00 0
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: exp ln 1 .

1
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=

=
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∏∫
∏∫ ∫

∫ ∫
 

Using the second equality in (3) and the assumption of the Theorem 4, we obtain 
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0 0
1 2

ln .
exp

qw w
i u u u

i
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K m yα β η=

∆ − ≥ ∆
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This implies ( ) 2
2 4 ,y Mη ≥  where 
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0
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i
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=
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⋅ ∆ − ∆ − − ∆ −     
    


− ∆ −

∏∫
∏∫ ∫

∫ ∫

∏ ∏∫ ∫ ∫

∏∫ ( ) .i

  
  

  

 

Hence, according to the above discussion we have ( ) { }1 2
2 4 4 4: min , .y M M Mη ≥ =  Using second inequality  

in Lemma 1 we have ( ) 4y t H≤   where ( ) ( ) ( )( )4 4 10 0
: ln .

w w q
iiH M d t t d t t p

=
= − ∆ + ∆ − ∏∫ ∫  

Thus [ ] ( ) { }2 3 40,max : max , .t w y t B H H∈ ≤ =  


 Obviously, 1B  and 2B  are both independent of λ . Let  

1 2 1M B B= + +  . Then [ ]0,max .t w

x
M

y∈

 
< 

 
 Let :

x x
X M

y y
     Ω = ∈ <    
     

 then Ω verifies the requirement  

(a) in Theorem 1. Rest of the proof is similar to Theorem 2. 
Let there are two insect populations (one of them the predator, the other one the prey) both continuous while 

in season (say during the six warm months of the year), die out in (say) winter, while their eggs are incubating or 
dormant, and then both hatch in a new season, both of them giving rise to nonoverlapping populations. This sit-
uation can be modelled using the time scale 

[ ]2 ,2 1 , with 1
k

k k ω
∈

= + =



  

Here impulsive effect of the pest population density is after its partial destruction by catching, poisoning with 
chemicals used in agriculture (can be shown by 1 0kg− < < ) and impulsive increase of the predator population 
density is by artificially breeding the species or releasing some species ( )0kp > . In addition to these, if the 
model assumes a BeddingtonDeAngelis functional response as in (1) and if the assumptions in Theorem 2 or 3 
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are satisfied then there exists a 1-periodic solution of (1). 
Corollary 1. If ( ) 0tα =  in the system (1) and 

( ) ( ) ( )( )10 0
ln 0

w w qu
iif t t d t t pβ

=
∆ − ∆ − >∏∫ ∫  

is satisfied then the system (1) has at least one w-periodic solution. 
Example 1. [ ]2 ,2 1 ,k k k= + ∈   k start with 0. 

( ) ( )( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )
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0.2sin 2π 0.3 0.2sin 2π 0.2 exp

0.1 0.1cos 2π exp
,

0.5sin 2π 0.7 1 0.5cos 2π exp exp

4cos 2π 6.5 exp
0.3sin 2π 1 ,

0.5sin 2π 0.7 1 0.5cos 2π exp exp

ln 1
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k
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k k
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x t t t x

t y
t t

t t x y
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y t t t t

t t x y

x t g

y t p

∆

∆

= + − +

+
− ≠

+ + + +

+
= − + + ≠

+ + + +

∆ = +

∆ =

 

Impulse points: 1 2 1 4t k= + , 2 2 3 4t k= +  and 2q = . 
0.01

1 e 1g −= − , 0.01
2 e 1g −= −  

0.1
1 ep = , 0.1

2 ep =  
Example 1 satisfies all the conditions of Theorem 2, thus it has at least one periodic solution. 
Example 2. [ ]2 ,2 1 ,k k k= + ∈   k start with 0. 
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∆
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= + − +
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− ≠
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+
= − + + ≠

+ + + +

∆ = +

∆ =

 

Impulse points: 1 2 1 4t k= + , 2 2 3 4t k= +  and 2q = . 
0.01

1 e 1g −= − , 0.01
2 e 1g −= −  

0.1
1 ep = , 0.1

2 ep =  
Example 2 satisfies all the conditions of Theorem 3, thus it has at least one periodic solution. 
Theorem 4. If all the coefficient functions in system (1) is positive, w-periodic, from ( )2,rdC    and im-

pulses are 0; also 

( )( )( )( )( )
( ) ( )( )( ) ( )( )0 0 0

exp exp

0

l
l u u l u u l

u

w w wu u

a a b a b a c m
b

f t t d t t d t t

µ µ

β α

 
− − 

 

⋅ ∆ − ∆ − ∆ >∫ ∫ ∫
 

is satisfied then there exist at least a w-periodic solution. [ ] ( )0,max w tµ µ=


 

Proof. First part of the proof is similar to Theorem 2, only difference is the zero impulses. If the assumption 
of Theorem 4 is true then there exists 0n  such that for all 0n n≥  
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( ) ( )( )( )( )( )
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⋅ ∆ − ∆ − ∆ >∫ ∫ ∫
 

is satisfied. Suppose there exist [ ], 0,s t w∈   such that ( ) ( ) ( )0lny s x t n≥ − . Then similar to proof of Theorem 4 
we can find 1

4M̂ . 
If such s, t does not exist ( ) ( ) ( )0lny s x t n< − . Using the first equation of (1) and assuming ( )tσ   is the 

minimum of ( )x t . Then 
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Thus we get 
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exp .
1

l

u u l
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+

  

If t  is a right dense point then ( )( )( ) ( )0

exp .
1

l

u u l

ax t
b n c

σ
α

≥
+

  If t  is right scattered, we interested  

with the maximum of the solution. Let ( )t̂σ  be the maximum of x(t). 
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∆
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Then ( )( )ˆexp .u lx t a b≤  If ( )ˆ ˆt tσ= , then ( )( )( )exp .u lx t a bσ ≤  

If ( )ˆ ˆt tσ≠ , then ( )( )( ) ( )( )ˆexp exp .u l ux t a b aσ µ≤  
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Using (3) and (7) above results we obtain 

( )
( )( ) ( )1

0 0
1 2

.
exp

w w

u u u

Kd t t f t t
K m yα β η

∆ ≥ ∆
+ +∫ ∫  

This implies 
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⋅ ∆ − ∆ − ∆ − ∆ =


∫ ∫ ∫ ∫

 

Hence, according to the above discussion we have ( ) { }1 2
2 4 4 4

ˆ ˆ ˆmin , .y M M Mη ≥ =  Using second inequality in  

Lemma 1 we have ( ) ( )( )4 40
ˆ ˆ2 .

w
y t M d t t H≤ − ∆ =∫  Thus [ ] ( ) { }3 40,

ˆmax max , .t w y t H H∈ ≤ 


 Rest of the proof  
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is similar to Theorem 2. 
Corollary 2. In Theorem 4 if we take   as   then we get Theorem 3 in [21]. 
Example 3. [ ]2 ,2 1 ,k k k= + ∈   k start with 0. 

( ) ( )( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )( ) ( ) ( )

( ) ( )( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )

0.1sin 2π 0.2 0.1sin 2π 0.25 exp

0.1 0.1cos 2π exp
,

0.2sin 2π 0.2 1 0.5cos 2π exp exp

4cos 2π 6.5 exp
0.3sin 2π 1

0.2sin 2π 0.2 1 0.5cos 2π exp exp

x t t t x

t y
t t x y

t x
y t t

t t x y

∆

∆

= + − +

+
−

+ + + +

+
= − + +

+ + + +

 

Example 3 satisfies all the conditions of Theorem 4, thus it has at least one periodic solution. 
All the graphs that we see in Figures 1-3 are obtained by Mathlab. 

4. Discussion 
In this paper, the impulsive predator-prey dynamic systems on time scales calculus are studied. We investigate 
when the system has periodic solution. Furthermore, three different conditions have been found which are ne-
cessary for the periodic solution of the predator-prey dynamic systems with Beddington-DeAngelis type func-
tional response. Also by using graphs, we are able to show that the conditions that are found in Theorem 2, 3  
 

 
Figure 1. Numeric solution of Example 1 shows the periodicity. 
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Figure 2. Numeric solution of Example 2 shows the periodicity. 

 

 
Figure 3. Numeric solution of Example 3 shows the periodicity. 

 
and 4 are enough for the periodic solution of the given system. In this work, since our system can model the life 
cycle of the such species like insects, what we have done new is finding necessary condition for the periodic so-
lution of the given predator-prey system with sudden changes. In addition to these, according to the structure of 
the given time scale  , the conditions that are found in Theorem 2, 3 and 4 become useful. 
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