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Abstract 
A formula has been deduced, and named as 2ESKV, relating the concentration of two consecutive 
substrates of a metabolic cycle with the kinetic constants of the two enzymes involved in their 
synthesis and degradation. After application of formula 2ESKV to consecutive pairs of substrates 
and enzymes, a system of interrelated equations was obtained allowing a great variety of theoret-
ical postulates to calculate, back and forth: bunches of unknown enzyme kinetic constants and 
substrate concentrations, from complementary sets of known data. This vision of a metabolic cycle 
is of partial application to irreversible pathways and can be useful for modeling and understand-
ing of metabolomics data. To our knowledge, the formula 2ESKV is here described for the first 
time. 
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1. Introduction 
The study of enzyme kinetics and modeling is experimenting a revival with both the access to web databases 
and the increasing computer power [1]-[4]. Complex biological problems can now be investigated with experi-
mental and theoretical approaches, both presenting their own limitations: experimental data are sometimes dif-
ficult, costly and lengthy to be implemented; theoretical alternatives offer many survey possibilities but must be 
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in harmony with the experimental findings. The joining of both complementary alternatives is part of the mod-
ern System Biology [5]-[7].  

In this sense, part of the previous experimental work on ubiquitin activating enzyme [8] was modeled and 
amplified with a theoretical approach [9]. The advantages resulted from this double approach directed our ef-
forts to focus previous results from our laboratory with this double vision [10]. 

The work presented here amplified previous studies from this laboratory [10] [11] and started from the simu-
lation of an irreversible pathway (composed of 6 substrates and 5 enzymes), using a system of differential equa-
tions (see below). When the pathway is initiated with the first substrate, it is successively transformed into the 
consecutive substrates, ending with its total transformation onto the final substrate. The time course of the con-
centration of the different substrates in a linear irreversible pathway is here named as their “profiles” (Figure 
1(A) and Figure 1(B)); the theoretical transformation of a linear into a cyclic pathway is performed by adding a 
new enzyme (E6) which catalyzes the inter-conversion between the first (a) and the last (f) substrate of the pri-
mitive linear pathway. This transformation is visualized in Figure 1, where panels (A) and (D) represent 
schemes of linear and cyclic pathways, respectively. The novelty of this work starts with an apparently minor 
observation: during a transitory time, the rate of synthesis and degradation of two consecutive substrates of an 
irreversible pathway is equal, i.e., they are in a transitory steady state; from the mathematical expression of that 
instant, a formula is obtained (named as 2ESKV), applicable to all the consecutive pairs of substrates and en-
zymes of any cycle. In our view, this is a new finding correlating all the substrates and enzyme kinetic of any 
metabolic cycle.  

2. Nomenclature 
The linear pathway considered here as a model contains 5 enzymes (E1 to E5) and 6 substrates named from (a) 
to (f); the cyclic pathway contains 6 enzymes (E1 to E6) and 6 substrates (Figure 1, panels (A), (D)). 

The Mathematica Program 9.0 [12] was used throughout this work to solve the differential equations describ-
ing those pathways (see Table 1), with the following main commands: derivatives, D[f(x), x]; plot representa-
tions, Plot [f(x), x, xmin, xmax]; solution of a system of differential equations, NDSolve [eqns, vars] and Solve 
[eqns, vars]; a', b', etc., correspond to da/dt, db/dt, etc.; on occasions the term “box”, in the context of a cycle, 
refers to the (potential) location of a substrate; a box can be empty or ready to accommodate its substrate. The 
commands used for the solution of differential equations (see Table 1) are assembled in five parts: 1) Equations 
of the actual velocities of the enzymes (named from v1 to v6); for an appropriate recognition by Mathematica, 
Vmax and Km have been named as V and K, followed by a subscript with the letter of the corresponding sub-
strate. For example Va and Ka refer, unequivocally, to the Vmax and Km values of enzyme E1 towards its sub-
strate (a), etc.; the sequence of the reactions is indicated in Figure 1, panels (A), (D); 2) The actual values of the 
kinetic constants for each enzyme and the values assigned to all the constants in the control pathway are equal to 
unity; these values can be changed by the operator at will (Table 1); 3) Differential equations used to calculate 
the substrate concentrations along the reaction time; these equations are followed by the initial conditions, un-
knowns be solved and reaction time; 4) The statements required for the Mathematica Program to solve the dif-
ferential equations shown in 3), and to represent the profiles of the substrates (Figure 1, panels (B) and (E)); 5) 
The statements required for the Mathematica Program to solve the differential equations shown in 3), and to 
present the graphs with the derivatives of the profiles (Table 1); (Figure 1, panels (C) and (F)).The Mathemati-
ca Program in Table 1 has been arranged in such a way that may serve to represent: the substrate profiles of the 
cycle, (parts 1 + 2 + 3 + 4) (panel (E), Figure 1); the derivative of those profiles, (parts 1 + 2 + 3 + 5) (panel (F), 
Figure 1); the panels (B) and (C) corresponding to a linear pathway were obtained following the same instruc-
tions as above with the unique, but important modification, of making Vf = 0 in part 2 of Table 1. 

3. Results and Discussion 
3.1. Linear Pathway 
From the profiles of a metabolic irreversible pathway it can be inferred that at their apexes the concentration 
value of each metabolite (Sn) is constant (Figure 1(B)), because the rate of its synthesis equals that of its degra-
dation; in mathematical terms the value of the derivative of its profile (dSn/d t) is zero at this time point, as in-
dicated by the vertical line for substrate (c) (Figure 1(B) and Figure 1(C)). Substrate (c) is synthesized from 
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substrate (b) (dotted line) by enzyme E2 (Equation (1)), and transformed to the following substrate (d) by E3 
(Equation (2)).Although other consecutive substrates of the pathway could be considered, the following calcula-
tions refer exclusively to substrates (b)-(d). 

E2 E3
b c d→ →  

Accordingly, the rate of synthesis and degradation of substrate (c) by enzymes with Michaelis-Menten kinet-
ics is shown in Equation (1) and Equation (2), respectively  

 
 (A) 

(B) 

(C) 

(D) 

(E) 

(F) 

 
Figure 1. Representation of an irreversible linear metabolic pathway (panels (A)-(C) and of a cyclic pathway (panels (D)- 
(F)). Panels (A) and (D) are schematic drawings of both types of pathways, composed by the same number of substrates (6), 
but different number of enzymes five or six, respectively. In panels (B) and (E), are the substrate profiles of the linear and 
cyclic pathways, respectively, obtained as described in the Table 1 (parts 1 + 2 + 3 + 4). In panels (C) and (F) are the deriva-
tives of both profiles obtained as described in Table 1 (parts 1 + 2 + 3 + 5). In one case, as indicated in panel (D), the reac-
tion between (c) and (d) was also considered catalyzed by a reversible enzyme (E3N). This particular case will be considered 
in Figure 2 (see also Table 4 and Table 7. The vertical line in panel (B) indicates exclusively its intersection with the pro-
files of substrates (c) and (b) (coincident full circle) and (d) (empty circle); the intersections in panel (C) are marked with full, 
empty circles, and an x sign for substrates (c), (d) and (b), respectively. 
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Table 1. Mathematica protocol for drawing of Figure 1. 

"1)"; 
v1 = Va a[t]/(a[t] + Ka); v2 = Vb b[t]/(b[t] + Kb); v3 = Vc c[t]/(c[t] + Kc); v4 = Vd d[t]/(d[t] + Kd); v5 = Ve e[t]/(e[t] + Ke); 
v6 = Vf f[t]/(f[t] + Kf); 
 
    "2)"; 
Va = 1; Ka = 1; Vb = 1; Kb = 1; Vc = 1; Kc = 1; Vd = 1; Kd = 1; Ve = 1; Ke = 1; Vf = 1; Kf = 1; 
 
    "3)"; 
NDSolve[{a'[t] == v6 - v1, b'[t] == v1 - v2, c'[t] == v2 - v3,  d'[t] == v3 - v4, e'[t]==v4- v5, f'[t] == v5 - v6, a[0] == 1, b[0] == 0,  
c[0] == 0, d[0] == 0, e[0] == 0, f[0] == 0}, {a, b, c, d, e, f}, {t, 0, 15}]; 
 
    "4)";  
 Plot[{Evaluate[a[t] /. %], Evaluate[b[t] /. %],  
  Evaluate[c[t] /. %], Evaluate[d[t] /. %], Evaluate[e[t] /. %],  
  Evaluate[f[t] /. %]}, {t, 0, 15}, PlotRange -> {0, 0.1},  
 PlotStyle -> {Gray, Thickness[0.01], Dashed, Thickness[0.01], Dashed,  
   Thickness[0.01]}] 
 
    "5)"; 
Plot[{Evaluate[a'[t] /. %], Evaluate[b'[t] /. %], Evaluate[c'[t] /. %],  
  Evaluate[d'[t] /. %], Evaluate[e'[t] /. %], Evaluate[f'[t] /. %]}, {t, 0,  
  15}, PlotRange -> {0, 0.1}, PlotStyle -> {Gray, Thickness[0.01], Dashed, Thickness[0.01], Dashed, Thickness[0.01]}}] 

 

( ) ( )( )v2 b* b b bV K= +                                  (1) 

( ) ( )( )v3 c* c c cV K= +                                  (2) 

as v3 v2 0− =  at the indicated time point (Figure 1(B)) 

( ) ( )( ) ( ) ( )( )c* c c c b* b b b 0V K V K+ − + =                         (3) 

From Equation (3), the value for (c) as a function of (b) (Equation (4a)) or the value of (b) as function of (c) 
(Equation (4b)) can be easily deduced, 

( ) ( ) ( )( )( )c c* b* b c* b c b bK V V K V V= + −                        (4a) 

( ) ( ) ( )( )( )b b* c* c b* c b c cK V V K V V= + −                        (4b) 

In general, the relationship between the concentrations of any substrate intermediate (named as Sn) and the 
preceding one (Sn − 1), at the apex of substrate Sn, is according to Equation (5),  

( )( )Sn Kn *Vn 1*Sn 1 Vn *Kn 1 Vn Vn 1 *Sn 1= − − − + − − −                 (5) 

Formula (5) (named also as 2ESKV, due to the participation of 2 substrates and 2 enzymes, with their kinetics 
constants), of an apparently limited interest, simply reflects the relative value of two consecutive substrates at 
steady state and at a specific time in a linear metabolic irreversible pathway. 

3.2. Comparative Aspects of Linear and Cyclic Pathways 
Unless some regulatory mechanisms operate [11], the initial substrate of a linear (irreversible) pathway is totally 
converted into a final product through the sequential appearance and disappearance of the intermediate metabo-
lites of the pathway. The steady state condition is reached only with both the total synthesis of the final product 
and the consumption of the intermediates metabolites. At this end stage, the derivatives of all the profiles of a 
linear pathway are zero (Figure 1(C)).  

By contrast, in a cyclic pathway, continuous transformation among the substrates/metabolites takes place 
during a certain time (Figure 1(E), 0 to 4 min) and, thereafter, a dynamic steady state is reached as a conse-
quence of a mutual and unique relationship (Formula (5) or 2ESKV) among a pair of substrate concentration and 
their corresponding enzyme kinetic constants (see below), as an orchestra performing a symphony in the ab-
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sence of a director. The initial substrate (in this example (a), 1 mM) is transformed/distributed in the boxes of 
the cycle Figure 1, panels (D)-(F)). At the early initial steps of the reaction, the time course for substrate con-
centrations of linear or cyclic pathways (their profiles) are very similar (compare panels (B) and (E) in Figure 1, 
from 0 to 4 min). Afterwards, the intermediate metabolites of the linear irreversible pathway tend to zero, whe-
reas those of the cyclic pathway tend to reach a fixed concentration. As a consequence, for an obvious different 
reason, the derivatives of the cyclic and irreversible profiles tend to zero (Figure 1, panels (C) and (F)). As 
shown below, the interdependence among all substrates, each one with the preceding or with the next one (two 
by two) of a metabolic cycle, converts Formula (5) (or 2ESKV) in a very useful tool to quantify metabolite con-
centrations and enzyme kinetic constants of metabolic cycles, as shown below.  

3.3. A General Procedure to Calculate the Concentration of the Substrates and Enzyme  
Kinetic Constants of a Metabolic Cycle, with Significant Examples 

Formula (5) (or 2ESKV) was deduced initially through application of a system of differential equations to elu-
cidate the time course of substrate levels in an irreversible metabolic pathway (see 3.1); it could be considered as 
a kind of photography of an instant metabolic situation where the concentration of two consecutive substrates 
are in steady state.  

By its own nature, a metabolic cycle can be viewed as a system tending to reach a steady state situation be-
tween two consecutive substrates and, therefore, among all the substrates of the cycle; against expectation, ap-
plication of Formula (5) generates a new relationship among substrates and enzyme kinetic constants of any 
cycle; this relationship can be translated into a series of equations, allowing deduction of unknown fragments 
from other known components of the cycle. In our view, and based on the plethora of data accumulated in mul-
tiple data banks, this methodology could be of general and multiple applications to cycles operating under phy-
siological conditions, and to analyze the consequences that changes in both, the concentration of some substrates 
or in the values of some enzyme kinetic constants, may produce on the functional status of the cycle. The above 
general considerations on the usefulness of formula 2ESKV will be implemented with the selected 4 examples 
of model cycles composed of 6 substrates and 6 enzymes (Figure 1(D); Table 2), representatives of a variety of 
metabolic situations. 

 
Table 2. Evaluation of Substrate concentrations from enzyme kinetic constants and vice versa, using formula 2ESKV and 
the general protocol described in Table 1. The specific applications for each of the 4 Examples are in Table 4. 

Parameters 
Example 1 Example 2 Example 3 Example 4 

Fixed  
values 

Calculated 
values 

Fixed 
values 

Calculated 
values 

Fixed 
values 

Calculated 
values 

Fixed 
values 

Calculated 
values 

Ka 5   4.99999 4.99999  5  
Va 2  2   2. 2  
a  90.6943 90.6943  90.6943   90.695 

Kb 3  3  3  3  
Vb 7   6.9999 6.99999  7  
b  1.11402 1.11402   1.11402  1.11402 

Kc 10   10.  10. 10  
Vc 5  5  5  5  
c  6.10566 6.10566  6.10566  6.10566  

Kc 0.3  0.3   0.3 0.3  
Vc 3   3. 3.  3  
d  0.514849 0.514849  0.514849   0.514849 

Ke 2   2. 2.  2  
Ve 3  3   3. 3  
e  3.43233 3.43233  3.43233   3.43233 

Kf 1  1  1  1  
Vf 2  2  2  2  
f  18.1389 18.1389   18.1388  18.139 
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3.3.1. Example 1 
From the known values of 12 kinetic constants and the total sum of substrate concentration, the concentration of 
each substrate can be calculated. 

This first example will be also taken as a general procedure for these calculations as detailed in Table 3. This 
Table contains the Mathematica protocol to analyze a model cycle composed of 6 enzymes (E1 to E6), their 12 
kinetic constants, and assuming as known a value of 120 mM for the total concentration of the 6 substrates (a to 
f); however, the particular concentration of each one is unknown, and it is to be calculated. The column on the 
left (Table 3) shows the two consecutive pair of substrates to be considered (from a <--->f). Any substrate can 
be taken as the first or as the last one of the cycle, although substrates (a) and (f) were selected as such. The 
column at the right displays the formula 2ESKV applied to the indicated consecutive pair of substrates. At the 
bottom of Table 3 are the instructions given to Mathematica to solve the equations using the command NSolve. 
These instructions may differ depending on the cycle to be approached. Nevertheless, some general rules apply: 
1) the number of equations must be equal to the number of unknowns; 2) the program automatically offers a set 
of solutions/possibilities (4)-(6) for the unknowns, some of them with unrealistic negative values. To avoid this 
possibility, the program is instructed to return only values >0. Finally the unknowns to be solved are stated. 
Note as in Example 1, the formula corresponding to the step f- > a was not used (for unnecessary or redundant) 
in the command NSolve. Another different step (but only one) can be eliminated with the same result. As ex-
pected, the sum of the calculated values for each substrate was (indeed) 120 mM (exactly, 120,000,059) (see 
Table 2 and Table 4). 

The standard procedure outlined in Table 3, could be taken as a model example. Many other possibilities can 
be contemplated; in each case the operator should modify the NSolve instructions according to the objectives. To 
simplify the procedure, significant application possibilities were collected in these four examples, with the initial 
conditions and solutions shown in Table 2, and with the specific mathematical instructions in Table 4. The first 
column of Table 2 contains the parameters to be considered: substrates ((a) to (f)) and kinetic constants of en-
zymes E1 to E6, named as Ka, Va, to Kf, Vf). There are two columns for each one of the four examples, one for 
the fixed values (or known values) and another one for the unknown values (Table 2). Table 4 contains the ne-
cessary instructions for the Mathematica solutions of examples 1 to 4 (Table 2). Note as in Table 4, the calcu-
lated results are in bold characters in the four examples. 

3.3.2. Example 2 
From the prefixed concentration values for each one of the substrates (as calculated in Example 1) and from 7 
known kinetic constants (Kb, Kd, Kf, Va, Vc, Ve, Vf), the 5 unknown kinetic constants (Ka, Kc, Ke, Vb, Vc) were 
calculated (Table 2 and Table 4). The line (a + b + c + d + e + f = 120) of the command Solve (Table 3) was elim-  

 
Table 3. A general procedure to calculate the concentration of the substrates of a metabolic cycle. The method was applied 
to a cycle composed by 6 substrates and 6 enzymes (Figure 1(D). From the known kinetic constants values and the total sum 
of the substrates concentration, the concentration of each particular substrate was calculated. See also Table 4, Example 1 
and Table 2, Example 1. 

Substrates Formulas 

f- > a ( )( )a Ka *Vf *f Va *Kf Va Vf *f= + −  

a- > b ( )( )b Kb*Va *a Vb*Ka Vb Va *a= + −  

b- > c ( )( )c Kc*Vb*b Vc*Kb Vc Vb * b= + −  

c- > d ( )( )d Kd *Vc*c Vd *Kc Vd Vc *c= + −  

d- > e ( )( )e Ke*Vd *d Ve*Kd Ve Vd *d= + −  

e- > f ( )( )f Kf *Ve*e Vf *Ke Vf Ve *e= + −  

NSolve [ ( )( )b Kb*Va *a Vb*Ka Vb Va *a== + −  && ( )( )c Kc* Vb * b Vc* Kb Vc Vb * b== + −  && 

( )( )d Kd *Vc*c Vd *Kc Vd Vc *c== + −  && ( )( )e Ke* Vd *d Ve* Kd Ve Vd *d== + −  && 

( )( )f Kf * Ve*e Vf * Ke Vf Ve *e= + −  && a b c d e f 120+ + + + + ==  && 

a > 0 && b > 0 && c > 0 && d > 0 && e > 0 && f > 0 &&, 
{a, b, c, d, e, f}] 
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Table 4. Protocol followed to apply Equation (5) for the solution of the problems specified in Table 2. 

"EXAMPLE 1"; 
Clear["Global`*"] 
"Fixed values"; Va=2;Ka=5;Vb=7;Kb=3;Vc=5;Kc=10; Vd=3; Kd=0.3;Ve=3;Ke=2;Vf=2;Kf=1; 
"Unknowns values"; 
" a;b;c;d;e;f "; 
NSolve[b==Kb*Va*a/(Vb*Ka+(Vb-Va)*a) &&c==Kc*Vb*b/(Vc*Kb+(Vc-Vb)*b)&& d==Kd*Vc*c/(Vd*Kc+(Vd-Vc)*c)&& 
e==Ke*Vd*d/(Ve*Kd+(Ve-Vd)*d)&& f==Kf*Ve*e/(Vf*Ke+(Vf-Ve)*e)&& 
a+b+c+d+e+f==120 && a>0 && b>0 && c>0 && d>0 && e>0 && f>0 ,{a,b,c,d,e,f}] 
{{a->90.6943,b->1.11402,c->6.10566,d->0.514849,e->3.43233,f->18.1389}} 
____________________________________________________ 
 
"EXAMPLE 2"; 
Clear["Global`*"] 
"Fixed values"; 
Va=2;a=90.6943;b=1.11402;Kb=3;Vc=5;c=6.10566;d=0.514849;Kd=0.3;Ve=3;4323; Vf =2; Kf =1;f=18.1389; 
"Unknowns values"; 
" Ka; Vb; Kc; Vd; Ke "; 
NSolve[b==Kb* Va *a/(Vb*Ka+(Vb-Va)*a)&& c==Kc*Vb*b/(Vc*Kb+(Vc-Vb)*b)&& 
d==Kd*Vc*c/(Vd*Kc+(Vd-Vc)*c)&& e==Ke*Vd*d/(Ve*Kd+(Ve-Vd)*d)&& f==Kf*Ve*e/(Vf*Ke+(Vf-Ve)*e)&& 
Ka >0 && Vb >0 && Kc >0 && Vd >0 && Ke >0,{ Ka, Vb, Kc, Vd, Ke }] 
{{Ka ->4.99999,Vb ->6.99999,Kc ->10.,Vd ->3.,Ke ->2.}} 
____________________________________________________ 
 
"EXAMPLE 3"; 
Clear["Global`*"] 
"Fixed values"; 
Ka=4.99999;a=90.6943;Kb=3;Vb=6.99999;Vc=5;c=6.10566;Vd=3;d=0.514849;e=3.43233; Ke =2; Vf =2; Kf =1; 
"Unknowns values"; 
" Va;b; Kc; Kd; Ve;f "; 
NSolve[b==Kb* Va *a/(Vb*Ka+(Vb-Va)*a)&& c==Kc*Vb*b/(Vc*Kb+(Vc-Vb)*b)&& 
d==Kd*Vc*c/(Vd*Kc+(Vd-Vc)*c)&& e==Ke*Vd*d/(Ve*Kd+(Ve-Vd)*d)&& 
f==Kf*Ve*e/(Vf*Ke+(Vf-Ve)*e)&& 
a+b+c+d+e+f==120 && 
Va>0 &&b>0 && Kc >0 && Kd >0 && Ve >0 && f>0,{Va,b, Kc, Kd, Ve,f}] 
{{Va->2.,b->1.11402,Kc ->10.,Kd ->0.3,Ve ->3.,f->18.1388}} 
____________________________________________________ 
 
"EXAMPLE 4"; 
Clear["Global`*"] 
"Fixed values"; 
Va =2; Ka=5; Vb=7;Kb=3; Vc=5;Kc=10; Vd=3; Kd=0.3;Ve=3; Ke=2;Vf=2;Kf=1;a=90.695; 
"Unknowns values"; 
" b;c;d;e;f "; 
NSolve[b==Kb* Va *a/(Vb*Ka+(Vb-Va)*a)&& 
c==Kc*Vb*b/(Vc*Kb+(Vc-Vb)*b)&& d==Kd*Vc*c/(Vd*Kc+(Vd-Vc)*c)&& 
e==Ke*Vd*d/(Ve*Kd+(Ve-Vd)*d)&& f==Kf*Ve*e/(Vf*Ke+(Vf-Ve)*e)&& 
b>0 && c>0 && d>0 && e>0 && f>0,{b,c,d,e,f}] 
{{b->1.11402,c->6.10566,d->0.514849,e->3.43233,f->18.139}} 

 
inated in this example (for unnecessary). Note as in this, and in other examples, substrate concentrations and the 
Kn and/or Vn constant values used were those obtained in previous Examples, what could be taken as an inner 
control of the mathematical procedure. 

3.3.3. Example 3 
From the prefixed concentration values for each one of the substrates ((a) to (f)) and from a particular set of 
known kinetic constants, the rest of the kinetic constants were calculated (Table 2 and Table 4); a treatment 
similar to the above Example 2 was applied. 

3.3.4. Example 4 
From the prefixed values for the 12 kinetic constants and the concentration value of only one substrate (c), the 
concentrations of the other 5 substrates were calculated (Table 2 and Table 4). This example can be taken as a 
kind of instructive and very useful approach: the concentration of all the substrates of a cycle can be predicted 
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from the kinetic constants and from the concentration of only one substrate. This example (Table 2) was also 
useful to test whether the differential equations system used in Table 1 to plot Figure 1 render identical results 
as those obtained by application of formula 2ESKV; the substrate concentration reached at steady state was the 
same in both cases (results not shown, see also Figure 2, displaying a similar approach). 

3.4. Application of Formula 2ESKV to a Cycle Including One Reversible Step 
A reversible step of the cycle, involving three substrates (b), (c) and (d) and 3 enzymes (E2, E3N and E4) (see 
Figure 1, panel (D)), was simulated considering reversible, the reaction between (c) and (d), catalyzed by en-
zyme E3N,  

E2 E3N E4
b c d→ ⇔ →  

Two different, but complementary approaches were followed to analyze the concentration of the substrates of 
the cycle, at steady state: 1) the use of differential equations; 2) application of variants of formula 2ESKV. In 
both cases, the initial conditions of the cycle are specified in Table 1 and in Table 5.  

A) For the first purpose, and to facilitate the handling of Mathematica, Table 5 was created containing 6 en-
zymes with the shown kinetic constants, and only one initial fixed substrate (a) (1 mM) to be distributed among 

 

 
Figure 2. Substrate profiles representation of a cyclic pathway with one reversible step between c<===>d catalyzed by E3N. 
A scheme of this pathway is shown in Figure 1.The protocol given to Mathematica to plot this figure is as outlined in the 
text, Table 4 and in Table 5. The concentrations reached at equilibrium (between brackets) for each substrate, and calculated 
with the 2ESKV formula, described also in Table 5, agree quite well with those visualized in this representation obtained 
with the differential equations and when the reaction time was expanded until the substrates reached equilibrium. 

 
Table 5. Mathematical protocol used to obtain the substrate profile of a cycle with a reversible step (E3N) with all the kinetic 
constants fixed (known) and with only one fixed (known) substrate concentration (a. 1 mM). The resulting plot is represented 
in Figure 2. 

 
v1=Va a[t]/(a[t]+Ka); v2=Vb b[t]/(b[t]+Kb); 
 
v3N=(Vcfw*c[t]/(Kcfw)-Vcr*d[t]/(Kcr))/(1+c[t]/(Kcfw)+d[t]/(Kcr)); 
 
v4=Vd d[t]/(d[t]+Kd); v5=Ve e[t]/(e[t]+Ke); v6=Vf f[t]/(f[t]+Kf); 
 
Va=2; Ka=3; Vb=7; Kb=10; Vcfw=6; Kcfw=0.5; Vcr=4; Kcr=3; Vd=2; Kd=5; Ve=1; Ke=4; Vf=3; Kf=3; 
 
NDSolve[{a'[t]==v6-v1,b'[t]==v1-v2,c'[t]==v2-v3,d'[t]==v3-v4,e'[t]==v4-v5,f'[t]==v5-v6,a[0]==1,b[0]==0,c[0]==0,d[0]==0,e[0]==0,f[0]
==0},{a,b,c,d,e,f},{t,0,30}]; 
 
Plot[{Evaluate[a[t]/.%],Evaluate[b[t]/.%],Evaluate[c[t]/.%],Evaluate[d[t]/.%],Evaluate[e[t]/.%],Evaluate[f[t]/.%]},{t,0,30},PlotRange->{
0,0.5},PlotStyle->{Gray,Thickness[0.01],Dashed,Thickness[0.01],Dashed,Thickness[0.01]}] 
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the boxes of the cycle. One of the enzymes (E3N) catalyzed the unique reversible reaction with the indicated in-
itial equation velocity usually considered in this type of reactions (v3N) and with indicated Km and Vmax values 
in the forward (Kcfw, Vcfw) and in the reverse directions (Kcr, Vcr). The profile courses of the 6 substrates were 
followed until the steady states were reached (Figure 2).  

B) Following similar reasoning as in 3.1, variants of formula 2ESKV were elaborated considering that all 
substrates (particularly (b), (c) and (d)) reached the steady state concentration (Figure 1, panel (D); Table 6, 
Figure 2). Table 6 is apparently more complicated than Table 3, although in both cases Formula 2ESKV was 
applied. Table 6 contains 3 panels (A)-(C). The left upper part of panel (A) indicates the transformation between 
consecutive substrates a<---->f, including the reverse reaction between substrates (c) and (d); in the upper right 
side of panel (A) are the formulas for substrates (a) to (f); at the bottom of panel (A) are the instructions given to 
the command NSolve for the solutions of the indicated equations.  

The equation for substrate (d) was obtained as indicated in panel (B) of Table 6;  
The equation for substrate (c) was obtained as indicated in panel (C) of Table 6. 
The calculated concentration values (mM) obtained for the 6 substrates were a- > 0.137249, b- > 0.126577, c- > 

0.0337561,d- > 0.228748, e- > 0.383544, f- > 0.090125 (Table 7).  
These exact values, obtained by application of formula 2ESKV as indicated in Table 6, agree quite well with 

those visualized with the differential equations approach (Table 1; Figure 2, between brackets: a (0.13), b 
(0.12), c (0.03), d (0.22), e (0.38), f (0.09)). 

 
Table 6. The case of a metabolic cycle with one reversible step (Figure 1(A)). 

E2 E3N E4
b c d e→ ⇔ →  

A 

Substrates Formula 

f->a ( )( )a Ka *Vf *f Va *Kf Va Vf *f= + −  

a->b ( )( )b Kb*Va *a Vb*Ka Vb Va *a= + −  

b->c<=>d ( )
* *Kr*Vb *Kfw*Kr*Vb * *Kr*Vfw *Kb*Kr*Vfw

Kfw* *Vb *Vr Kb*Vr
d b c b b c c

b b
=
− − + +

+ +
 

c<=>d 
( )
( )

*Kfw* * Vd Kr*Vd *Vr Kd*Vr
Kr* *Vd *Vfw Kd*Vfw

c
d d d

d d
+ +
− −

=
+

−  

d->e ( )( )e Ke*Vd *d Ve*Kd Ve Vd *d= + −  

e->f ( )( )f Kf *Ve*e Vf *Ke Vf Ve *e= + −  

 

NSolve[ ( )( )b Kb*Va *a Vb*Ka Vb Va *a== + −  && 
( )

* *Kr*Vb *Kfw*Kr*Vb * *Kr*Vfw *Kb*Kr*Vfw
Kfw* *Vb *Vr Kb*Vr

d b c b b c c
b b

=
−

+ +
=

− + +  

&& 
( )
( )

*Kfw* * Vd Kr*Vd *Vr Kd*Vr
Kr* *Vd *Vfw Kd* fw

c
V

d d d
d d

+ + +
−

− −
==  && ( )( )e Ke* Vd *d Ve* Kd Ve Vd *d== + −  && 

( )( )f Kf *Ve*e Vf *Ke Vf Ve *e== + −  && a b c d e f 120+ + + + + ==  && 

a>0 && b>0 && c>0 && d>0 && e>0 && f>0 &&, 
{a,b,c,d,e,f}] 
 

B 

The rate of synthesis of (c) from (b) by E2 ($1) equals that of its transformation between (c) and (d) (synthesis and/or degradation 
by E3N) ($2)); from the equality $1=$2, the equation for (d) is deduced, as shown in panel (A). 

( )K1 Vb b ;$ b b∗ +=  

( ) ( )( ) ( ) ( )( )Vfw Kfw Vr Kr 1 Kfw Kr$2 c d c d∗ − ∗ + +=  

C 

The rate of transformation between (c) and (d) (synthesis and/or degradation by E3N) ($2) equals that ofits degradation of (d), by E4 
($3); from the equality $2=$3, the equation for (c) is deduced, as shown in panel (A). 

( ) ( )( ) ( ) ( )( )Vfw Kfw Vr Kr 1 Kfw Kr$2 c d c d∗ − ∗ + += ; 

( )$3 *Vd kbd d= +  
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Table 7. Use of the formula 2ESKV to calculate the substrate concentration of a cycle with a reversible step, knowing the 
value of the kinetic constant and the concentration of only one substrate (a, 1 mM). The values of the parameters are in Ta-
ble 5. 

Clear["Global`*"] 
"Fixed values"; 
Va=2; Ka=3; Vb=7; Kb=10; Vcfw=6; Kcfw=0.5; Vcr=4; Kcr=3; Vd=2; Kd=5; Ve=1; Ke=4; Vf=3; Kf=3; 
 
"Unknowns values"; 
" a;b;c;d;e;f "; 
 
NSolve[f== Kf*Ve*e/(Vf*Ke+(Vf-Ve)*e)&& 
b==Kb*Va*a/(Vb*Ka+(Vb-Va)*a)&& 
c==-d*Kfw*(d*Vd+Kr*Vd+d*Vr+Kd*Vr)/(Kr*(d*Vd-d*Vfw-Kd*Vfw))&& 
d== (-b*c*Kr*Vb-b*Kfw*Kr*Vb+b*c*Kr*Vfw+c*Kb*Kr*Vfw)/(Kfw*(b*Vb+b*Vr+Kb*Vr))&& 
e==Ke*Vd*d/(Ve*Kd+(Ve-Vd)*d)&& 
a+b+c+d+e+f==1 && 
a>0 && b>0 && c>0 && d>0 && e>0 && f>0 
,{a,b,c,d,e,f}] 
 
{{a->0.137249,b->0.126577,c->0.0337561,d->0.228748,e->0.383544,f->0.090125}} 
 

4. Discussion 
Mathematical simulations of linear pathways have been preferentially approached in most of the reactions in-
volved in metabolic and regulatory networks of the cell. In this work, the formula 2ESKV was deduced starting 
from the unique time point where the concentration of a substrate reached a steady-state situation in an irrevers-
ible linear pathway. This formula is readily applicable to a metabolic cycle where, by its own nature, tends to 
reach a situation of quasi equilibrium among all the substrates. The metabolic pathways of a cell are composed 
of interconnected cycles and linear pathways, with multiple regulatory points, with activators, inhibitors, re-
versible and irreversible steps, and with a continuous entry and exit of metabolites at many levels, etc. Probably 
because linear pathways are present in most of those reactions, mathematical simulations of these pathways have 
been preferentially approached [1] [2] [5] [6] [13]-[15]. Cyclic pathways, of similar pivotal importance, have at-
tracted a minor number of these studies with the exception of the classical Krebs/glyoxylate [16]-[21] and urea 
cycles [22]-[24]. Superimposed to this complex machinery is the fact that most of the metabolite pairs must be 
in a quasi equilibrium status. As a consequence, formula 2ESKV can be of potential application, if the kinetics 
constants of the enzyme(s) acting on two consecutive substrates are known. 

Finally, it can be speculated whether formula 2ESKV can be applied, with the proper conceptual modifica-
tions to other cyclic systems, such as ecological or economical cycles, tending also to reach equilibrium among 
their constituents. In these cases, the concept of Vmax and Km can be viewed as the maximal capacity to execute 
an action and under which circumstances half of this action is performed, respectively. 
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