
Open Journal of Statistics, 2015, 5, 403-411 
Published Online August 2015 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2015.55042  

How to cite this paper: Arumairajan, S. and Wijekoon, P. (2015) Optimal Generalized Biased Estimator in Linear Regression 
Model. Open Journal of Statistics, 5, 403-411. http://dx.doi.org/10.4236/ojs.2015.55042   

 
 

Optimal Generalized Biased Estimator in 
Linear Regression Model 
Sivarajah Arumairajan1,2, Pushpakanthie Wijekoon3 
1Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka 
2Department of Mathematics and Statistics, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka 
3Department of Statistics & Computer Science, Faculty of Science, University of Peradeniya, Peradeniya, Sri 
Lanka 
Email: arumais@gmail.com, pushpaw@pdn.ac.lk  
 
Received 3 June 2015; accepted 2 August 2015; published 5 August 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution-NonCommercial International License (CC- 
BY-NC). 
http://creativecommons.org/licenses/by-nc/4.0/ 

   
 

 
 

Abstract 
The paper introduces a new biased estimator namely Generalized Optimal Estimator (GOE) in a 
multiple linear regression when there exists multicollinearity among predictor variables. Sto-
chastic properties of proposed estimator were derived, and the proposed estimator was compared 
with other existing biased estimators based on sample information in the the Scalar Mean Square 
Error (SMSE) criterion by using a Monte Carlo simulation study and two numerical illustrations. 
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1. Introduction 
To overcome the multicollinearity problem in the linear regression model, several biased estimators were defined 
in the place of Ordinary Least Squares Estimator (OLSE) to estimate the regression coefficients, and the properties 
of these were discussed in the literature. Some of these estimators are based on only sample information such as 
Ridge Estimator (RE) [1], Almost Unbiased Ridge Estimator (AURE) [2], Liu Estimator (LE) [3] and Almost 
Unbiased Liu Estimator (AULE) [4]. However for each case, the researcher has to obtain their properties and to 
compare the superiority of one estimator over another estimator when selecting a suitable estimator for a practical 
situation. Therefore [5] proposed a Generalized Unrestricted Estimator (GURE) ˆ ˆ

GURE Aβ β=  to represent the RE, 
AURE, LE and AULE, where β̂  is the OLSE, and A is a positive definite matrix which depends on the cor-
responding estimators of RE, AURE, LE and AULE. 
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However, the researchers are still trying to find the best estimator by changing the matrix A compared to the 
already proposed estimators based on sample information. Instead of changing A, in this research we introduce a 
more efficient new biased estimator based on optimal choice of A. 

The rest of the paper is organized as follows. The model specification and estimation is given in Section 2. In 
Section 3, we propose a biased estimator namely Generalized Optimal Estimator (GOE), and we obtain its sto-
chastic properties. In Section 4 we compare the proposed estimator with some biased estimators in the Scalar 
Mean Square Error criterion by using a real data set and a Monte Carlo simulation. Finally some conclusion re-
marks are given in Section 5. 

2. Model Specification and Estimation 
First we consider the multiple linear regression model 

( )2,  ~ 0,N σ= +y X Iβ ε ε                                      (1) 

where y is an 1n×  observable random vector, X is an n p×  known design matrix of rank p, β  is a 1p×  
vector of unknown parameters and ε is an 1n×  vector of disturbances. 

The Ordinary Least Square Estimator of β  and 2σ  are given by  
1ˆ − ′= S X yβ                                               (2) 

and 

( ) ( )
2

ˆ ˆ
ˆ

n p
σ

′
− −

=
−

y X y Xβ β
                                       (3) 

respectively, where ′=S X X . 
The Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE) and Almost Un-

biased Liu Estimator (AULE) are some of the biased estimators proposed to solve the multicollinearity problem 
which are based only on sample information. The estimators are given below: 

RE: ( )ˆ ˆ
RE k =Wβ β  where ( ) 11k

−−= +W I S  for 0k ≥  

LE: ( )ˆ ˆ
LE dd = Fβ β  where ( ) ( )1

d d−
= + +F S I S I  for 0 1d≤ ≤  

AURE: ( )ˆ ˆ
AURE kk = Aβ β  where ( ) 22

k k k − = − + A I S I  for 0k ≥  

AULE: ( )ˆ ˆ
AULE dd = Tβ β where ( ) ( )2 21d d − = − − + T I S I  for 0 1d≤ ≤  

Since RE, LE, AURE and AULE are based on OLSE, [5] proposed a generalized form to represent these four 
estimators, the Generalized Unrestricted Estimator (GURE) which is given as 

( )
ˆ ˆ

GURE i= Aβ β                                              (4) 

where ( )iA  is a positive definite matrix and ( )iA  stands for W, dF , kA  and dT  . 
The bias vector, dispersion matrix and MSE matrix of ˆ

GUREβ  are given as 

( ) ( )( )ˆ
GURE i= −B A Iβ β                                        (5) 

( ) ( ) ( )
2 1ˆ

GURE i iσ − ′=D A S Aβ                                        (6) 

and 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )
2 1 1 1ˆ

GURE i i i i i iMSE σ − − − ′′ ′ ′= + − −A S A A I A I A Aβ ββ                        (7) 

respectively. 
Instead of changing the matrix ( )iA  to introduce a new biased estimator, in this research we obtain the optimal 

choice of ( )iA  by minimizing the Mean Square Error Matrix (MSEM) of GURE with respect to ( )iA . 
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3. The Proposed Estimator 
From (7) the following equation can be obtained by taking trace operator as 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )2 1 1 1ˆ
GURE i i i i i itr MSE trσ − − −′  ′ ′ ′= + − −  

A S A I A A A I Aβ β β                    (8) 

By minimizing (8) with respect to ( )iA , the optimum ( )iA  can be obtained. 

( ){ }
( )

( ) ( )( )
( ) ( )

1

2

ˆ
GURE i i

i i i

tr MSE tr
σ

−   ∂ ′∂  ′∂   = +
∂ ∂ ∂

A S A B
A A A

β β β
                          (9) 

where ( )( ) ( ) ( ) ( )( )1 1
i i i i
− −′ ′= − −B I A A A I A  

Now we can simplify the matrix B as 

( )( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1 1

  
i i i i

i i i i

− −′ ′= − −

′ ′= − − +

B I A A A I A

A A A A I
 

Therefore 

( ) ( ) ( ) ( )

( ) ( ) ( )         2
i i i i

i i i

′ ′ ′ ′ ′ ′ ′= − − +

′ ′ ′ ′= − +

B A A A A

A A A

β β β β β β β β β β

β β β β β β
                      (10) 

Now we will use the following three results (see [6], p. 521, 522) to obtain the 
( ) ( )( )

( )

1
i i

i

tr − ′∂  
∂

A S A

A
 and 

( )i

′∂
∂

B
A

β β . 

(a) Let M and X be any two matrixes with proper order. Then  

( ) ( )
tr ′∂

′= +
∂

XMX
X M M

X
 

(b) If x is an n-vector, y is an m-vector, and C an n m×  matrix, then 

∂ ′ ′=
∂

x Cy xy
C

 

(c) Let x be a K vector, M a symmetric T T×  matrix, and C a T K×  matrix. Then 

2
′ ′∂ ′=
∂

x C MCx MCxx
C

 

By applying (a) we can obtain 

( ) ( )( )
( )

( ) ( ) ( )

1

1 1 12
i i

i i
i

tr −

− − −

 ′∂
  = + =

∂

A S A
A S S A S

A
                          (11) 

Now we consider  

( )

( ) ( )

( )

( )

( )

2i i i

i i i

 ′ ′ ′∂ ∂′∂  = −
 ∂ ∂ ∂ 

A A AB
A A A

β β β ββ β
                             (12) 
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By using (b) and (c) we can obtain 

( )

( )

i

i

′∂
′=

∂

A

A

β β
ββ                                       (13) 

and 

( ) ( )

( )
( )2i i

i
i

′ ′∂
′=

∂

A A
A

A

β β
ββ                                  (14) 

respectively. 
Hence 

( )
( )2 2i

i

′∂ ′ ′= −
∂

B A
A

β β ββ ββ                                 (15) 

Substituting (11) and (15) to (9), we can derive that 

 
( ){ }
( )

( ) ( )
2 1

ˆ
2 2 2

GURE

i i
i

tr MSE
σ −

 ∂    ′ ′= + −
∂

A S A
A

β
ββ ββ                        (16) 

Equating (16) to a null matrix, we can obtain the optimal matrix ( )iA  as 

( ) ( ) 12 1
i σ

−−′ ′= +A Sββ ββ                                (17) 

Note that ( ) 12 1σ
−− ′+S ββ

 
exists since 21 0σ − ′+ ≠Sβ β  (see [6], p. 494). 

Now we are ready to propose a biased estimator namely Generalized Optimal Estimator (GOE) as 

( )
ˆ

GOE i= Aβ β                                           (18) 

The bias vector, dispersion matrix, mean square error matrix and scalar mean square error of GOE
β  can be 

obtained as 

( ) ( )( )GOE i= − B A I ββ                                    (19) 

( ) ( ) ( )
2 1

GOE i iσ − ′=  D A S Aβ                                  (20) 

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )
2 1 1 1

GOE i i i i i iMSE σ − − − ′′ ′ ′= + − −      A S A A I A I A Aβ ββ                       (21) 

and 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )2 1 1 1
GOE ii i i i iSMSE trσ − − −′′ ′= + − −      A S A I A A A I Aβ β β                 (22) 

respectively. 

Note that since ′=P ββ  is symmetric and 
22 c′ ′ ′= = =P Pββ ββ β ββ  where 2 2

1

p

i
i

c
=

= =∑β β  it can 

be defined 1c c
c

 ′ ′= = = 
 

P Rββ ββ . Then ′ =R R  and 2 =R R . Therefore R is symmetric and idempotent  

matrix. Now we write the optimal matrix ( )iA  as ( ) ( ) 12 1
i c cσ

−−= +A R S R . 
Now the bias vector, dispersion matrix, mean square error matrix and scalar mean square error of GOE

β  can be 
rewritten as 

( ) ( ) 12 2
GOE cσ σ

−
= − + I RSΒ β β ,                                 (23) 
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( ) ( ) ( )1 12 2 2 1 1 2 1
GOE c c cσ σ σ

− −− − −= + +D R S R S S R Rβ ,                      (24) 

( ) ( ) ( ) ( ) ( )1 1 1 12 2 2 1 1 2 1 4 2 2
GOEMSE c c c c c cσ σ σ σ σ σ

− − − −− − −= + + + + + R S R S S R R I RS R I RSβ       (25) 

and 

( ) ( ) ( ) ( )1 1 22 2 2 2 1 1 2 1 4 2
GOESMSE c tr c c cσ σ σ σ σ σ

− − −− − −  ′= + + + + 
 R S R S S R R I RSβ β β            (26) 

respectively. 
For practical situations we have to replace the unknown parameters β  and 2σ . For an estimated value for 

β  the OLSE, RE, LE, AURE or AULE can be used. For the estimated value for 2σ̂  we can use either (2) or 
replace β̂  in (2) by RE, LE, AURE or AULE accordingly. In the next section we will discuss the superiority of 
estimators when replacing each of these estimated values by using a simulation study, and then we use numerical 
examples for further illustration. 

4. Numerical Illustration 
4.1. Monte Carlo Simulation 
To study the behavior of our proposed estimator, we perform the Monte Carlo Simulation study by considering 
different levels of multicollinearity. Following [7] we generate explanatory variables as follows: 

( )1 22
, 11 ,  1, 2, , ,   1, 2, , ,ij ij i px z z i n j pγ γ += − + = =   

where ijz  is an independent standard normal pseudo random number, and γ  is specified so that the theoretical 
correlation between any two explanatory variables is given by 2γ . A dependent variable is generated by using the 
equation. 

1 1 2 2 3 3 4 4 ,  1, 2, , ,i i i i i iy x x x x i nβ β β β ε= + + + + =   

where iε  is a normal pseudo random number with mean zero and variance 2
iσ . [8] have noted that if the MSE is 

a function of 2σ  and β , and if the explanatory variables are fixed, then subject to the constraint ′β β , the MSE 
is minimized when β  is the normalized eigenvector corresponding to the largest eigenvalue of the ′X X  matrix. 
In this study we choose the normalized eigenvector corresponding to the largest eigenvalue of ′X X  as the 
coefficient vector β , 50n = , 4p =  and 2 1iσ = . Four different sets of correlations are considered by se-
lecting the values as 0.8γ = , 0.9, 0.99 and 0.999. 

Table 1 can be obtained by using estimated SMSE values obtained by using equations (7) and (21) for different 
shrinkage parameter d or k values selected from the interval (0, 1). The SMSE of GOE-OLSE, GOE-RE, GOE-LE, 
GOE-AURE and GOE-AULE are obtained by substituting OLSE, RE, LE, AURE and AULE in equation (21) 
respectively instead of β  and 2σ . 

According to Table 1, we can say that the GOE-OLSE has the smallest scalar mean square error values with 
compared to RE, LE, AURE, AULE, GOE-RE, GOE-LE, GOE-AURE and GOE-AULE when γ = 0.8, 0.9, 0.99 
and 0.999. 

4.2. Numerical Example 
To further illustrate the behavior of our proposed estimator we consider two data sets. First we consider the data 
set on Portland cement originally due to [9]. This data set has since then been widely used by many researchers 
such as [10]-[13]. This data set came from an experimental investigation of the heat evolved during the setting and 
hardening of Portland cements of varied composition and the dependence of this heat on the percentages of four 
compounds in the clinkers from which the cement was produced. The four compounds considered by [9] are tri-
calium aluminate: 3CaO∙Al2O3, tricalcium silicate: 3CaO∙SiO2, tetracalcium aluminaferrite: 4CaO∙Al2O3∙Fe2O3, 
and beta-dicalcium silicate: 2CaO∙SiO2, which we will denote by 1X , 2X , 3X  and 4X , respectively. The 
dependent variable y is the heat evolved in calories per gram of cement after 180 days of curing. 
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Table 1. Estimated SMSE values of the RE, LE, AURE, AULE, GOE-OLSE, GOE-RE, GOE-LE, GOE-AURE and GOE- 
AULE when γ = 0.8, 0.9, 0.99 and 0.999.                                                                      

k/d 0.1 0.2 0.5 0.7 0.85 0.95 1 

γ = 0.8 (Condition number = 3.40) 

RE 0.2432 0.4089 0.6532 0.7297 0.7684 0.7887 0.7976 

LE 0.6482 0.5179 0.2409 0.1514 0.1342 0.1465 0.1598 

AURE 0.0166 0.0220 0.1647 0.3583 0.5557 0.7122 0.7979 

AULE 0.4257 0.2845 0.1320 0.1385 0.1532 0.1590 0.1598 

GOE-OLSE 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 

GOE-RE 0.0721 0.0912 0.1786 0.2795 0.3624 0.4163 0.4423 

GOE-LE 0.1407 0.0527 0.0125 0.0083 0.0069 0.0065 0.0065 

GOE-AURE 0.0555 0.0737 0.0981 0.1178 0.1390 0.1566 0.1663 

GOE-AULE 0.1532 0.1207 0.0328 0.0135 0.0081 0.0067 0.0065 

γ = 0.9 (Condition number = 4.95) 

RE 0.3641 0.5621 0.8688 0.9687 1.0200 1.0471 1.0590 

LE 0.8613 0.6906 0.3402 0.2415 0.2383 0.2698 0.2957 

AURE 0.0140 0.0268 0.2183 0.4753 0.7374 0.9453 1.0593 

AULE 0.5673 0.3875 0.2215 0.2527 0.2832 0.2942 0.2957 

GOE-OLSE 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 0.0062 

GOE-RE 0.1768 0.2002 0.2757 0.3693 0.4546 0.5137 0.5432 

GOE-LE 0.1844 0.0740 0.0154 0.0088 0.0068 0.0062 0.0062 

GOE-AURE 0.1521 0.1801 0.2080 0.2246 0.2418 0.2563 0.2644 

GOE-AULE 0.2464 0.2004 0.0578 0.0196 0.0090 0.0065 0.0062 

γ = 0.99 (Condition number = 15.99) 

RE 2.4054 2.5669 2.8182 2.9021 2.9456 2.9686 2.9788 

LE 2.4411 2.0183 1.4392 1.6275 2.0703 2.5091 2.7716 

AURE 0.0285 0.1052 0.7054 1.4226 2.1285 2.6795 2.9791 

AULE 1.9373 1.5078 1.7362 2.3188 2.6500 2.7578 2.7716 

GOE-OLSE 0.0167 0.0167 0.0167 0.0167 0.0167 0.0167 0.0167 

GOE-RE 2.2621 2.2908 2.3495 2.4159 2.4778 2.5219 2.5442 

GOE-LE 1.1276 0.5055 0.0754 0.0304 0.0195 0.0170 0.0167 

GOE-AURE 2.2257 2.2685 2.3000 2.3135 2.3260 2.3361 2.3418 

GOE-AULE 2.2043 1.8384 0.5393 0.1438 0.0406 0.0190 0.0167 

γ = 0.999 (Condition number = 50.55) 

RE 23.6901 23.8842 24.1905 24.2933 24.3466 24.3749 24.3874 

LE 20.0298 16.7109 12.9858 15.6956 20.4542 24.9250 27.5498 

AURE 0.2405 0.9577 6.0485 11.9042 17.5907 21.9986 24.3876 

AULE 16.8509 13.4711 17.0094 23.0107 26.3365 27.4124 27.5498 

GOE-OLSE 0.1041 0.1041 0.1041 0.1041 0.1041 0.1041 0.1041 

GOE-RE 23.5189 23.5494 23.6133 23.6889 23.7612 23.8133 23.8399 

GOE-LE 10.7719 4.8376 0.6625 0.2305 0.1290 0.1065 0.1041 

GOE-AURE 23.4801 23.5255 23.5590 23.5735 23.5871 23.5982 23.6045 

GOE-AULE 22.2149 18.5172 5.3798 1.3793 0.3411 0.1261 0.1041 
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We assemble our data set in the matrix form as follows: 
7 26 6 60 78.5

1 29 15 52 74.3

11 56 8 20 104.3

11 31 8 47 87.6

7 52 6 33 95.9

11 55 9 22 109.2

and3 71 17 6 102.7

1 31 22 44 72.5

2 54 18 22 93.1

21 47 4 26 115.9

1 40 23 34 83.8

11 66 9 12 113.3

10 68 8 12 109.4

  
 
 
 
 
 
 
 
 
 
 

= = 
 
 
 
 
 
 
 
 
 
 
 

X y


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

 For this particular data set, we obtain the following results: 
a) The eigen values of ′X X : 105, 810, 5965, 44663 
b) The condition number = 20.58464 

c) The OLSE of β  is β̂ : ( )ˆ 2.1930,1.1533,0.7585,0.4863′ =β  
d) The OLSE of 2σ : 2ˆ 5.8455σ = . 
Table 2 can be obtained by using estimated SMSE values obtained by using Equations (7) and (21) for different 

shrinkage parameter d or k values selected from the interval (0, 1). The SMSE of GOE-OLSE, GOE-RE, GOE-LE, 
GOE-AURE and GOE-AULE are obtained by substituting OLSE, RE, LE, AURE and AULE in Equation (21) 
respectively instead of β  and 2σ . 

From Table 2 we can notice that the GOE-OLSE, GOE-RE, GOE-LE, GOE-AURE and GOE-AULE have the 
smallest scalar mean square error value with compared to RE, LE, AURE, AULE. Therefore we can suggest the 
GOE to estimate the regression coefficients. When k is large, GOE-OLSE has smallest SMSE than GOE-RE. 
When d is small, GOE-OLSE has smallest SMSE than GOE-LE. 

Now we consider the second data set on Total National Research and Development Expenditures as a Percent of 
Gross National product originally due to [14], and later considered by [15]-[17].  
 
Table 2. Estimated SMSE values of RE, LE, AURE, AULE, GOE-OLSE, GOE-RE, GOE-LE, GOE-AURE and GOE- 
AULE the data set on Portland Cement.                                                                         

k/d 0.1 0.2 0.5 0.7 0.85 0.95 1 

RE 0.0637 0.0636 0.0633 0.0632 0.0631 0.0631 0.0630 

LE 0.0631 0.0631 0.0633 0.0635 0.0636 0.0637 0.0638 

AURE 0.0638 0.0638 0.0638 0.0639 0.0639 0.0640 0.0641 

AULE 0.0638 0.6368 0.0638 0.0638 0.0638 0.0638 0.0638 

GOE-OLSE 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

GOE-RE 0.0003 0.0003 0.0004 0.0005 0.0006 0.0006 0.0006 

GOE-LE 0.0006 0.0005 0.0004 0.0004 0.0003 0.0003 0.0003 

GOE-AURE 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 

GOE-AULE 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 
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The data set is given below: 
1.9 2.2 1.9 3.7 2.3
1.8 2.2 2.0 3.8 2.2
1.8 2.4 2.1 3.6 2.2
1.8 2.4 2.2 3.8 2.3
2.0 2.5 2.3 3.8 2.4

,
2.1 2.6 2.4 3.7 2.5
2.1 2.6 2.6 3.8 2.6
2.2 2.6 2.6 4.0 2.6
2.3 2.8 2.8 3.7 2.7
2.3 2.7 2.8 3.8 2.7

  
  
  
  
  
  
  
  = =
  
  
  
  
 
 
 
  

X y .














 
 
 



 

The four column of the 10 × 4 matrix X  comprise the data on 1x , 2x , 3x  and 4x  respectively, and y is the 
predictor variable. 

For this particular data set, we obtain the following results: 
a) The eigen values of ′X X : 302.9626, 0.7283, 0.7283 and 0.00345 
b) The condition number = 93.68 
c) The OLSE of β  is ( )ˆ ˆ: 0.6455, 00896, 0.1436, 0.1526′ =β β  
d) The OLSE of 2σ : 2ˆ 0.0015σ = . 
Table 3 can also be obtained by using estimated SMSE values obtained by using Equations (7) and (21) for 

different shrinkage parameter d or k values selected from the interval (0, 1). The SMSE of GOE-OLSE, GOE-RE, 
GOE-LE, GOE-AURE and GOE-AULE are obtained by substituting OLSE, RE, LE, AURE and AULE in Equ-
ation (21) respectively instead of β  and 2σ . 

From Table 3, we can say that our proposed estimator is superior to RE, LE, AURE and AULE, GOE-RE, 
GOE-LE, GOE-AURE and GOE-AULE. 

5. Conclusions 
In this paper we proposed a new biased estimator namely Generalized Optimal Estimator (GOE) in a multiple 
linear regression when there exists multicollinearity problem in the independent variables. The proposed estimator 
is superior to biased estimators which are based on sample information and takes the form ( )

ˆ ˆ
GURE i= Aβ β . Based 

on Tables 1-3, it can be concluded that the proposed estimator has smallest scalar mean square error values com- 
pared with RE, LE, AURE and AULE. We can also suggest that GOE-OLSE is the best estimator with compared 
to GOE-RE, GOE-LE, GOE-AURE and GOE-AULE. 
 
Table 3. Estimated SMSE values of RE, LE, AURE, AULE, GOE-OLSE, GOE-RE, GOE-LE, GOE-AURE and GOE-AULE 
the data set on total national research and development expenditures.                                                

k/d 0.1 0.2 0.5 0.7 0.85 0.95 1 

RE 0.1247 0.1664 0.2088 0.2202 0.226 0.2291 0.2304 

LE 0.1881 0.1519 0.0797 0.0619 0.0645 0.0739 0.0808 

AURE 0.0214 0.0155 0.0549 0.1096 0.1645 0.2077 0.2313 

AULE 0.1362 0.086 0.0213 0.025 0.0453 0.0671 0.0808 

GOE-OLSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

GOE-RE 0.1169 0.163 0.2076 0.2194 0.2253 0.2284 0.2298 

GOE-LE 0.186 0.1469 0.0573 0.0206 0.0052 0.0006 0.0000 

GOE-AURE 0.0568 0.1093 0.1724 0.1899 0.1987 0.2033 0.2053 

GOE-AULE 0.2012 0.1892 0.1155 0.0534 0.0158 0.002 0.0000 
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