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Abstract 
Generalized algorithms for solving problems of discrete, integer, and Boolean programming are 
discussed. These algorithms are associated with the method of normalized functions and are 
based on a combination of formal and heuristic procedures. This allows one to obtain quasi- 
optimal solutions after a small number of steps, overcoming the NP-completeness of discrete op-
timization problems. Questions of constructing so-called “duplicate” algorithms are considered to 
improve the quality of discrete problem solutions. An approach to solving discrete problems with 
fuzzy coefficients in objective functions and constraints on the basis of modifying the generalized 
algorithms is considered. Questions of applying the generalized algorithms to solve multicriteria 
discrete problems are also discussed. The results of the paper are of a universal character and can 
be applied to the design, planning, operation, and control of systems and processes of different 
purposes. The results of the paper are already being used to solve power engineering problems. 
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1. Introduction 
Discrete, integer, and Boolean (in the general case, discrete) optimization problems have important applications 
in many fields [1] [2]. Taking this into account, it should be stressed that direct determination of discrete solu-
tions to problems of discrete character is necessary. This is associated with the fact that even though at the cost 
of ignoring discreteness of parameters, with smoothing of functions, it is possible to replace an actual objective 
function by a convex or concave function defined on a convex region, with such an approach the danger exists 
that the objective function will be distorted (with a deviation from the optimum) or that the constraints will be 
violated (see a simple example in Section 3). Moreover, the transition from the discrete model to its convex 
analog can lead to considerable “coarsening” the model that often makes vapid its essence [3]. Finally, with 
orientation to discrete methods it is possible to pose and solve problems of combinatorial nature, which have 
previously not been considered [3]. 

Theoretical and experimental evaluations, discussed in [4] [5], for example, have revealed significant draw-
backs of exact methods of discrete programming. Besides, estimates of computational complexity [6] in solving 
discrete problems indicate that their NP-completeness does not permit one to develop general methods with a 
polynomial dependence on the problem dimension [7]. Thus, the development and application of approximate 
methods are the main direction in the evolution of discrete programming. 

The algorithms discussed in the present paper are based on a combination of formal (the method of norma-
lized functions [8]) and heuristic (elements of the greedy heuristics [9]-[11], generally, providing the best heu-
ristic among possible heuristics with a priori estimates) procedures. The algorithms permit one to obtain quasi- 
optimal solutions after a small number of steps, overcoming the problem NP-completeness. They do not require 
an analytical specification of objective functions and constraints, ensuring the flexibility and the possibility to 
solve problems, for which adequate analytical descriptions are difficult or impossible. 

In the process of formulating and solving a wide range of problems related to the design, planning, operation, 
and control of complex systems, one inevitably encounters different types of uncertainty [12]-[14]. Considering 
this, it should be stressed that taking into account the uncertainty factor in shaping mathematical models is to be 
inherent to the practice of systems analysis. This serves as a means for increasing the adequacy of the built models 
and, as a consequence, the credibility and factual effectiveness of solutions based on their analysis. 

Investigations of recent years show the benefits of applying fuzzy set theory [15] to deal with various types of 
uncertainty. Its use in problems of optimization character offers advantages of both fundamental nature (the pos-
sibility of obtaining more effective, less “cautious” solutions) and computational character [16] [17]. Consider-
ing this, the present paper also reflects results related to modifying the generalized algorithms to solve discrete 
problems with fuzzy coefficients in objective functions and constraints as well as multiobjective discrete prob-
lems. 

2. Problem Formulation 
From the diversity of discrete optimization problems it is possible to distinguish two comprehensive classes. The 
first class is associated with the general problem of discrete programming, including integer, Boolean, and dis-
crete programming problems proper. The problems with discrete variables may be reduced to integer or, in the 
general case, to Boolean models [1] [18]. However, such a reduction, usually, substantially, increases the prob-
lem dimensionality [3]. 

The second class of models is related to the problems of combinatorial type. In their solution, an extremum of 
the objective function is defined on a given finite discrete set A. The totality of objects obtained from A (for 
example, combinations or permutations) as well as objects obtained as a result of executing logical operations on 
elements of A [3] may be considered as a combinatorial space D. The problem is formulated as a search for  

( )0 0 0
1 , , nX x x=   from G D⊆  providing an extremum of the objective function, i.e., ( ) extr

X G D
F X

∈ ∈
→ . 

The combinatorial problems are the most difficult from the computational viewpoint. Their solution is based, 
in the main, on finiteness of G D⊆  and the problem specificity. Many combinatorial problems may be re-
duced to problems of integer or Boolean programming. For instance, Ibaraki [19] defines sufficient conditions of 
reducibility of combinatorial problems to integer programming models but shows that there is no a general algo-
rithm for such reducibility, even it is realizable. Besides, in many cases reducibility is reached by accepting con-
siderable assumptions, sharp increasing model dimension, and losing the possibility to effectively exploit com-
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binatorial properties of the initial problem [3]. 
In this connection, when solving discrete problems, it is important that their formulation and solution should 

exploit those properties and peculiarities of the problems, which promote their effective solution. Considering 
this, the desirability of allowing for constraints on the discreteness of in the form of discrete sequences 

, , , ,    1, ,
i i is s s i ix s rρ τ =                                  (1) 

has been validated in [18]; here , ,
i is sρ τ   are technical, economic, etc. characteristics required for forming 

objective functions, constraints, and their increments, which correspond to the sth discrete (integer, Boolean) 
value of the variable ix . Considering this, a maximization problem may be formulated as follows. 

Assume we are given discrete sequences of the type (1) (increasing or decreasing, depending on the problem 
formulation). From them it is necessary to choose parameters that the objective 

( )1 11
maximize , , , , , , , ,

n n ns s s s s sF x xρ τ ρ τ                           (2) 

is met while satisfying  

( )1 1 1
, , , , , , , , ,    1, , .

n n nj s s s s s s jg x x b j dρ τ ρ τ ≤ =                         (3) 

The objective function (2) is interpreted as concave and the constraints (3) are interpreted as convex. 
Given the maximization problem (1)-(3), one can formulate a minimization problem. In particular, from the 

discrete sequences of the type (1) it is necessary to choose parameters that the objective  

( )1 11
minimize , , , , , , , ,

n n ns s s s s sF x xρ τ ρ τ                          (4) 

is met while satisfying  

( )1 1 1
, , , , , , , , ,     1, ,

n n nj s s s s s s jg x x b j dρ τ ρ τ ≥ =    .                     (5) 

The objective function (4) is interpreted as convex and the constraints (5) are interpreted as concave. 

3. Solution Algorithms 
Let us consider the Boolean problem of maximization of  

( )
1

n

i i
i

F x c x
=

= ∑ ,                                     (6) 

while satisfying  

1
, 1, ,

n

ji i j
i

a x b j d
=

≤ =∑  ,                                 (7) 

where 0ic > , 1, ,i n=  , 0jia > , 1, ,j d=  , 1, ,i n=  , and 0,jb >  1, ,j d=  . 
The idea of one of popular methods, associated with the class of heuristic methods, may be illustrated by ana-

lyzing (6) and (7) for 1d =  (the 0 - 1 knapsack problem). It is possible to assume that ix , 1, ,i n=   are ar-
ranged as 

1 1 2 2 n nc a c a c a≥ ≥ ≥ .                                (8) 

It allows one to try to maximize (6) on the basis of the largest i ic a , considering 1 1x = , then 2 1x = , and so 
on until (7) is observed. Similar methods are called greedy methods. Regardless of their “naivety”, in many cas-
es, as it was indicated above, they represent the best heuristic among other heuristics with a priory estimates. 
However, a specter of problems is not restricted by the case of d = 1. Taking this into account, we discuss below 
ways of constructing algorithms for the general case (d > 1) to solve problems (linear as well as nonlinear), 
which can include not only Boolean, but also integer and discrete variables. 

When analyzing (6) and (7) for d = 1, the maximization is reached by expending only one type of resources. If 
d > 1, the optimization process is stopped when a remaining amount of only one of resources is not sufficient for 
next incrementing any of xi, 1, ,i n=  . Thus, we can speak about “equivalence” of different types of resources 
from the point of view of terminating the process of maximizing (6). Therefore, it is advisable to have a single 
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measure for different resources. This leads to the idea of normalization [8]. For example, the constraints (7) are 
reduced to a single arbitrary resource b as 

( ) ( )1 , 1, , , 1, ,t t
ji ji jia a b b j d i n−= = =  ,                          (9) 

where t is the optimization step number. 
Applying (9), it is possible to transform the constraints (7) to equal conditions. For instance, before the first 

optimization step we have  
( )0

1
, 1, ,

n

ji i
i

a x b j d
=

≤ =∑  .                                (10) 

Assume that at step t, variable ix  is at its discrete level ( )
i

t
sx  and its associated parameters , ,i iρ τ  are at  

the respective levels ( ) ( ), ,
i i

t t
s sρ τ . These can be gathered in what we introduce as the set ( ) ( ) ( ) ( ){ }, , ,

i i i i

t t t t
s s s sxξ ρ τ=  .  

Then the algorithm of solving the maximization problem (1)-(3), taking into account the results of [3] [20], 
can be written in the following form. 

1) The components of the vector ( ){ }t
iG∆  are evaluated as follows: 
( ) ( ) ( )max ,    , 1, ,t t t
i jij

G g i I j d∆ = ∆ ∈ =  ,                         (11) 

where ( )tI  is the set of variables at the tth step which, at their present values satisfy all constraints (3). In (11), 
( )t
jig∆  is the increment in the jth constraint when ( )

i

t
sξ  undergoes a step change from its level is  to the next 

level 1is +  while all the other ( )
k

t
sξ , k i≠  remain at their current levels ks : 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
1 1

1
1, , , , , , , , , 1, , , 

i n i n

t t t t t t t t t
ji j s s s j s s s jg g g b b j d i Iξ ξ ξ ξ ξ ξ −

+
 ∆ = − = ∈      .      (12) 

For t = 1 we have ni I∈  ( nI  is the initial set of variables) and ( ) ( )1 0t
j j jb b b− = = . 

2) If ( ) ( ) ( ){ }, t t t
iI i G b i I= ∆ ≤ ∈ ≠ ∅ , then go operation 3, otherwise the calculations are completed because 

the solution is obtained. 
3) The components of the vector ( ){ }t

iF∆  are calculated as follows: 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

1 11, , , , , , , , ,    .
i n i n

t t t t t tt t
i s s s s s sF F F i Iξ ξ ξ ξ ξ ξ+∆ = − ∈                   (13) 

4) If ( ) ( ) ( ){ }0, t t t
iI i F i I= ∆ > ∈ ≠ ∅ , then go to operation 5, otherwise the calculations are completed be-

cause the solution is obtained. 
5) The components of the vector ( ){ }t

iV  are calculated as: 
( ) ( ) ( ) ( ),t t t t

i i iV F G i I= ∆ ∆ ∈ .                              (14) 

6) The index ti θ=  of the variable to be incremented is determined from the following condition: 
( ) ( ) ( )max  ,  
t

t t t
ii

V V i Iθ = ∈ .                               (15) 

7) We recalculate the current values of the following quantities: 

( )
( ) ( )

( )
1

if , ,

if ;
i

i

i

t t
s tt

s t
s t

x i i I
x

x i

θ

θ+

 ≠ ∈= 
=

                              (16) 

( ) ( ) ( ) ( )1 1 , 1, ,
t

t t t t
j j j jb b g b b j dθ

− −= − ∆ =  .                          (17) 

8) If ( ) ( ){ }, t t
i iI i s r i I= < ∈ ≠ ∅ , then go to operation 1, taking t = t + 1; otherwise the calculations are com-

pleted because the solution is obtained. 
Commenting the algorithm of solving the maximization problem (1)-(3), it is necessary to indicate that the 

execution of its operation 1 provides determination of the constraint with the most scarce type of the resource 
( )t
jb , 1, ,j d=   for every variable at the given step. In essence, the execution of (11) permits one to construct  

a convolution: ( )

( )t

t
i

i I

G b
∈

∆ ≤∑ . Therefore, at each optimization step we obtain an increment of that tθ th variable  
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which maximizes the increment of the objective function per unit normalized resource b. In this connection, the 
utilization of (14) and (15) is similar to (8). Besides, the execution of operations 2 and 4 is directed at excluding 
variables that lead to violation of the constraints (3) or to decreasing the objective function of (2). 

The problem of minimization (1), (4), and (5) is more difficult than the problem (1)-(3). In particular, in the 
case of maximization we stop changing the variable xi when at least one of the constraints (3) is violated. At the 
same time, in the minimization process the optimization is completed on any variable when all constraints (5) 
are obeyed. Therefore, there is in the case of maximization usually only one “deficient” constraint at each step 
requiring attention. At the same time, in minimization we have to pay attention to each constraint because the 
optimization process cannot be completed until all constraints (5) have been obeyed. 

It is assumed that the initial constraints (5) are already normalized and are presented in the following form: 
( ) ( ) ( ) ( )

1 1

0 1, , , , , 1, ,
n n

t
j s s j s s jg g b b b j dξ ξ ξ ξ −= ≥ =   .                   (18) 

The algorithm of solving the minimization problem (1), (4), and (5), using the results of [3] [20], can be 
presented in the following form. 

1) The components of the vector ( ){ }t
iG∆  are evaluated as follows:  

( ) ( ) ( ) ( ), ,t t t t
i ji

j
G g i I j J∆ = ∆ ∈ ∈∑ .                            (19) 

In (19),  
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 1

1
1, , , , , , , , , ,

i n i n

t t t t t t t t t t
ji j s s s j s s s jg g g b b j J i Iξ ξ ξ ξ ξ ξ −

+
 ∆ = − ∈ ∈     ,       (20) 

where ( )tJ  is the set of the constraints (5) at the tth step. For t = 1 we have dj J∈  ( dJ  is the initial set of 
constraints); ni I∈ . 

2) The components of the vector ( ){ }t
iF∆ , ( )ti I∈  are calculated in accordance with (13). 

3) The components of the vector ( ){ }t
iV , ( )ti I∈  are calculated on the basis of (14). 

4) The index ti θ=  of the variable to be incremented is determined from the following condition: 
( ) ( ) ( )min ,  
t

t t t
ii

V V i Iθ = ∈ .                              (21) 

5) We recalculate the current values of the quantities ( )
i

t
sx , ( )ti I∈ , using (16), and 

( ) ( ) ( )
( )

( )1
1

,
t

tt t t
j j jl t

j

bb b g j J
b

−
−

= − ∆ ∈ .                          (22) 

6) If ( ) ( ) ( ){ }0,t t t
jJ j b j J= > ∈ ≠ ∅ , then go to operation 7; otherwise the calculations are completed because 

the solution is obtained. 
7) If ( ) ( ){ }, t t

i iI i s r i I= < ∈ ≠ ∅ , then go to operation 1, taking t = t + 1; otherwise the calculations are com-
pleted because the problem has no solution. 

Commenting the algorithm of solving the minimization problem (1), (4), and (5), it is necessary to indicate 
that the execution of its operation 1 provides the convolution of the set of constraints (5) at the given optimiza-
tion step. In this connection, at each step of optimization we obtain an increment of that tθ th variable which 
minimizes the increment of the objective function per unit total expenditure of normalized resources. The execu-
tion of operation 6 is associated with excluding such constraints (5) which are already satisfied. The algorithm 
has no operation similar to operation 4 of the algorithm of solving the maximization problem. This does not re-
strict a range of its applications because prior to using the algorithm it is possible to carry out minimization of 
the objective function (4) without considering the constraints (5).  

Numerous comparisons of solutions for diverse types of problems given, for instance, in [1] [21], based on 
applying the algorithms presented above (with the upper bounds of the number of operations ( )5 6 11N mn m n= + +   

for Boolean and ( )
1

5 6 11
n

i
i

N mn m r
=

= + + ∑  for integer and discrete linear problems) and exact methods, show  

their convincing agreement. This is also confirmed by numerous results on “good” behavior of the greedy algo-
rithms [22] for wide classes of discrete optimization problems. However, the authors of [23] indicate that the 
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greedy algorithms are to be used with caution. Taking into account these opinions, it is rational to have not only 
one, but several algorithms realizing different strategies. Considering this, so-called “duplicate” algorithms have 
been elaborated on the basis of a qualitative analysis of the problem statement. In particular, one of the “dupli-
cate” algorithms is based on evaluating the components of the vector ( ){ }t

iG∆  (operation 1 of the algorithm of 
solving the minimization problem) as follows: 

( ) ( ) ( ) ( )min , ,t t t t
i jij

G g i I j J∆ = ∆ ∈ ∈ ,                           (23) 

where ( )t
jig∆ , ( )ti I∈ , ( )tj J∈  are calculated on the basis of (12). 

The utilization of the “duplicate” algorithms can be considered, in a certain measure, as a guarantee of ob-
taining optimal solutions. Furthermore, the analysis of one and the same problem on the basis of several algo-
rithms allows obtaining a series of solutions of equal worth, which is important as well. 

As an example of the use of the “duplicate” algorithm associated with applying (23) we consider a problem of 
selecting locations and sizes of capacitors for a distribution network whose scheme and parameters are shown in 
Figure 1. It also gives the loads of transformers as well as load flow. For simplicity, the problem is solved under 
a simplified statement directed at minimizing a total installed power of low voltage capacitors while the con-
straints on lower voltage limits for maximal load levels are satisfied.  

The discrete sequence of low voltage capacitor sizes is the following: 

1

2

3

,  0 kVAr;

,  78 kVAr;

,  156 kVAr.

i

i

i

x

x

x

                                   (24) 

It is necessary to select sizes of capacitors which minimize the objective function 
5

1
,

i

i

s
i

F x
=

=

= ∑                                      (25) 

 

 
Figure 1. Network scheme, its parameters, and loads. 
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while satisfying the following constraints on lower voltage limits: 

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1.01 11.54 3.04 3.04 3.04 910;

1.01 3.04 31.35 3.04 3.04 3550;

1.01 3.04 3.04 15.08 4.48 840;

1.01 3.04 3.04 4.48 21.95 1660.

s s s s s

s s s s s

s s s s s

s s s s s

x x x x x

x x x x x

x x x x x

x x x x x

+ + + + ≥

+ + + + ≥

+ + + + ≥

+ + + + ≥

                   (26) 

The solution of (24)-(26), based on applying of the “duplicate” algorithm associated with the use of (23), is 
the following: 

11 1 0 kVAr,x x= =  
22 2 78 kVAr,x x= =  

33 3 156 kVAr,x x= =  
44 2 0 kVAr,x x= =  and 5x =  

52 78 kVAr.x =  The corresponding value of the objective function (25) is F = 312 kVAr. 
The solution of the problem (25) and (26) with ignoring the constraints (24) on variable discreteness, based on 

applying the simplex method of linear programming, is the following: x1 = 0 kVAr, x2 = 34 kVAr, x3 = 104 
kVAr, x4 = 12 kVAr and x5 = 54 kVAr. Rounding the obtained values to the nearest discrete ones does not per-
mit one to obtain a feasible solution. Rounding the obtained values to the nearest higher discrete ones provides 
the following solution: x1 = 0 kVAr, x2 = 78 kVAr, x3 = 156 kVAr, x4 = 78 kVAr and x5 = 78 kVAr. The corres-
ponding value of the objective function (25) is F = 390 kVAr.  

Another “duplicate” algorithm is associated with the results of [9] and is based on calculating ( )t
jig∆ , ( )ti I∈ , 

( )tj J∈  in the following form:  
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ){ } ( )

1 1

1
1min , , , , , , , , , ,

i n i n

t t t t t tt t t
ji j j js s s s s sg g g b j Jξ ξ ξ ξ ξ ξ −

+
 ∆ = − ∈               (27) 

with recalculating ( )t
jb , ( )tj J∈  (operation 5 of the algorithm of solving the minimization problem) as 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
1 1

1 1
1, , , , , , , , , ,

i n i n

t t t t t tt t t t
j j j j js s s s s sb b g g b j Jξ ξ ξ ξ ξ ξ− −

+
 = − − ∈     .          (28) 

As an additional means for possible improving the efficiency of solutions may serve the formulation and 
analysis of one and the same problem within the framework of mutually interrelated models (1)-(3) and (1), (4), 
and (5). Applying this approach, if we have the increasing (decreasing) sequences (1) for the problem (1)-(3), 
the sequences (1) are to be decreasing (increasing) for the problem (1), (4), and (5). Thus, it is possible to solve 
one and the same problem “from above” as well as “from below” as well. This approach is fruitful and also 
serves for solving problems with fuzzy coefficients discussed below. 

The described results have a high degree of generality and have been used in solving diverse power engineer-
ing problems discussed below. 

4. Problems with Fuzzy Coefficients 
Although there are diverse formulations of optimization problems with fuzziness (for instance, [15] [24] [25], in 
opinion of the authors of [15] [24], the problems with fuzzy coefficients in objective functions and constraints 
are to be considered as a general class of fuzzy mathematical programming problems. 

Generalizing (1)-(3), it is possible to construct the problem of choosing parameters from discrete sequences of 
the type (1) that the objective 

( )1 11
maximize , , , , , , , ,

n n ns s s s s sF x xρ τ ρ τ                            (29) 

is met while satisfying  

( )1 1 1
, , , , , , , , , 1, ,

n n nj s s s s s s jg x x b j mρ τ ρ τ ⊆ =
    .                     (30) 

The objective function of (29) and constraint (30) include fuzzy coefficients, as indicated by the ~ symbol.  
Generalizing (1), (4), and (5), it is possible to construct the problem of choosing parameters from discrete se-

quence of the type (1) that the objective 

( )1 11
minimize , , , , , , , ,

n n ns s s s s sF x xρ τ ρ τ                            (31) 

is met while satisfying (30). 
The models (1), (29), and (30) and (1), (31), and (30) generalize the models analyzed, for instance, in [26] [27] 
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whose formulation with deterministic information have been considered in [3] [18].  
An approach [17] [28] to handling the constraints such as (30) involves replacing each of them by a finite set 

of nonfuzzy (deterministic) constraints, represented in the form of inequalities. Depending on the essence of the 
problem, it is possible to change from the problem (1), (29), and (30) or (1), (31), and (30) to the problem (1), 
(29), and (3) or (1), (31), and (5) with fuzzy coefficients in the objective functions alone. The solution of the 
problem (1), (29), and (3) is possible on the basis of modifying the algorithm of solving the maximization prob-
lem (1)-(3). The solution of the problem (1), (31), and (5) is associated with modifying the algorithm of solving 
the minimization problem (1), (4), and (5) or the corresponding “duplicate” algorithms. In particular, the execu-
tion of algebraic operations on fuzzy numbers by means of the expressions (13) and (14) is accomplished on the 
basis of the results of [29]. 

To compare alternatives in accordance with (15) or (21) it is necessary to use the corresponding methods, 
considered, for instance, in [30]-[32]. Chen and Hwang [30] classify four groups of methods related to the or-
dering of fuzzy quantities. Among these groups, the authors of [33] consider the construction of fuzzy prefe-
rence relations for pairwise comparisons as the most practical and justified way. Considering this, it is necessary 
to distinguish the fuzzy number ranking index introduced by Orlovsky [24] based on the conception of a mem-
bership function of a generalized preference relation. 

If 1V  and 2V  have the membership functions ( )1vµ  and ( )2vµ , then quantity 

( ) ( ){ } ( ) ( ){ }
1 2

1 2

1 2 1 2
,

  

, sup min ,
v v V

v v

v v v vη µ µ µ µ
∈

≥

=                          (32) 

is the degree of preference ( ) ( )1 2v vµ µ , while 

( ) ( ){ } ( ) ( ){ }
1 2

1 2

2 1 1 2
,

  

, sup min ,
v v V

v v

v v v vη µ µ µ µ
∈

≥

=                          (33) 

is the degree of preference ( ) ( )2 1v vµ µ . These agree with several important fuzzy number ranking indices 
[17]. Examples of the application of the dependencies (32) and (33) are given in [17]. However, our experience 
shows that in many cases the membership functions of the alternatives ( )1vµ  and ( )2vµ  compared form flat 
apices (for example, [17]), i.e., they are so-called flat or trapezoidal fuzzy numbers [15]. In view of this, when 
using (32) and (30), it may happen that 1V  and 2V  are indistinguishable if ( ) ( ){ } ( ) ( ){ }1 2 2 1, ,v v v vη µ µ η µ µ= . 
In such situations the modified algorithms of discrete optimization do not allow one to obtain unique solutions: 
they “stop”. This occurs also with other modifications of traditional mathematical programming methods (this is 
illustrated in [28] [34] by simple examples) because a combination of the uncertainty and the relative stability of 
optimal solutions produces so-called decision uncertainty regions. In this connection, other indices may be used as 
additional means for the ranking of fuzzy numbers. 

The review of techniques which have been developed for ranking of fuzzy numbers can be found in [32]. This 
study covers the analysis of the fuzzy ranking indices proposed before 1998 (among more recent works in this 
field, it is possible to distinguish, for instance, [35] [36]). 

The authors of [32] count more than 35 existing fuzzy number ranking indices, indicating that unlike in the 
case of real numbers, fuzzy quantities have no natural order. The idea with the ordering of fuzzy quantities is to 
convert a fuzzy quantity into a real number and base the comparison of fuzzy quantities on these real numbers. 
Each conversion way pays attention to a special aspect of fuzzy quantity. As a consequence, each approach suf-
fers from some defects if only one real number is associated with each fuzzy quantity. Cheng [37] also indicates 
that many of indices produce different rankings for the same problem. The authors of [28] [31] [37] underline 
that fuzzy number ranking indices occasionally result in choices which appear inconsistent with intuition. Final-
ly, the majority of indices for the ranking of fuzzy quantities have been proposed with the aspiration for obliga-
tory distinguishing the alternatives. This is not natural because the uncertainty of information creates the deci-
sion uncertainty regions [17].  

There is another approach that is better validated and natural for the practice of decision making. It is asso-
ciated with the transition to multiattribute choosing alternatives in a fuzzy environment because the application 
of additional criteria (including the criteria of qualitative character, such as “investment attractiveness”, “flex-
ibility of development”, etc.) can serve as a convincing means to contract the decision uncertainty regions. 

Before starting to discuss questions of multiattribute decision making in a fuzzy environment, it is necessary 



R. Berredo et al. 
 

 
538 

to note that considerable contraction of the decision uncertainty regions may be obtained by formulating and 
solving one and the same problem within the framework of mutually interrelated models: 

1) model of maximization (29) with the constraints (30) approximated by (3); 
2) model of minimization (31) with the constraints (30) approximated by (5). 
When using this approach, solutions dominated by the initial objective function are cut off from above as well 

as from below to the greatest degree [28]. It should be stressed that this approach is of a universal character and 
may be used in solving continuous problems as well. 

Assume we are given a set X of alternatives (from the decision uncertainty region), which are to be examined 
by q criteria of quantitative and/or qualitative nature. This problem is presented by a pair , X R  where 

{ }1, , qR R R=   is a vector fuzzy preference relation [24] [28]. In this case, we have 

( ), , , 1, , , ,
pp R k l k lR X X X X p q X X Xµ = × = ∈   ,                   (34) 

where ( ),
pR k lX Xµ  is a membership function of a fuzzy preference relation. 

In (34), Rp is defined as a fuzzy set of all pairs of X × X, such that the membership function ( ),
pR k lX Xµ  

represents the degree to which Xk weakly dominates Xl (Xk is not worse than Xl) for the pth criterion. 
A convincing and natural approach to obtaining matrices Rp is presented in [17] [28]. In particular, the availa-

bility of fuzzy or linguistic estimates of alternatives ( )p kF X , 1, 2, , ,p q=   kX X∈  (constructed on the ba-
sis of expert estimation or on the basis of aggregating information arriving from different sources of both formal 
and informal character) with the membership functions ( )p kF Xµ    , 1, 2, , ,p q=   kX X∈  permits one, 
using the expressions (32) and (33), to construct Rp, 1, 2, ,p q=  . Other our approaches to constructing ma-
trices Rp are discussed in [39] [40]. 

At the same time, fuzzy preference relations are not a unique form of preference representation. For instance, 
the authors of [41] [42] indicate eight formats which can be used to establish preferences among analyzed alter-
natives. It is natural that their application demands a conversion of all formats to a unique format which can be 
processed and analyzed. Considering the advantages and rationality of the application of fuzzy preference rela-
tions for this objective, the results of [17] [43] permit one to construct so-called transformation functions to 
convert different preference formats to fuzzy preference relations.  

The basic procedures to deal with multiple criteria, when preferences are modeled as a vector R of fuzzy pre-
ference relations, considered in [17], are the following: the construction of a set of nondominated alternatives on 
the basis of simultaneous considering all fuzzy preference relations [24] [28]; the lexicographic procedure bases 
on the step-by-step application of fuzzy preference relations for comparing alternatives [16] [28]; the construc-
tion of a set of nondominated alternatives on the basis of the intersection of sets of nondominated alternatives 
obtained for each fuzzy preference relation [20]. 

The indicated procedures have served for developing other techniques: the analysis of alternatives with fuzzy 
ordering of criteria [17] [24]; the analysis of alternatives based on the concept of fuzzy majority (based on the 
application of the so-called OWA operator, originally proposed in [44]) [17] [40]; the analysis of alternatives 
based on an outranking approach (by a means of a fuzzy version of the PROMETHEE [45]) [17]. 

5. Multiobjective Problems with Discrete Variables 
When analyzing multiobjective models ( , X F  models [16] [17]), a vector of objective functions ( )F X =  

( ) ( ){ }1 , , qF X F X  is considered, and the problem consists of optimizing all of them, i.e., 

( ) extr ,   1, , ,p X L
F X p q

∈
→ =                                (35) 

where L is a feasible region in nR . 
The first step in solving the problem (32) is associated with determining a set of Pareto solutions LΩ ⊂  

[46]. This step is useful; however it does not permit one to obtain unique solutions. It is necessary to choose a 
particular Pareto solution on the basis of information of a decision maker. There are three approaches to using 
this information [17] [47]: a priori, a posteriori, and adaptive.  

When analyzing multiobjective problems, it is necessary to solve some questions related to normalizing ob-
jective functions, selecting principles of optimality, and considering priorities of objectives. Their solution and, 
therefore, development of multiobjective methods is carried out in the following directions [17] [48] [49]: scala-
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rization techniques, imposing constraints on objectives, utility function method, goal programming, and using 
the principle of guaranteed result. Without discussing these directions, it is necessary to point out that an impor-
tant question in the multiobjective analysis is the solution quality. It is considered high if levels of satisfying ob-
jective functions are equal or close to each other (harmonious solutions) if we do not differentiate their impor-
tance [16] [50] (other directions may lead to solutions with high levels of satisfying some objectives that is 
reached by low levels of satisfying other objectives, for instance [17] [50]). From this point of view, it should be 
recorded the validity and advisability of the direction related to the principle of guaranteed result. 

The lack of clarity in the concept of “optimal solution” is the basic methodological complexity in solving 
multiobjective problems. When applying the Bellman-Zadeh approach to decision making in a fuzzy environ-
ment [15] [51], this concept is defined with reasonable validity: the maximum degree of implementing goals 
serves as a criterion of optimality. This conforms to the principle of guaranteed result and provides constructive 
lines in obtaining harmonious solutions. The use of the Bellman-Zadeh approach permits one to realize an effec-
tive (from the computational standpoint) as well as rigorous (from the standpoint of obtaining solutions 

0X L∈Ω⊆ ) method of analyzing multicriteria models [16]. Finally, its use allows one to preserve a natural 
measure of uncertainty in decision making and to consider indices, criteria, and constraints of qualitative cha-
racter. 

When using the Bellman-Zadeh approach, objective functions ( )pF X , 1, ,p q=   are replaced by fuzzy 
sets ( ){ },p A pA X Xµ= , X L∈ , 1, ,p q=  , where ( )A p Xµ  is the membership function of pA . A fuzzy  

solution D is defined as 
1

q

p
p

D A
=

=


 with the membership function 

( ) ( )
1
min , .D App q

X X X Lµ µ
≤ ≤

= ∈                               (36) 

The use of (36) allows one to get the solution  

( ) ( )
1

max max minD App qX L
X Xµ µ

≤ ≤∈
=                              (37) 

Therefore, the problem (35) is reduced to search for 

( )0

1
arg max min  App qX L

X Xµ
≤ ≤∈

= .                              (38) 

To obtain (38), one needs to build ( )Ap
Xµ , 1, ,p q=  , which reflect the capability of achieving own optima  

by ( )pF X , X L∈ , 1, ,p q=  . This condition is satisfied if one chooses [17]: 

( ) ( ) ( )
( ) ( )

max
max min

p

p p
Ap

p pX LX L

F X F X
X

F X F X

λ

µ
∈∈

 −
 =

−  
                          (39) 

for minimized objective functions or  

( )
( ) ( )
( ) ( )

min

max min

p

p pX L
Ap

p pX LX L

F X F X
X

F X F X

λ

µ ∈

∈∈

 −
 =

−  
                          (40) 

for maximized ones. In (39) and (40), pλ , 1, ,p q=   are importance factors for the corresponding objective 
functions. 

The construction of (39) or (40) demands the solution of the following problems: 

( ) min,p X L
F X

∈
→                                     (41) 

( ) max.p X L
F X

∈
→                                     (42) 

Thus, the solution of the problem (35) on the basis of the Bellman-Zadeh approach demands analysis of 
2 1q +  monocriteria problems (41), (42), and (37), respectively. 

Since 0X  is to belong to LΩ ⊆ , it is necessary to build 
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( ) ( ) ( ) ( ) ( ){ }1 1, ,
min min ,  

q

D A Ap pp p q
X X X X Xπ πµ µ µ µ µ

= =
= ∧ =∧



,                (43) 

where ( )
1 if ,
0 if .

X
X

Xπµ
∈Ω

=  ∉Ω
 

Procedures for solving the problem (37) discussed in [17] provide a line in obtaining 0X L∈Ω ⊆  in accor-
dance with (43). Thus, it can be said about equivalence of ( )D Xµ  and ( )D Xµ  and guarantees obtaining 
harmonious solutions which belong to the Pareto set. This eliminates the necessity of performing a cumbersome 
stage of constructing the Pareto set and opens up the real possibility of using the multicriteria approach in prob-
lems of the short-term planning, operation, and control. 

Finally, the existence of additional conditions (indices, criteria or constraints) of qualitative character, defined 
by linguistic variables [15], reduces (38) to 

( )0

1, ,
arg max min App q sX L

X Xµ
= +∈

=


,                            (44) 

where ( )Ap
Xµ , X L∈ , 1, ,p q s= +   are membership functions of fuzzy values of linguistic variables 

which reflect these additional conditions. 
Taking the above into account, the solution of the multicriteria discrete problems is reduced to modifying the 

generalized algorithms of solving discrete optimization problems discussed above to solve the maxmin problem 
(38). 

Although the results of the present Section do not take into account the uncertainty of initial information, they 
can be used within the framework of a general scheme of multicriteria analysis under information uncertainty 
[52] [53] with evaluating particular (monocriteria) and aggregated (multicriteria) risks in multiple scenarios. 

6. Power Engineering Applications 
The described results have found wide applications in the analysis of diverse problems of power engineering, 
related to improving reliability, quality, and economical feasibility of power supply. These problems are charac-
terized by an extremely high number of variables and, often, by the impossibility of the adequate analytical de-
scription of objective functions and constraints.  

The following classes of problems of power systems and subsystems have been solved with the use of the re-
sults of the present paper: 
• choice and allocation of means for increasing reliability of power supply in distribution systems in different 

settings; 
• reinforcement (allocation of reactive power sources, allocation of voltage regulators, and reconduction) of 

distribution systems in different settings; 
• real-time active power control in power systems and subsystems; 
• real-time voltage and reactive power control in distribution systems in different settings. 

As an example, it possible to present the solution of the problem of allocating reactive power sources in dis-
tribution systems [54].  

Traditionally, problems of reactive power compensation in distribution systems are associated with the selec-
tion of locations, sizes, and types of capacitors to minimize the objective function of an economical nature, 
while the constraints on upper and lower voltage limits at different load levels are satisfied. However, our expe-
rience in solving the problems of reactive power compensation shows that the necessity to simultaneously ob-
serve constraints on upper and lower voltage limits at different buses creates essential obstacles. It is not un-
common to face situations when these constraints induce empty feasible regions. These obstacles can be avoided 
by minimizing the objective function of an economical nature as well as the objective function which reflects a 
volume of poor quality energy consumption. Besides, if the problem is associated with the determination of ca-
pacitor types (fixed or switched), the quantity of objectives should be increased. 

Taking this into account, the developed computing platform EPODIAN [54] includes tools to solve reactive 
power compensation problems in monocriteria as well as in multicriteria settings for large-scale distribution 
networks. 

Table 1 demonstrates the results of the application of EPODIAN for the allocation of reactive power sources 
in a distribution network 13.8/0.22 kV of one of substations of the Energy Company of Minas Gerais (CEMIG).  
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Table 1. Solution results. 

Solution Economic objective 
function (BR$∙103) 

Poor quality energy 
consumption (MWh/year) 

Total installed reactive 
power (kVAr) 

I 708 826 600 

A 543 472 630 

B 661 384 1215 

C 568 396 900 

 
This network includes 2 feeders with more than 5000 consumers connected to them. The total length of feeders 
is 729 km. They are modeled by 9660 electrical nodes. In Table 1, I is an initial state, A is a monocriteria solu-
tion minimizing the objective function of the economical nature, B is a monocriteria solution minimizing the 
objective function which reflects a volume of poor quality energy consumption, and C is a multicriteria solution 
providing a compromise between the solutions A and B. All solutions were obtained less than 30 s on a conven-
tional dual-core desktop PC. 

7. Conclusions 
In this paper, the generalized algorithms for solving problems of discrete, integer, and Boolean programming are 
discussed. These algorithms are based on a combination of formal procedures (associated with the method of 
normalized functions) and informal procedures (related to elements of greedy heuristics). The application of the 
algorithms allows one to obtain quasi-optimal solutions after a small number of steps, thus overcoming the NP- 
completeness of discrete optimization problems. Questions of constructing so-called “duplicate” algorithms are 
considered. Their use as well as the formulation and solution of one and the same discrete optimization problem 
within the framework of mutually related models serve as means for possible improving the quality of discrete 
problem solutions. 

The approach to solving optimization problems, formalized within the framework of “soft” models containing 
fuzzy coefficients in objective functions and constraints, has been discussed. This approach is associated with 
modifying traditional mathematical programming methods and, in particular, the generalized algorithms pre-
sented in the paper. It is based on solving one and the same problem within the framework of mutually related 
models to maximally cut off dominated alternatives from above as well as from below. The subsequent contrac-
tion of the decision uncertainty regions is associated with reducing the problem to multiattribute choosing alter-
natives in a fuzzy environment. 

It has shown the possibility of rational solving multiobjective discrete problems on the basis of applying the 
Bellman-Zadeh approach to decision making in a fuzzy environment and modifying the generalized algorithms 
presented in the paper.  

The results of the paper have found wide applications in the analysis of power engineering problems, related 
to improving the reliability, quality, and economic efficiency of power supply. 
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