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Abstract 
In this paper, we propose an improved preconditioned algorithm for the conjugate gradient 
squared method (improved PCGS) for the solution of linear equations. Further, the logical struc-
tures underlying the formation of this preconditioned algorithm are demonstrated via a number 
of theorems. This improved PCGS algorithm retains some mathematical properties that are asso-
ciated with the CGS derivation from the bi-conjugate gradient method under a non-preconditioned 
system. A series of numerical comparisons with the conventional PCGS illustrate the enhanced ef-
fectiveness of our improved scheme with a variety of preconditioners. This logical structure un-
derlying the formation of the improved PCGS brings a spillover effect from various bi-Lanczos-type 
algorithms with minimal residual operations, because these algorithms were constructed by adopt-
ing the idea behind the derivation of CGS. These bi-Lanczos-type algorithms are very important 
because they are often adopted to solve the systems of linear equations that arise from large-scale 
numerical simulations. 

 
Keywords 
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1. Introduction 
In scientific and technical computation, natural phenomena or engineering problems are described through nu-
merical models. These models are often reduced to a system of linear equations: 
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A =x b                                     (1) 

where A is a large, sparse coefficient matrix of size n n× , x  is the solution vector, and b  is the right-hand 
side (RHS) vector. 

The conjugate gradient squared (CGS) method is a way to solve (1) [1]. The CGS method is a type of bi- 
Lanczos algorithm that belongs to the class of Krylov subspace methods. 

Bi-Lanczos-type algorithms are derived from the bi-conjugate gradient (BiCG) method [2] [3], which as-
sumes the existence of a dual system 

T # #.A =x b                                   (2) 

Characteristically, the coefficient matrix of (2) is the transpose of A. In this paper, we term (2) a “shadow 
system”. 

Bi-Lanczos-type algorithms have the advantage of requiring less memory than Arnoldi-type algorithms, 
another class of Krylov subspace methods. 

The CGS method is derived from BiCG. Furthermore, various bi-Lanczos-type algorithms, such as BiCGStab 
[4], GPBiCG [5] and so on, have been constructed by adopting the idea behind the derivation of CGS. These 
bi-Lanczos-type algorithms are very important because they are often adopted to solve systems in the form of (1) 
that arise from large-scale numerical simulations. 

Many iterative methods, including bi-Lanczos algorithms, are often applied together with some precondition-
ing operation. Such algorithms are called preconditioned algorithms; for example, preconditioned CGS (PCGS). 
The application of preconditioning operations to iterative methods effectively enhances their performance. In-
deed, the effects attributable to different preconditioning operations are greater than those produced by different 
iterative methods [6]. However, if a preconditioned algorithm is poorly designed, there may be no beneficial ef-
fect from the preconditioning operation. 

Consequently, PCGS holds an important position within the Krylov subspace methods. In this paper, we iden-
tify a mathematical issue with the conventional PCGS algorithm, and propose an improved PCGS1. This im-
proved PCGS algorithm is derived rationally in accordance with its logical structure. 

In this paper, preconditioned algorithm and preconditioned system refer to solving algorithms described with 
some preconditioning operator M (or preconditioner, preconditioning matrix) and the system converted by the 
operator based on M, respectively. These terms never indicate the algorithm for the preconditioning operation 
itself, such as “incomplete LU decomposition”, “approximate inverse”, and so on. For example, for a precondi-
tioned system, the original linear system (1) becomes 

,=Ax b                                       (3) 

1 1 1, , ,L R R LA M M M M− − −= = =A x x b b 

                           (4) 

under the preconditioner L RM M M=  ( )M A≈ . Here, the matrix and the vector in the preconditioned system 
are denoted by the tilde ( ) . However, the conversions in (3) and (4) are not implemented; rather, we construct 
the preconditioned algorithm that is equivalent to solving (3). 

This paper is organized as follows. Section 2 provides an overview of the derivation of the CGS method and 
the properties of two scalar coefficients ( kα  and kβ ). This forms an important part of our argument for the 
preconditioned BiCG and PCGS algorithms in the next section. Section 3 introduces the PCGS algorithm. An 
issue with the conventional PCGS algorithm is identified, and an improved algorithm is proposed. In Section 4, 
we present some numerical results to demonstrate the effect of the improved PCGS algorithm with a variety of 
preconditioners. As a consequence, the effectiveness of the improved algorithm is clearly established. Finally, 
our conclusions are presented in Section 5. 

2. Derivation of the CGS Method and Preconditioned Algorithm of the BiCG Method 
In this section, we derive the CGS method from the BiCG method, and introduce the preconditioned BiCG algo-

 

 

1This improved PCGS was proposed in Ref. [7] from a viewpoint of deriving process’s logic, but this manuscript demonstrates some ma-
thematical theorems underlying the deriving process’s logic. Further, numerical results using ILU(0) preconditioner only are shown in Ref. 
[7], but the results using a variety of typical preconditioners are shown in this manuscript. 
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rithm. 

2.1. Structure of the BiCG Method 
BiCG [2] [3] is an iterative method for linear systems in which the coefficient matrix A is nonsymmetric. The 
algorithm proceeds as follows: 
 

Algorithm 1. BiCG method: 
0x  is an initial guess, 0 0A= −r b x , set 1 0β− = , 

( )#
0 0, 0≠r r , e.g., #

0 0 ,=r r  

For 0,1, 2, ,k =   until convergence, Do: 
# # #

1 1 1 1, ,k k k k k k k kβ β− − − −= + = +p r p p r p  

( )
( )

#

#

,
,

,
k k

k
k kA

α =
r r

p p
                                                  (5) 

1 ,k k k kα+ = +x x p  
# # T #

1 1, ,k k k k k k k kA Aα α+ += − = −r r p r r p  

( )
( )

#
1 1

#

,
,

,
k k

k
k k

β + +
=

r r

r r
                                                 (6) 

End Do 
 

BiCG implements the following Theorems. 
Theorem 1 (Hestenes et al. [8], Sonneveld [1], and others.)2 For a non-preconditioned system, there are re-

currence relations that define the degree k of the residual polynomial ( )k λR  and probing direction polynomi-
al ( )k λP . These are 

( ) ( )0 01, 1,λ λ= =R P                                    (7) 

( ) ( ) ( )1 1 1 ,k k k kλ λ α λ λ− − −= −R R P                           (8) 

( ) ( ) ( )1 1 ,k k k kλ λ β λ− −= +P R P                              (9) 

where kα  and kβ  are based on (5) and (6). 
Using the polynomials of Theorem 1, the residual vector for the linear system (1) and the shadow residual 

vector for the shadow system (2) can be written as 

( ) 0 ,k k A=r rR                                  (10) 

( )# T #
0 .k k A=r rR                                 (11) 

These probing direction vectors are represented by 

( ) 0 ,k k A=p rP                                  (12) 

( )# T #
0 ,k k A=p rP                                 (13) 

where 0 0A= −r b x  is the initial residual vector and # # T #
0 0A= −r b x  is the initial shadow residual vector. 

However, in practice, #
0r  is set in such a way as to satisfy the conditions ( )#

0 0, 0≠r r . ( ) T, =u v u v  denotes 
the inner product between vectors u and v . In this paper, we set #

0 0=r r  to satisfy the conditions ( )#
0 0, 0≠r r  

 

 

2Of course, [8] discuss the conjugate gradient method for a symmetric system. 
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exactly. This is a typical way of ensuring #
0r ; other settings are beyond the scope of this paper. 

Theorem 2 (Fletcher [2]) The BiCG method satisfies the following conditions: 

( ) ( ) ( )# , 0 bi-orthogonality conditions ,i j i j= ≠r r                    (14) 

( ) ( ) ( )# , 0 bi-conjugacy conditions .i jA i j= ≠p p                   (15) 

2.2. Derivation of the CGS Method 
The CGS method is derived by transforming the scalar coefficients in the BiCG method to avoid the TA  
matrix [1]. The polynomial defined by (10)-(13) is substituted into (14) and (15), which construct the numerator 
and denominator of kα  and kβ  in BiCG3. Then, 

( ) ( ) ( )( ) ( )( )# T # # 2
0 0 0 0, , , ,k k k k kA A A= =r r r r r rR R R                        (16) 

( ) ( ) ( )( ) ( )( )# T # # 2
0 0 0 0, , , ,k k k k kA A A A A A= =p p r r r rP P P                     (17) 

and the following theorem can be applied. 
Theorem 3 (Sonneveld [1]) The CGS coefficients kα  and kβ  are equivalent to these coefficients in BiCG 

under certain transformation and substitution operations based on the bi-orthogonality and bi-conjugacy condi-
tions. 

Proof. We apply 

( ) ( )CGS 2 CGS 2
0 0,k k k kA A≡ ≡r r p rR P                          (18) 

to (16) and (17). Then, 

( )
( )

( )( )
( )( )

( )
( )

# # 2 # CGS
0 0 0BiCG CGS

# # 2 # CGS
0 0 0

, , ,
,

, , ,
k k k k

k k
k k k k

A

A A A A
α α= = = ≡

r r r r r r

p p p r r p

R
P

                (19) 

( )
( )

( )( )
( )( )

( )
( )

# # 2 # CGS
1 1 0 1 0 0 1BiCG CGS
# # 2 # CGS

0 0 0

, , ,
.

, , ,
k k k k

k k
k k k k

A

A
β β+ + + +

= = = ≡
r r r r r r

r r r r r r

R
R

                  (20) 

□ 
The CGS method is derived from BiCG by Theorem 4. 
Theorem 4 (Sonneveld [1]) The CGS method is derived from the linear system’s recurrence relations in the 

BiCG method under the property of equivalence between the coefficients kα , kβ  in CGS and BiCG. However,  
the solution vector CGS

kx  is derived from a recurrence relation based on CGS CGS
k kA= −r b x . 

Proof. The coefficients kα  and kβ  in BiCG and CGS were derived in Theorem 3. The recurrence relations 
(8) and (9) for BiCG are squared to give: 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

22
1 1 1

2 2 2 2
1 1 1 1 1 12 ,

k k k k

k k k k k k

λ λ α λ λ

λ α λ λ λ α λ λ
− − −

− − − − − −

= −

= − +

R R P
R P R P

                   (21) 

( ) ( ) ( )( )
( ) ( ) ( ) ( )

22
1 1

2 2 2
1 1 1 12 .

k k k k

k k k k k k

λ λ β λ

λ β λ λ β λ
− −

− − − −

= +

= + +

P R P
R P R P

                         (22) 

Further, we can apply ( )CGS 2
0k k A≡r rR , ( )CGS 2

0k k A≡p rP  from (18), and substitute ( ) ( ) 0k k kA A≡u rP R , 
( ) ( )1 0k k kA A+≡q rP R .                                                                      □ 

Thus, we have derived the CGS method4. 

 

 

3In this paper, if we specifically distinguish this algorithm, we write BiCG
kα  and BiCG

kβ . 
4In this paper, we use the superscript “CGS” alongside kα , kβ , and relevant vectors to describe this algorithm. 



S. Itoh, M. Sugihara 
 

 
1393 

Algorithm 2. CGS method: 
0x  is an initial guess, 0 0 ,A= −r b x  set CGS

1 0,β− =  
( )#

0 0, 0≠r r , e.g., #
0 0 ,=r r  

For 0,1, 2, ,k =   until convergence, Do: 
CGS CGS

1 1,k k k kβ − −= +u r q  

( )CGS CGS CGS CGS
1 1 1 1 ,k k k k k kβ β− − − −= + +p u q p  

( )
( )

# CGS
0CGS

# CGS
0

,
,

,
k

k
kA

α =
r r

r p
 

CGS CGS ,k k k kAα= −q u p  

( )CGS CGS CGS
1 ,k k k k kα+ = + +x x u q  

( )CGS CGS CGS
1 ,k k k k kAα+ = − +r r u q  

( )
( )

# CGS
0 1CGS
# CGS

0

,
,

,
k

k
k

β +
=

r r

r r
 

End Do 
 

The following Proposition 5 and Corollary 1 are given as a supplementary explanation for Algorithm 2. These 
are almost trivial, but are comparatively important in the next section’s discussion. 

Proposition 5 There exist the following relations: 
CGS

0 0 ,=r r                                         (23) 

CGS# #
0 0 ,=r r                                        (24) 

where CGS
0r  is the initial residual vector at 0k =  in the iterative part of CGS, CGS#

0r  is the initial shadow re-
sidual vector in CGS, 0r  is the initial residual vector, and #

0r  is the initial shadow residual vector. 
Proof. Equation (23) follows because (18) for 0k =  gives ( )CGS 2

0 0 0 0A= =r r rR . Here, ( )0 A I=R  by (7), 
and I denotes the identity matrix. 

Equation (24) is derived as follows. Applying (18) to (16), we obtain 

( ) ( ) ( )( ) ( )( ) ( )# T # # 2 CGS# CGS
0 0 0 0 0, , , , .k k k k k kA A A= = ≡r r r r r r r rR R R  

This equation shows that the inner product of the CGS on the right is obtained from the inner product of the 
BiCG on the left. Therefore, #

0r  that composes the polynomial ( )T #
0k A rR  to express the shadow residual 

vector of the BiCG is the same as CGS#
0r  in CGS. 

Hereafter, CGS#
0r  can be represented by #

0r , to the extent that neither can be distinguished.             □ 
Corollary 1. There exists the following relation: 

CGS CGS
0 0 0 ,= =p r r  

where CGS
0p  is the probing direction vector in CGS, CGS

0r  is the initial residual vector at 0k =  in the itera-
tive part of CGS, and 0r  is the initial residual vector. 

2.3. Derivation of Preconditioned BiCG Algorithm 
In this subsection, the preconditioned BiCG algorithm is derived from the non-preconditioned BiCG method 
(Algorithm 1). First, some basic aspects of the BiCG method under a preconditioned system are expressed, and a 
standard preconditioned BiCG algorithm is given. 

When the BiCG method (Algorithm 1) is applied to linear equations under a preconditioned system: 
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,A =x b 

                                         (25) 

we obtain a “BiCG method under a preconditioned system” (Algorithm 3). We denote this as “PBiCG”. 
In this paper, matrices and vectors under the preconditioned system are denoted with “  ”, such as A , kp 5. 

The coefficients kα , kβ  are specified by PBiCG
kα , PBiCG

kβ . 
 
Algorithm 3. BiCG method under the preconditioned system: 

0x  is an initial guess, 0 0A= −r b x 

  , set PBiCG
1 0β− = , 

( )#
0 0, 0≠r r  , e.g., #

0 0 ,=r r   
For 0,1, 2, ,k =   until convergence, Do: 

PBiCG # # PBiCG #
1 1 1 1, ,k k k k k k k kβ β− − − −= + = +p r p p r p       

( )
( )

#
PBiCG

#

,
,

,
k k

k
k kA

α =
r r

p p

 



 

                                                 (26) 

PBiCG
1 ,k k k kα+ = +x x p    

PBiCG # # PBiCG T #
1 1, ,k k k k k k k kA Aα α+ += − = −r r p r r p 

       

( )
( )

#
1 1PBiCG
#

,
,

,
k k

k
k k

β + +
=

r r

r r

 

 

                                                 (27) 

End Do 
 

We now state Theorem 6 and Theorem 7, which are clearly derived from Theorem 1 and Theorem 2, respec-
tively. 

Theorem 6. Under the preconditioned system, there are recurrence relations that define the degree k of the 
residual polynomial ( )kR λ  and probing direction polynomial ( )kP λ 6. These are 

( ) ( )0 01, 1,R Pλ λ= =                                        (28) 

( ) ( ) ( )PBiCG
1 1 1 ,k k k kR R Pλ λ α λ λ− − −= −                               (29) 

( ) ( ) ( )PBiCG
1 1 ,k k k kP R Pλ λ β λ− −= +                                (30) 

where λ  is the variation under the preconditioned system, and PBiCG
kα , PBiCG

kβ  in these relations are based 
on (26) and (27). 

Using the polynomials of Theorem 6, the residual vectors of the preconditioned linear system (25) and the 
shadow residual vectors of the following preconditioned shadow system: 

T # #A =x b 

                                      (31) 
can be represented as 

( ) 0 ,k kR A=r r                                     (32) 

( )# T #
0 ,k kR A=r r

                                    (33) 

respectively. The probing direction vectors are given by 

( ) 0 ,k kP A=p r                                     (34) 

 

 

5If we wish to emphasize different methods, a superscript is applied to the relevant vectors to denote the method, such as PBiCG
kp , BiCG

kp . 
6We represent the polynomials R and P in italic font to denote a preconditioned system. 
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( )# T #
0 ,k kP A=p r

                                    (35) 

respectively. Under the preconditioned system, #
0r  is set in such a way as to satisfy the conditions ( )#

0 0, 0≠r r  . 
In this paper, we set #

0r  based on the equation #
0 0=r r   to satisfy the conditions ( )#

0 0, 0≠r r   exactly. Some 
variations based on ( )#

0 0,r r  , such as Algorithm 4 below, are allowed. Other settings are beyond the scope of 
this paper. 

Remark 1. The shadow systems given by (31) do not exist, but it is very important to construct systems in 
which the transpose of the matrix A  exists. 

Theorem 7. The BiCG method under the preconditioned system satisfies the following conditions: 

( ) ( ) ( )# , 0 bi-orthogonality conditions under the preconditioned system ,i j i j= ≠r r         (36) 

( ) ( ) ( )# , 0 bi-conjugacy conditions under the preconditioned system .i jA i j= ≠p p         (37) 

Next, we derive the standard PBiCG algorithm. Here, the preconditioned linear system (25) and its shadow 
system (31) are formed as follows: 

( )( )1 1 1 ,L R R LM AM M M− − −=x b                             (38) 

( )( )T T T T # T #.R L L RM A M M M− − −=x b                          (39) 

Definition 1. On the subject of the PBiCG algorithm, the solution vector is denoted as PBiCG
kx . Furthermore, 

the residual vectors of the linear system and shadow system of the PBiCG algorithm are written as PBiCG
kr  and 

PBiCG #
kr , respectively, and their probing direction vectors are PBiCG

kp  and PBiCG #
kp , respectively. 

Using this notation, each vector of the BiCG under the preconditioned system given by Algorithm 3 is con-
verted as below: 

1 PBiCG # T PBiCG # PBiCG # T PBiCG #, , , .k L k k R k k R k k L kM M M M− −= = = =r r r r p p p p                 (40) 

Substituting the elements of (40) into (36) and (37), we have 

( ) ( ) ( )# T PBiCG # 1 PBiCG PBiCG # 1 PBiCG, , , ,i j R i L j i jM M M− − −= =r r r r r r                           (41) 

( ) ( )( )( ) ( )# T PBiCG # 1 1 PBiCG PBiCG # PBiCG, , , .i j L i L R R j i jA M M AM M A− −= =p p p p p p

                (42) 

Consequently, (26) and (27) become 

( )
( )

( )
( )

# PBiCG # 1 PBiCG
PBiCG

PBiCG # PBiCG#

, ,
,

,,
k k k k

k
k kk k

M

AA
α

−

= =
r r r r

p pp p

 



 

                       (43) 

( )
( )

( )
( )

# PBiCG # 1 PBiCG
1 1 1 1PBiCG
# PBiCG # 1 PBiCG

, ,
.

, ,
k k k k

k
k k k k

M

M
β

−
+ + + +

−
= =

r r r r

r r r r

 

 

                       (44) 

Before the iterative step, we give the following Definition 2. 
Definition 2. For some preconditioned algorithms, the initial residual vector of the linear system is written as 

P
0r  and the initial shadow residual vector of the shadow system is written as P #

0r  before the iterative step. 
We adopt the following preconditioning conversion after (40). 

1 P # T P #
0 0 0 0, .L RM M− −= =r r r r                              (45) 

Consequently, we can derive the following standard PBiCG algorithm [9] [10]. 
 
Algorithm 4. Standard preconditioned BiCG algorithm: 

0x  is an initial guess, P
0 0 ,A= −r b x  set PBiCG

1 0β− = , 
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( ) ( )# P # 1 P
0 0 0 0, , 0M −= ≠r r r r  , e.g., P # 1 P

0 0 ,M −=r r  

For 0,1, 2, ,k =   until convergence, Do: 
PBiCG 1 PBiCG PBiCG PBiCG

1 1 ,k k k kM β−
− −= +p r p  

PBiCG # T PBiCG # PBiCG PBiCG #
1 1 ,k k k kM β−
− −= +p r p  

( )
( )

PBiCG # 1 PBiCG
PBiCG

PBiCG # PBiCG

,
,

,
k k

k
k k

M

A
α

−

=
r r

p p
                                 (46) 

PBiCG PBiCG PBiCG PBiCG
1 ,k k k kα+ = +x x p  

PBiCG PBiCG PBiCG PBiCG
1 ,k k k kAα+ = −r r p                                 (47) 

PBiCG # PBiCG # PBiCG T PBiCG #
1 ,k k k kAα+ = −r r p                              (48) 

( )
( )

PBiCG # 1 PBiCG
1 1PBiCG

PBiCG # 1 PBiCG

,
= ,

,
k k

k
k k

M

M
β

−
+ +

−

r r

r r
                                 (49) 

End Do 
 

Algorithm 4 satisfies PBiCG P
0 0=r r  and PBiCG # P #

0 0=r r  when 0k =  in the iterative part. 
Remark 2. Because we apply a preconditioning conversion such as PBiCG

k R kM=x x  in the iteration of the 
BiCG method under the preconditioned system (Algorithm 3), PBiCG

0 0=x x  when 0k =  in the iteration of Al-
gorithm 4. Further, the initial solution to Algorithm 3 is technically 0x , but this is actually calculated by 
multiplying RM  by the initial solution 0x . 

In this section, we have shown that kα  in BiCG is equivalent to kα  in CGS using (19), and that kβ  in 
BiCG is equivalent to kβ  in CGS using (20). In the next section, we propose an improved PCGS algorithm by 
applying this result to the preconditioned system. 

3. Improved PCGS Algorithm 
In this section, we first explain the derivation of PCGS, and present the conventional PCGS algorithm. We iden-
tify an issue with this conventional PCGS algorithm, and propose an improved PCGS that overcomes this issue. 

3.1. Derivation of PCGS Algorithm 
Figure 1 illustrates the logical structure of the solving methods and preconditioned algorithms discussed in this 
paper. 
 

 

CGS BiCG 

PBiCG 

Conventional PCGS 

Improved PCGS 

Derivation 

Preconditioning 
conversion 

Preconditioning 
conversion 

Derivation 

BiCG CGS BiCG CGS,k k k kα α β β= =  

PBiCG PCGS PBiCG PCGS,k k k kα α β β= =  Our Proposal 

PBiCG PCGS

PBiCG PCGS

,k k

k k

α α
β β

≠

≠
 

 
Figure 1. Relation between BiCG, CGS, and their preconditioned algorithms. 
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Typically, PCGS algorithms are derived via a “CGS method under a preconditioned system” (Algorithm 5). 
Algorithm 5 is derived by applying the CGS method (Algorithm 2) to the preconditioned linear system (25). 

In this section, the vectors and kα , kβ  are PCGS elements, except for those before the iteration (Definition 2). 
If we wish to emphasize different methods, we apply a superscript to the relevant vectors, such as PCGS

kα , 
PCGS
kβ , PCGS

kp , CGS
kp . 

 
Algorithm 5. CGS method under the preconditioned system: 

0x  is an initial guess, 0 0A= −r b x 

  , set PCGS
1 0β− = , 

( )#
0 0, 0≠r r  , e.g., #

0 0=r r  , 

For 0,1, 2, ,k =   until convergence, Do: 
PCGS

1 1,k k k kβ − −= +u r q    

( )PCGS PCGS
1 1 1 1 ,k k k k k kβ β− − − −= + +p u q p     

( )
( )

#
0 0PCGS

#
0

,
,

,k
kA

α =
r r

r p

 



 

 

PCGS ,k k k kAα= −q u p    

( )PCGS
1 ,k k k k kα+ = + +x x u q     

( )PCGS
1 ,k k k k kAα+ = − +r r u q

     

( )
( )

#
0 1PCGS

#
0

,
,

,
k

k
k

β +
=

r r

r r

 

 

 

End Do 
 

The conventional PCGS algorithm (Algorithm 6) is derived via the CGS method, as shown in Figure 1, but 
this algorithm does not reflect the logic of subsection 2.2 in its preconditioning conversion. In contrast, our pro-
posed improved PCGS algorithm (Algorithm 7) directly applies the derivation from BiCG to CGS to the PBiCG 
algorithm, thus maintaining the logic from subsection 2.2. 

3.2. Conventional PCGS and Its Issue 
The conventional PCGS algorithm is adopted in many documents and numerical libraries [4] [9] [11]. It is de-
rived by applying the following preconditioning conversion to Algorithm 5: 

1 1 1 1

# T # 1 1 1
0 0

, , , ,

, , , .
L R k R k L k L k

L k L k k L k k L k

A M AM M M M

M M M M

− − − −

− − −

= = = =

= = = =

x x b b r r

r r p p u u q q

 

 

   

                      (50) 

This gives the following Algorithm 6 (“Conventional PCGS” in Figure 1). 
 

Algorithm 6. Conventional PCGS algorithm: 
0x  is an initial guess, 0 0A= −r b x , 

( )#
0 0, 0≠r r  , e.g., #

0 0 ,=r r  set 1 0,β− =  

For 0,1, 2, ,k =   until convergence, Do: 

1 1,k k k kβ − −= +u r q  

( )1 1 1 1 ,k k k k k kβ β− − − −= + +p u q p  

( )
( )

#
0

# 1
0

,
,

,
k

k
kAM

α
−

=
r r

r p
                                         (51) 
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1 ,k k k kAMα −= −q u p  

( )1
1 ,k k k k kMα −
+ = + +x x u q  

( )1
1 ,k k k k kAMα −
+ = − +r r u q  

( )
( )

#
0 1

#
0

,
,

,
k

k
k

β +
=

r r

r r
                                             (52) 

End Do 
 

This PCGS algorithm was described in [4], which proposed the BiCGStab method, and has been employed as 
a standard approach as affairs stand now. 

This version of PCGS seems to be a compliant algorithm on the surface, because the operation ( )#
0 , kr r  in 

(51) and (52) does not include the preconditioning operator 1M −  under the conversions 1
k L kM −=r r  and 

# T #
0 0LM=r r  from (50). However, if we apply # T #

0 0LM=r r  from (50) to the preconditioning conversion of the 
shadow residual vector in the BiCG method, we obtain 

# T #.k L kM=r r                                       (53) 

This is different to the conversion given by (40), and we cannot obtain equivalent coefficients to PBiCG
kα , 

PBiCG
kβ  in (43) and (44) using (53). 

3.3. Derivation of the CGS Method from PBiCG 
In this subsection, we present an improved PCGS algorithm (“Improved PCGS” in Figure 1). We formulate this 
algorithm by applying the CGS derivation process to the BiCG method directly under the preconditioned system 
(PBiCG, Algorithm 3). 

The polynomials (32)-(35) of the residual vectors and the probing direction vectors in PBiCG are substituted 
for the numerators and denominators of PBiCG

kα  and PBiCG
kβ . We have 

( ) ( ) ( )( ) ( )( )BiCG # BiCG T # # 2
0 0 0 0, , , ,k k k k kR A R A R A= =r r r r r r  

                            (54) 

( ) ( ) ( )( ) ( )( )BiCG # BiCG T # # 2
0 0 0 0, , ,k k k k kA P A AP A AP A= =p p r r r r     

                         (55) 

and apply the following Theorem 8. 
Theorem 8. The PCGS coefficients kα  and kβ  are equivalent to these coefficients in PBiCG under 

certain transformation and substitution operations based on the bi-orthogonality and bi-conjugacy conditions 
under the preconditioned system. 

Proof. We apply 

( ) ( )CGS 2 CGS 2
0 0,k k k kR A P A≡ ≡r r p r 

                                (56) 

to (54) and (55). Then, 

( )
( )

( )
( )

BiCG # BiCG # CGS
0PBiCG PCGS

BiCG # BiCG # CGS
0

, ,
,

, ,
k k k

k k
k k kA A

α α= = ≡
r r r r

p p r p

   

 

   

                      (57) 

( )
( )

( )
( )

BiCG # BiCG # CGS
1 1 0 1PBiCG PCGS

BiCG # BiCG # CGS
0

, ,
.

, ,
k k k

k k
k k k

β β+ + +
= = ≡

r r r r

r r r r

   

   

                         (58) 

□ 
The PCGS method is derived from PBiCG using Theorem 9. 
Theorem 9. The PCGS method is derived from the linear system’s recurrence relations in the PBiCG method 

under the property of equivalence between the coefficients kα , kβ  in PCGS and PBiCG. However, the solu-
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tion vector CGS
kx  is derived from a recurrence relation based on CGS CGS

k kA= −r b x 

  . 
Proof. The coefficients kα  and kβ  in PBiCG and PCGS were derived in Theorem 8. The recurrence rela-

tions in (29) and (30) for PBiCG are squared to give: 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )22 2 2 2 2
1 1 1 1 1 1 1 1 12 ,k k k k k k k k k kR R P R P R Pλ λ α λ λ λ α λ λ λ α λ λ− − − − − − − − −= − = − +                  (59) 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )22 2 2 2
1 1 1 1 1 12 .k k k k k k k k k kP R P R P R Pλ λ β λ λ β λ λ β λ− − − − − −= + = + +                       (60) 

Further, we can apply ( ) ( )CGS 2 CGS 2
0 0,k k k kR A P A≡ ≡r r p r 

     from (56), and substitute ( ) ( )CGS
0k k kP A R A≡u r 

  , 
( ) ( )CGS

1 0k k kP A R A+≡q r 

  .                                                                     □ 
The following Proposition 10 and Corollary 2 are given as a supplementary explanation under the precondi-

tioned system. 
Proposition 10. There exist the following relations: 

CGS
0 0 ,=r r                                       (61) 

CGS# #
0 0 ,=r r                                      (62) 

where CGS
0r  is the initial residual vector at 0k =  in the iterative part of PCGS, CGS#

0r  is the initial shadow 
residual vector in PCGS, 0r  is the initial residual vector, and #

0r  is the initial shadow residual vector. 
Proof. Equation (61) follows because (56) for 0k =  gives ( )CGS 2

0 0 0 0R A= =r r r

   . Here, ( )0R A I=  by (28). 
Equation (62) is derived as follows. Applying (56) to (54), we obtain 

( ) ( ) ( )( ) ( )( ) ( )BiCG # BiCG T # # 2 CGS# CGS
0 0 0 0 0, , , , .k k k k k kR A R A R A= = ≡  

       r r r r r r r r  

This equation shows that the inner product of the PCGS on the right is obtained from the inner product of the 
PBiCG on the left. Therefore, #

0r  that composes the polynomial ( )T #
0kR A r

  to express the shadow residual 
vector of the PBiCG is the same as CGS#

0r  in PCGS. 
Hereafter, CGS#

0r  can be represented by #
0r , to the extent that neither can be distinguished.             □ 

Corollary 2. There exists the following relation: 
CGS CGS
0 0 0 ,= =p r r    

where CGS
0p  is the probing direction vector in PCGS, CGS

0r  is the initial residual vector at 0k =  in the itera-
tive part of PCGS, and 0r  is the initial residual vector. 

The CGS preconditioning conversion given by CGS
kr , CGS

kp , and #
0r  is subjected to the same treatment as 

the BiCG preconditioning conversion of kr , kp , in (40) and (45). Further, P #
0r  is the same as #

0r . Then, 

( )
( )

( )
( )( )( )

( )
( )

# CGS T # 1 PCGS # 1 PCGS
0 0 0PCGS

# 1 PCGS# CGS T # 1 1 PCGS
00 0

, , ,
,

,, ,
k R L k k

k
kk R L R R k

M M M

M AA M M AM M
α

− − −

−− − −
= = =

r r r r r r

r pr p r p

 



 

         (63) 

( )
( )

( )
( )

( )
( )

# C T # 1 PCGS # 1 PCGS
0 1 0 1 0 1P
# C T # 1 PCGS # 1 PCGS

0 0 0

, , ,
.

, , ,

GS
k R L k kCGS

k GS
k R L k k

M M M

M M M
β

− − −
+ + +

− − −
= = =
 

 

r r r r r r

r r r r r r
                       (64) 

As a consequence, the following improved PCGS algorithm is derived7. 
 
Algorithm 7. Improved preconditioned CGS algorithm: 

0x  is an initial guess, 0 0A= −r b x , 
( )#

0 0, 0≠r r  , e.g., # 1
0 0 ,M −=r r  set 1 0,β− =  

For 0,1, 2, ,k =   until convergence, Do: 
1

1 1,k k k kM β−
− −= +u r q  

 

 

7We apply the superscript “PCGS” to kα , kβ , and relevant vectors to denote this algorithm. 
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( )1 1 1 1 ,k k k k k kβ β− − − −= + +p u q p  

( )
( )

# 1
0

# 1
0

,
,

,
k

k
k

M

M A
α

−

−
=

r r

r p
 

1 ,k k k kM Aα −= −q u p  

( )1 ,k k k k kα+ = + +x x u q  

( )1 ,k k k k kAα+ = − +r r u q  

( )
( )

# 1
0 1

# 1
0

,
,

,
k

k
k

M

M
β

−
+

−
=

r r

r r
 

End Do 
 

Algorithm 7 can also be derived by applying the following preconditioning conversion to Algorithm 5. Here, 
we treat the preconditioning conversions of ku  and kq  the same as the conversion of kp . 

1 1 1 1

# T #
0 0

, , , ,

, , , .
L R k R k L k L k

R k R k k R k k R k

A M AM M M M

M M M M

− − − −

−

= = = =

= = = =

x x b b r r

r r p p u u q q

 

 

   

 

The number of preconditioning operations in the iterative part of Algorithm 7 is the same as that in Algorithm 6. 

4. Numerical Experiments 
In this section, we compare the conventional and improved PCGS algorithms numerically. 

The test problems were generated by building real unsymmetric matrices corresponding to linear systems 
taken from the Tim Davis collection [12] and the Matrix Market [13]. The RHS vector b  of (1) was generated 
by setting all elements of the exact solution vector exactx  to 1.0, and substituting this into (1). The solution al-
gorithm was implemented using the sequential mode of the Lis numerical computation library (version 1.1.2 
[14]) in double-precision, with the compiler options registered in the Lis “Makefile”. Furthermore, we set the in-
itial solution to 0 =x 0 , and considered the algorithm to have converged when 12

22
1.0 10k

−≤ ×r b  (where 
kr  is the residual vector in the algorithm, and k is the iteration number). The maximum number of iterations 

was set to the size of the coefficient matrix. 
The numerical experiments were executed on a DELL Precision T7400 (Intel Xeon E5420, 2.5 GHz CPU, 16 

GB RAM) running the Cent OS (kernel 2.6.18) and the Intel icc 10.1 compiler. 
The results using the non-preconditioned CGS are listed in Table 1. 
The results given by the conventional PCGS and the improved PCGS are listed in Tables 2-5. Each table 

adopts a different preconditioner in Lis [14]: “(Point-)Jacobi”, “ILU(0)”8, “SAINV”, and “Crout ILU”. In these 
tables, significant advantages of one algorithm over the other are emphasized by bold font9. Additionally, ma-
trix names given in italic font in Table 1 encounter some difficulties. The evolution of the convergence for each 
preconditioner is shown in Figures 2-5. In this paper, we do not compare the computational speed of these pre-
conditioners. 

In many cases, the results given by the improved PCGS are better than those from the conventional algorithm. 
We should pay particular attention to the results from matrices “mcca”, “mcfe” and “watt_1”. In these cases, it 
appears that the conventional PCGS converges faster with any preconditioner, but the TRE values are worse 
than those from the improved algorithm. The iteration number for the conventional PCGS is not emphasized by 
bold font in these instances. The consequences of this anomaly are worth investigating further, possibly by ana-
lyzing them under PBiCG. This will be the subject of future work. 

 

 

8Values of “zero” for ILU(0) indicates the fill-in level, that is, “no fill-in”. 
9Because the principal argument presented in this paper concerns the structure of the algorithm for PCGS based on an improved precondi-
tioning transformation procedure, the time required to obtain numerical solutions and the convergence history graphs (Figures 2-5) are pro-
vided as a reference. As mentioned before, there is almost no difference between Algorithm 6 and Algorithm 7 as regards the number of op-
erations in the iteration, which would exert a strong influence on the computation time. 
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Table 1. Numerical results for a veriety of test problems (CGS). 

Matrix N NNZ 
CGS (Algorithm 2) 

Iter. TRR TRE Time 

arc130 130 1037 11 −12.20 −7.05 1.18e−4 

bfwa782 782 7514 320 −11.29 −11.94 1.71e−2 

cryg2500 2500 12349 No convergence 

epb1 14734 95053 770 −7.45 −6.50 5.93e−1 

jpwh_991 991 6027 Breakdown 

mcca 180 2659 No convergence 

mcfe 765 24382 No convergence 

memplus 17758 99147 1334 −9.16 −6.76 1.33e+0 

olm1000 1000 3996 No convergence 

olm5000 5000 19996 No convergence 

pde900 900 4380 113 −9.87 −10.49 4.13e−3 

pde2961 2961 14585 256 −9.49 −10.19 3.06e−2 

sherman2 1080 23094 No convergence 

sherman3 5005 20033 No convergence 

sherman5 3312 20793 1927 −10.36 −9.69 3.34e−1 

viscoplastic2 32769 381326 801 −10.34 −8.18 2.20e+0 

watt_1 1856 11360 306 −12.10 −6.07 2.72e−2 

In this table, “N” is the problem size and “NNZ” is the number of nonzero elements. The items in each column are, from left to right, the number of 
iterations required to converge (denoted “Iter.”), the true relative residual log10 2-norm (denoted by “TRR”, calculated as 

2 2
ˆ

kA−b x b , where 

ˆ
kx  is the numerical solution), the true relative error log10 2-norm (denoted by “TRE”, calculated from the numerical solution and the exact solution, 

that is, 
2 2

ˆ
k exact exact−x x x ), and, as a reference, the CPU time (denoted “Time” [s]). Several matrix names are represented in italic font. These 

describe certain situations, such as “Breakdown”, “No convergence”, and insufficient accuracy on “TRR” or “TRE”. 

5. Conclusions 
In this paper, we have developed an improved PCGS algorithm by applying the procedure for deriving CGS to 
the BiCG method under a preconditioned system, and we also have presented some mathematical theorems un-
derlying the deriving process’s logic. The improved PCGS does not increase the number of preconditioning op-
erations in the iterative part of the algorithm. Our numerical results established that solutions obtained with the 
proposed algorithm are superior to those from the conventional algorithm for a variety of preconditioners. 

However, the improved algorithm may still break down during the iterative procedure. This is an artefact of 
certain characteristics of the non-preconditioned BiCG and CGS methods, mainly the operations based on the 
bi-orthogonality and bi-conjugacy conditions. Nevertheless, this improved logic can be applied to other bi- 
Lanczos-based algorithms with minimal residual operations. 

In future work, we will analyze the mechanism of the conventional and improved PCGS algorithms, and con-
sider other variations of this algorithm. Furthermore, we will consider other settings of the initial shadow resi-
dual vector #

0r , except for #
0 0=r r   to ensure that ( )#

0 0, 0≠r r   holds. 
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Table 2. Numerical results for a veriety of test problems (Jacobi-CGS). 

Matrix 
Conv PCGS (Algorithm 6) Impr PCGS (Algorithm 7) 

Iter. TRR TRE Time Iter. TRR TRE Time 

arc130 5 −15.91 −10.61 6.88e−5 5 −15.87 −10.66 7.28e−5 
bfwa782 227 −11.50 −12.30 1.25e−2 260 −11.98 −12.02 1.41e−2 

cryg2500 No convergence No convergence 

epb1 578 −7.66 −6.44 4.56e−1 591 −7.59 −6.86 4.68e−1 

jpwh_991 Breakdown Breakdown 

mcca 84 −6.53 −0.93 1.44e−3 120 −8.93 −12.61 2.06e−3 
mcfe 764 −3.56 2.97 7.95e−2 908 −6.26 −8.79 9.54e−2 

memplus 213 −12.10 −9.06 2.19e−1 230 −12.41 −9.38 2.37e−1 

olm1000 No convergence No convergence 

olm5000 No convergence No convergence 

pde900 113 −7.44 −7.63 4.30e−3 100 −11.22 −11.75 3.81e−3 

pde2961 206 −8.27 −8.68 2.55e−2 237 −6.44 −6.61 2.92e−2 

sherman2 No convergence No convergence 

sherman3 1012 −7.30 −8.40 2.15e−1 827 −6.74 −7.59 1.75e−1 

sherman5 131 −12.29 −12.63 2.35e−2 128 −12.40 −12.03 2.28e−2 

viscoplastic2 660 −9.99 −8.00 1.97e+0 645 −12.45 −10.14 1.88e+0 

watt_1 80 −12.51 −5.75 7.53e−3 79 −12.61 −5.44 7.53e−3 

 

  
 

  
Figue 2. Converging histories of relative residual 2-norm (Jacobi-CGS). Red line: Conventional PCGS, Blue line: Improved 
PCGS. 
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Table 3. Numerical results for a veriety of test problems (ILU(0)-CGS). 

Matrix 
Conv PCGS (Algorithm 6) Impr PCGS (Algorithm 7) 

Iter. TRR TRE Time Iter. TRR TRE Time 

arc130 2 −15.90 −6.35 2.94e−4 3 −16.26 −11.07 2.98e−4 

bfwa782 93 −9.36 −10.29 1.18e−2 78 −12.82 −12.48 1.01e−2 

cryg2500 No convergence 385 −8.47 −4.22 8.49e−2 

epb1 124 −11.38 −10.34 2.14e−1 129 −9.23 −8.54 2.29e−1 

jpwh_991 Breakdown 16 −12.44 −12.53 2.72e−3 

mcca 7 −10.53 −11.10 5.99e−4 7 −9.98 −11.70 6.18e−4 

mcfe 10 −12.83 −11.58 5.70e−3 9 −12.15 −10.61 5.52e−3 

memplus 303 −12.13 −10.36 7.22e−1 305 −12.12 −10.61 7.18e−1 

olm1000 No convergence 34 −12.49 −9.19 2.85e−3 

olm5000 No convergence 34 −12.20 −8.05 1.41e−2 

pde900 27 −13.61 −14.27 2.57e−3 27 −13.19 −13.92 2.59e−3 

pde2961 53 −10.57 −11.34 1.49e−2 58 −11.78 −12.65 1.62e−2 

sherman2 12 −13.60 −11.46 6.08e−3 11 −14.20 −11.55 5.91e−3 

sherman3 103 −9.82 −11.57 4.39e−2 96 −10.82 −13.34 4.10e−2 

sherman5 31 −13.68 −12.89 1.36e−2 30 −12.54 −12.42 1.31e−2 

viscoplastic2 812 −7.55 −4.68 7.01e+0 844 −11.80 −8.69 7.18e+0 

watt_1 27 −13.01 −5.96 6.17e−3 35 −12.11 −9.77 7.75e−3 

 

  
 

  
Figue 3. Converging histories of relative residual 2-norm (ILU(0)-CGS). Red line: Conventional PCGS, Blue line: Improved 
PCGS. 
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Table 4. Numerical results for a veriety of test problems (SAINV-CGS). 

Matrix 
Conv PCGS (Algorithm 6) Impr PCGS (Algorithm 7) 

Iter. TRR TRE Time Iter. TRR TRE Time 

arc130 4 −17.54 −8.75 3.22e−4 5 −19.27 −11.20 3.24e−4 

bfwa782 109 −9.49 −9.75 1.72e−2 106 −12.34 −12.07 1.73e−2 

cryg2500 No convergence No convergence 

epb1 69 −12.40 −11.91 2.90e+0 69 −12.31 −12.41 2.89e+0 

jpwh_991 Breakdown 41 −12.20 −13.06 7.37e−3 

mcca 81 −5.32 0.00 2.26e−3 111 −8.60 −14.26 3.04e−3 

mcfe 764 −3.56 2.97 1.10e−1 908 −6.26 −8.79 1.29e−1 

memplus 34 −12.30 −10.20 1.18e+0 34 −12.32 −10.24 1.20e+0 

olm1000 No convergence No convergence 

olm5000 No convergence No convergence 

pde900 53 −10.37 −11.16 7.25e−3 51 −12.43 −13.03 7.28e−3 

pde2961 110 −11.62 −12.02 6.91e−2 96 −12.08 −12.55 6.66e−2 

sherman2 No convergence No convergence 

sherman3 874 −7.49 −8.34 5.53e−1 629 −9.49 −10.75 4.24e−1 

sherman5 157 −12.02 −11.19 9.20e−2 127 −12.57 −12.30 8.09e−2 

viscoplastic2 No convergence No convergence 

watt_1 1 −12.37 −4.05 1.49e+0 2 −14.81 −11.31 1.53e+0 

 

  
 

  
Figure 4. Converging histories of relative residual 2-norm (SAINV-CGS). Red line: Conventional PCGS, Blue line: 
Improved PCGS. 



S. Itoh, M. Sugihara 
 

 
1405 

Table 5. Numerical results for a veriety of test problems (CroutILU-CGS). 

Matrix 
Conv PCGS (Algorithm 6) Impr PCGS (Algorithm 7) 

Iter. TRR TRE Time Iter. TRR TRE Time 

arc130 2 −12.42 −2.34 1.63e−4 4 −16.26 −11.12 1.82e−4 

bfwa782 122 −12.09 −12.05 2.03e−2 149 −12.56 −13.15 2.42e−2 

cryg2500 No convergence 902 −7.60 −2.67 2.09e−1 

epb1 109 −11.91 −11.69 2.12e−1 106 −12.10 −11.79 2.06e−1 

jpwh_991 Breakdown 15 −12.53 −13.29 3.46e−3 

mcca 10 −9.75 −10.42 5.90e−4 12 −9.10 −15.41 6.40e−4 

mcfe 23 −11.71 −10.36 6.24e−3 26 −11.73 −13.99 6.82e−3 

memplus 92 −12.60 −10.00 1.59e−1 88 −12.52 −10.57 1.53e−1 

olm1000 No convergence 38 −12.24 −8.04 3.37e−3 

olm5000 67 −9.70 −7.93 2.75e−2 75 −11.64 −9.12 3.06e−2 

pde900 13 −12.56 −12.66 1.96e−3 12 −12.42 −12.43 1.88e−3 

pde2961 24 −13.13 −13.16 9.18e−3 25 −12.48 −12.77 9.50e−3 

sherman2 901 −9.72 −6.24 2.19e−1 841 −10.61 −8.71 2.05e−1 

sherman3 79 −10.65 −12.01 3.94e−2 74 −11.68 −13.90 3.73e−2 

sherman5 40 −13.04 −11.95 1.53e−2 40 −13.30 −12.93 1.53e−2 

viscoplastic2 No convergence No convergence 

watt_1 19 −13.05 −5.75 6.63e−3 25 −15.25 −9.43 8.12e−3 
 

  
 

  
Figure 5. Converging histories of relative residual 2-norm (CroutILU-CGS). Red line: Conventional PCGS, Blue line: 
Improved PCGS. 
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