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Abstract 
In the general theory of relativity, the fundamental metric tensor plays a special role, which has its 
physical basis in the peculiar aspects of gravitation. The fundamental property of gravitational 
fields provides the possibility of establishing an analogy between the motion in a gravitational 
field and the motion in any external field considered as a noninertial system of reference. Thus, 
the properties of the motion in a noninertial frame are the same as those in an inertial system in 
the presence of a gravitational field. In other words, a noninertial frame of reference is equivalent 
to a certain gravitational field. This is known as the principle of equivalence. From the mathemati-
cal viewpoint, the same special role can be played by the small deformation strain tensor, which 
describes the geometrical properties of any region deformed because of the effect of some exter-
nal agent. It can be proved that, from that tensor, all the mathematical structures needed in the 
general theory of relativity can be constructed. 
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1. Introduction 
Within the theoretical frame of classical fluid dynamics, the effect of applied forces to any continuous medium 
is studied. Under the action of applied forces, the region occupied by the continuous medium exhibits deforma-
tions to some extent, that is to say, the region changes in shape and volume. Those deformations can be de-
scribed mathematically by the small deformation strain tensor. When the deformation is the result of a process 
of hydrostatic or volumetric compression or expansion, the small deformation strain tensor is reduced to the sum 
of the elements of its principal diagonal, that is, its trace. This trace is likewise in this case, the fractional change 
of the volume element of the region occupied by the continuous medium. Thus, when the deformations are small, 
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the trace of the small deformation strain tensor is nearly equal to the reciprocal of the mass density. Then, that 
characteristic property of the matter is contained in that tensor [1]. 

2. The Small Deformation Strain Tensor and the Fundamental Metric Tensor 
Consider an ordered set of N real variables 1 2, , , Nx x x . These variables are called the coordinates of a point. 
Thus, all the points corresponding to all values of the coordinates are said to form an N-dimensional space. Let 
R be any region in that space, and let us consider two points very close together. If over the boundary surface of 
R an external force is applied, the geometry of the region changes in form and size; that is to say, it is deformed. 
In order to mathematically describe the deformation, the procedure is as follows. Be dxi the i-component of the 
radius vector joining the points before the deformation, and d d di i ix x u′ = + , the radius vector joining them in the 
deformed region; where i i iu x x′= −  is the i-component of the displacement vector; which is only a function of 
the coordinates xi [1]. The distances between the points before and after deformation respectively are 

2 2 2 2d d and d di is x s x′ ′= =                                 (1) 

so that, 

( )22 2d d d d 2 d d d di i i
i i i k k m

k k m

u u u
s x u s x x x x

x x x
∂ ∂ ∂′ = + = + +
∂ ∂ ∂

;                     (2) 

where the following expansion was used 

( )d di
i k k

k

u
u x x

x
∂

=
∂

.                                    (3) 

Since the summation is taken over both suffixes i and k, the second term on the right of (2) can be written as 

d d d di k
i k i k

k i

u u
x x x x

x x
∂ ∂

=
∂ ∂

. 

In the third term on the right of (2), the surffixes i and m can be interchanged, in order to finally obtain that 
2 2d d 2 d dik i ks s U x x′ = + ;                                 (4) 

where 

1
2

i k m m
ik

k i k i

u u u u
U

x x x x
 ∂ ∂ ∂ ∂

= + + ⋅ ∂ ∂ ∂ ∂ 
,                             (5) 

are the components of the strain tensor. From its definition, it is clear that it is a symmetrical tensor, that is to 
say 

ik kiU U= .                                       (6) 

For small deformations it is possible to neglect the last term in (2) and write that 
2 2d d 2 d dik i ks s u x x′ = + ;                                  (7) 

where 

1
2

i k
ik

k i

u u
u

x x
 ∂ ∂

= + ∂ ∂ 
,                                   (8) 

are the components of the small deformation strain tensor [1]. On the other hand, after deformation the distance 
between the near by points, can be written as follows 

2d d d d d d dm m
m m i k ik i k

i k

x x
s x x x x g x x

x x
′ ′∂ ∂′ ′ ′= = =

∂ ∂
;                         (9) 



A. Fierros Palacios 
 

 
37 

where 

m m
ik

i k

x x
g

x x
′ ′∂ ∂

=
∂ ∂

,                                    (10) 

are the components of the fundamental metric tensor, and the summation convention was used. Since further, 
ik kig g=  is a simmetrical covariant tensor of the second rank [2]. 
Now, if instead considering that the points are separate we make them coincide in the undeformed initial 

situation, it is clear that 
2 2d d 0is x= = . 

In that case, in (7) it is obtained that 
2d 2 d dik i ks u x x′ = .                                   (11) 

If Equations (9) and (11) are compared we have that 

1
2ik iku g= ,                                     (12) 

that is to say, 

i k
ik

k i

u u
g

x x
 ∂ ∂

= + ∂ ∂ 
.                                  (13) 

Equation (12) must be considered as a relation of congruence between physics and geometry more than 
equality. Since further ik kiu u=  is a simmetrical covariant tensor of the second rank, also; and it can be consid-
ered that it is equivalent to the fundamental metric tensor, apart from the unessential factor 1/2. That means that 
both tensors have the same properties [3]. 

Now, if in the determinant formed by the elements uik, and taking into account the co-factor of each of the uik 
and divide by the determinant u, certain quantities ik kiu u=  are obtained, as we shall demonstrate soon, form a 
contravariant tensor. In fact, by a well known property of determinants, it can be obtained that 

kn k
in iu u δ= ;                                     (14) 

where 
1; if
0; if .

k
i

i k
i k

δ
=

=  ≠
 

On the other hand, if instead of the expression for 2ds′  we may thus write d dn
in k i ku x xδ , or by (14) 

d dnr
in kr i ku u u x x , it can be see that, according to the multiplication tensor rules 

d dn in iu xη =  

form a covariant four-vector. In that case, 
2d d dnr

n rs u η η= . 

Since this, with the arbitrary choice of the vector dηn, ds2 is a scalar, and unr by its definition is symmetrical, it 
follows that unr is a contravariant tensor. It further follows from (14) that k

iδ  is also a tensor, which we will 
call the miked fundamental tensor [4]. Now, by the rule for the multiplication of determinants 

( ) ( ) ( )det det detnk nk
in inu u u u= ⋅ . 

On the other hand 

( ) ( )det det 1nk k
in iu u δ= = ; 

in such a way that 
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( ) ( )det det 1nk
inu u⋅ = . 

Besides, from Equation (12) it is obtained that 

1
2

nk nk
in inu u g u= . 

Now, and given that nk k
in ig g δ= , 

2nk nku g= . 

Finally, if 

( )det inu u= , 

it is fulfilled that 

( ) ( ) ( )det det det 1nk k
in in iu u u u δ= = = . 

In that case, 

( ) 1det inu
u

= . 

In the general theory of relativity, it is used to write g−  inestead of g , with g the determinant of gik, 
quantity which is always real; because of the hyperbolic character of the space-time continuum [3]. Due to the 
same past arguments, it is possible to propose the use of u−  instead of u . This is so, because really, for 
all coordinates connected with a real space-time, the determinant g, and also, the determinant u, are negative [5]. 

3. The Christoffel Symbols 
A curve in space is defined as the locus of a point whose coordinates depend on a single parameter [2]. Consider 
a given curve and let us suppose that the coordinates of any point on it, are functions of the parameter t. If we 
take any vector at a given point of the curve and at every other point on it, take the vector equal to it in magni-
tude and parallel to it in direction, we obtain a vector Χ defined at each point of the curve, and the components 
of X, will be functions of t. In other words, we have a parallel field of vectors along the given curve [2]. Our 
objective is to find the differential equations which such a vector-field must satisfy. In order to do so, it is nec-
essary to consider Cartesian coordinates yr. Let Yr be the components of the vector-field in this coordinate sys-
tem [2]. Since the components of parallel vectors are equal in Cartesian Systems, it is easy to see that the Yr are 
all constants along the curve and consequently the derivatives of Yr with respect to t are zero [2]. Now, it is clear 
that 

i
i m

m

yY X
x
∂

=
∂

.                                    (15) 

Therefore, differentiating with respect to t we have that dYi/dt = 0, and then, it is fulfilled that 
2d d 0

d d

m i i n
m

m m n

X y y xX
t tx x x

∂ ∂
+ =

∂ ∂ ∂
.                             (16) 

Now, let us consider the following transformation 

1
2

i i
rp rp

p p

y yg u
x x
∂ ∂

=
∂ ∂

. 

If we multiply Equations (16) by the last transformation, the relationships (8) and (10) are used, and sum i 
from 1 to 3, it is obtained that [2]. 

2d d 0
d d

r i i n
rp m

m n p

X y y xu X
t tx x x

∂ ∂
+ =

∂ ∂ ∂
;                           (17) 
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where the relationship (8) was used, and clearly, the factor 1/2 was suppressed. 
Next, let us consider the expression 

2 i i

m n p

y y
x x x
∂ ∂

⋅
∂ ∂ ∂

; 

and referring again the relationship (8), we get, on differentiating partially with respect to xr that 
2 2i i i i

mn
p m p n m p n

u y y y y
x x x x x x x

∂ ∂ ∂ ∂ ∂
= ⋅ +

∂ ∂ ∂ ∂ ∂ ∂ ∂
.                            (18) 

These equations are true when m, n, p take any of the values 1, 2, 3. If now we take any of the two equations 
obtained by permuting m, n, p cyclically in (18), and substract (18) from their sum, we obtain 

2

2
i i

np pm mn
m n p m n p

u u u y y
x x x x x x

∂ ∂ ∂ ∂ ∂
+ − = ⋅

∂ ∂ ∂ ∂ ∂ ∂
.                           (19) 

Hence if we write by brevity 

[ ] 1,
2

np pm mn
m n p

u u u
mn p

x x x
∂ ∂ ∂

= + − 
∂ ∂ ∂ 

                             (20) 

and substitute this in (19), it is obtained the following result 

[ ]d d, 0
d d

r n
rp mX xu mn p X

t t
+ = . 

If on the other hand, we write 

{ } [ ], ,rpmn r u mn p=                                   (21) 

it is obtained Equation (16) in the final form 

{ }d d, 0
d d

r n
mX xmn r X

t t
+ = ,                               (22) 

and the parallel vector-field along the given curve must satisfy this differential equation [2]. 
The quantitites [m n, p] and {m n, r}, defined by (20) and (21), in terms of the components of the small de-

formation tensor, we will call the Christoffel symbols of the first and second kinds, or they are sometimes re-
ferred as the three-index symbols [2] [4]. It is seen at once that they are symmetrical in m, n; an important prop-
erty [2]. 

4. Equations of a Geodesic 
In order to obtain the equations of a geodesic or path between two points in the Riemannian space, we will use 
the calculus of variations, and the following condition [4], 

d is stationarys∫ . 

This absolute track is of fundamental importance in dynamics. Keeping the beginning and the end of the path 
fixed, we give every intermediate point an arbitrary infinitesimal displacement δxσ so as to deform the path. Ac-
cording to definition (11), it has that 

( ) ( ) [ ]( )

[ ]( )

12d d d d d d d d
2
1 d d d d d d .
2

s s x x u u x x x x

u
x x x u x x x x

x

µ υ µυ µυ µ υ υ µ

µυ
µ υ σ µυ µ υ υ µ

σ

δ δ δ δ

δ δ δ

  = + +   

∂ 
 = + +  ∂ 

               (23) 
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The stationary condition is 

( )d 0sδ =∫ ;                                     (24) 

in such a way that in (23) we get 

( ) ( )d dd d1 d d d 0
2 d d d d d d

x u xx x
x u x x s

s s x s s s s
µ µυ µυ υ

σ µυ υ µ
σ

δ δ δ
 ∂   + + =  ∂   
∫ ; 

where we will use greek index instead of latin index, and for convenience, a factor 1/2 has been eliminated 
Changing dummy suffixes in the last two terms, it is obtained that 

( )
d dd d1 d d 0

2 d d d d d
x u xx x

x u u x s
s s x s s s
µ µυ µυ υ

σ µσ συ σ
σ

δ δ
 ∂   + + =  ∂   
∫ . 

Consider the terms enclosed in the round parenthesis. Applying the method of partial integration, we get 

d dd ddd d
d d d d d
x xx x

u u x u u x s
s s s s s
µ µυ υ

µσ συ σ µσ συ σδ δ
    

+ − +    
     

∫ ∫ . 

The first term is an exact differential. It is zero because the δxσ varishes at both limits of the integral. Hence, it 
is obtained that 

d dd d1 d d 0
2 d d d d d

x u xx x
u u x s

s s x s s s
µ µσ µυ υ

µσ συ σ
σ

δ
 ∂   − + =  ∂   
∫ . 

This must hold for all values of the arbitrary displacements δxσ at all points, hence the coefficient in the inte-
grand must vanish at all points on the path [4]. Thus 

2 2

2 2

d d d dd d d d1 0
2 d d d d d d d d

x u u x xx u x x
u u

s s x s s s s s s
µ µυ µσ µ µυ συ υ υ

µυ συ
σ

 ∂
− − − − = 

∂  
 

now, it is clear that [4] 

d d
,

d d
u u x

s x s
µσ µσ υ

υ

∂
=

∂
 

and 

dd
d d

xu u
s x s

µσυ συ

µ

∂
=
∂

. 

Also, in the last two terms we replace the dummy suffixes μ and υ by ε. 
The equation then becomes 

2

2

d d d1 0
2 d d d

x u ux u x
u

s s x x x s
µ µυ µσυ υσ ε

εσ
σ υ µ

 ∂ ∂ ∂
− − − =  ∂ ∂ ∂ 

.                      (25) 

We can get rid of the factor uεσ by multiplying through by uσα in such a way that 

2

2

d d d1 0
2 d d d

x u ux u x
u

s s x x x s
µ µσ µυσαυ υσ α

υ µ σ

 ∂ ∂∂
+ − + =  ∂ ∂ ∂ 

.                      (26) 

However, 



A. Fierros Palacios 
 

 
41 

{ }1 ,
2

u uu
u

x x x
µσ µυσα υσ

υ µ σ

µυ α
 ∂ ∂∂

+ − =  ∂ ∂ ∂ 
, 

is one of Christoffel’s 3-index symbols. Finally, in (26) we obtain that 

{ }
2

2

dd d
, 0

d dd
xx x
s ss
µα υµυ α+ = .                               (27) 

This is the looked for differential equation. For α = 1, 2, 3, 4 that relationship gives the four equations deter-
mining a geodesic [4]. 

5. Covariant Derivative of a Vector 
Since dxμ is a contravariant vector, and ds an invariant, dxμ/ds a kind of velocity, is a contravariant vector. Hence 
if Aμ is any covariant vector, the inner product 

d
is invariant

d
x

A
s
µ

µ . 

The rate of change of this expression per unit interval ds along any assigned curve must also be independent 
of the coordinate system; that is to say 

dd is invariant
d d

x
A

s s
µ

µ
 
 
 

.                                (28) 

This assumes that we keep to the same absolute curve however the coordinate system is varied. The result (28) 
is therefore only of practical use if it is applied to a curve which is defined independently of the coordinate sys-
tem; and then, we shall apply it to a geodesic. Performing the differentiation, we get that 

2

2

d dd
d d d

A x xx
A

x s s s
µ µ µυ

µ
υ

∂
⋅ +

∂
,                                (29) 

is invariant along a geodesic. 
Now, if Equation (27) is used, we have that along a geodesic 

{ }
2 2

2 2

d dd d
,

d dd d
x xx x

A A A
s ss s

µ µα υ
µ α α µυ α= = − . 

With this result in (29) we get that 

{ }
d d

, is invariant
d d
x Ax

A
s s x
µ µυ

α
υ

µυ α
∂ 

− ∂ 
. 

The result is now general since the curvature, which distinguishes the geodesic, has been eliminated by using 
Equations (27), and only the gradient of the curve, dxμ/ds and dxυ/ds, has been left in the expression. 

Since dxμ/ds and dxυ/ds are contravariant vectors, their co-factor is a covariant tensor of second rank. We 
therefor write 

{ },
A

A A
x
µ

µυ α
υ

µυ α
∂

= −
∂

;                                 (30) 

and the tensor Aμυ is called the covariant derivative of Aμ. By raising a suffix we obtain two associated tensors 
Aµ
υ  and Aυ

µ  which must be distinguished since the two suffixes are not symmetrical. The first of these is the 
most important, and is to be understood when the tensor is written simply as Aµ

υ  without distinction of its 
original position [4]. Since 
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A u Aε
σ σε= , 

we have by (30) 

( ) { }( ) [ ], ;
uAA u A u A u A A

x x x

ε
ε ε ε εσε

συ σε αε σε
υ υ υ

συ α συ ε
∂∂ ∂

= − = + − ,
∂ ∂ ∂

 

due to 

[ ] { }, uσ λσυ α µυ λ= , . 

So that 

[ ]AA u A
x

ε
ε

συ σε
υ

ευ σ∂
= + ,

∂
; 

because [4] 

[ ] [ ]
u
x
µσ

υ

µυ σ συ µ
∂

, + , =
∂

 

Hence multiplaying through by uμυ and given that uμσuσε is a substitution-operator, we have 

{ }AA A
x

µ
µ ε
υ

υ

ευ µ∂
= + ,
∂

.                                 (31) 

This is called the covariant derivative of Aμ. The tensors Aυ
µ  and Aμυ are called the contravariant derivative 

of Aμ and Aμ. 

6. Covariant Derivative of a Tensor 
The covariant derivatives of tensors of the second rank are formed as follows [4] 

{ } { }AA A A
x

µυ
µυ αυ µα
σ

σ

ασ µ ασ υ∂
= + , + ,

∂
                         (32) 

{ } { }
A

A A A
x

υ
µυ υ α

µσ α µ
σ

µσ α ασ υ
∂

= − , + ,
∂

                           (33) 

{ } { }
A

A A A
x
µυ

µυσ αυ µα
σ

µσ α υσ α
∂

= − , − ,
∂

.                        (34) 

Thus, the general rule for covariant differentiation with respect to xσ is ilustrated by the next example [4]. 

{ } { } { } { } .A A A A A A
x

ρ ρ ρ ρ ρ α
λµυσ λµυ αµυ λαυ λµα λµυ

σ

λσ α µσ α υσ α ασ ρ∂
= − , − , − , + ,
∂

           (35) 

The above formula is primarly definitions. We have to prove that the quantities on the right are actually ten-
sors. This is done by a generalization of the method of the preceding section. Thus if in place of (28) we use the 
following expression 

d dd
d d d

x x
A

s s s
µ υ

µυ
 
 
 

 

as invariant along a geodesic, we obtain 
2 2

2 2

d d dd d d d
d d d d dd d

A x x xx x x x
A A

x s s s s ss s
µυ µ µ µσ υ υ υ

µυ µυ
σ

∂
+ +

∂
. 
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Then substituting for the second derivatives from (27) the expression reduces to 

d d d
is invariant

d d d
x x x

A
s s s
µ υ σ

µυσ , 

showing that Aμυσ is a tensor. 
Applying (34) to the fundamental tensor, we have 

{ } { } [ ] [ ] 0,
u u

u u u
x x
µυ µυ

µυσ αυ µα
σ σ

µσ α υσ α µσ υ υσ µ
∂ ∂

= − , − , = − , − , =
∂ ∂

 

due to the fact that 

[ ] [ ]
u
x
µυ

σ

µσ υ υσ µ
∂

, + , =
∂

.                                (36) 

Hence, the covariant derivatives of the fundamental tensors vanish identically and the fundamental tensors 
can be treated as constants in covariant differentiation. The utility of the covariant derivative arises from the fact 
that, when the uμυ are constants, the Christoffel symbols vanish and the covariant derivative reduces to the ordi-
nary derivative. Now, in general, the physical equations have been stated for the case of Galilean coordinates in 
which the uμυ are constants; and we may in Galilean equations replace the ordinary derivative by the covariant 
derivative without altering anything. This is a necessary step in reducing such equations to the general tensor for 
which holds true for all coordinates systems [4]. 

7. The Riemann-Christoffel Tensor 
The second covariant derivative of Aμ is found by inserting in (34) the value of Aμυ given in (30). That is to say 

{ } { } { }

{ } { }

{ } { } { }

{ }{ } { }{ } { }

2

A A
A A A

x x x

A
A

x

A AA A
x x x x x

A A A
x

µ α
µυσ α ε

σ υ υ

µ
ε

σ

µ µα α

σ υ σ υ α

ε ε α
σ

µυ α µσ α αυ ε

υσ α µα ε

µυ α µσ α υσ α

υσ α µα ε µσ α αυ ε µυ α

∂   ∂∂
= − , − , − ,   ∂ ∂ ∂   

∂ 
− , − , ∂ 
∂ ∂∂ ∂

= − , − , − ,
∂ ∂ ∂ ∂ ∂

∂
+ , , + , , − ,

∂

                 (37) 

The first five terms are unaltered when υ and α are interchangel. The last two terms may be written, by 
changing the dummy suffix α to ε in the last term, in such a way that we get 

{ }{ } { }A
xε
σ

µσ α αυ ε µυ ε
 ∂

, , − , ∂ 
. 

Hence 

{ }{ } { } { }{ } { } .A A A
x xµυσ µσυ ε
σ υ

µσ α αυ ε µυ ε µυ α ασ ε µσ ε
 ∂ ∂

− = , , − , − , , + , ∂ ∂ 
         (38) 

The quotient theorem shows that the co-factor of Aε must be a tensor; so that, it is fulfilled that [4] 

A A A Bε
µυσ µσυ ε µυσ− = ;                                 (39) 

where 

{ }{ } { }{ } { } { }B
x x

ε
µυσ

υ σ

µσ α αυ ε µυ α ασ ε µσ ε µυ ε∂ ∂
= , , − , , + , − ,

∂ ∂
.              (40) 
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This is called the Riemann-Christoffel Tensor. It is only when this tensor vanishes that the order of covariant 
differentitation is permutable [4]. 

The suffix ε may be lowered. Thus 

{ }[ ] { }[ ] [ ]

[ ] { } { } ;

B u B
x

u u
x x x

ε
µυσρ ρε µυσ

υ

ρα ρα

σ υ σ

µσ α αυ ρ µυ α ασ ρ µσ ρ

µυ ρ µσ α µυ α

∂
= = , , − , , + ,

∂

∂ ∂∂
− , − , + ,
∂ ∂ ∂

                 (41) 

where ε has been replaced by α in the last two terms. Hence, 

{ }[ ] { }[ ]
2 2 2 21 ;

2

B

u u u u
x x x x x x x x

µυσρ

ρσ µυ µσ ρυ

µ υ ρ σ ρ υ µ σ

µσ α ρυ α µυ α ρσ α= − , , + , ,

 ∂ ∂ ∂ ∂
+ + − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

                        (42) 

where the relationships (36) and (20) has been used. 
It will be seen from (42) that Bμυσρ, beside being antisymmetrical in υ and σ, is also antisymmetrical in μ and ρ. 

Also it is symmetrical for the double interchange μ and υ, ρ and σ. 
It has the further cyclic property [4] 

0B B Bµυσρ µσρυ µρυσ+ + = ;                                  (43) 

as is easily verified from (42). The Riemann-Christoffel tensor has 20 independent components [4]. That tensor 
is derived solely from the uμυ, and also from the gμυ, and therefore belongs to the class of fundamental tensors 
[4]. 

8. Physical Significance of the Tensor uμυ 
In order to get the physical significance of the fundamental tensor fields uμυ and gμυ, let us consider a region of 
space-time in which the gravitational field vanishes. If we introduce a non-inertial coordinate system, free bo-
dies will be accelerated with respect to the chosen coordinate system, although they move along straight world 
lines [6]. In other words, the equation of motion of a particle in a gravitational field can be obtained by an ap-
propriate generalization for the free motion of a particle in the special theory of relativity; that is to say, in a Ga-
lilean four-dimentional coordinate system. These equations are dwα/ds = 0, or dwα = 0; where wα = dxα/ds is the 
four-velocity. Clearly, in curvilinear coordinates we have that 

{ }d d d 0w x xα µ υµυ α+ , = .                                (44) 

Dividing this equation by ds we get 

{ }
2

2

dd d
0

d dd
xx x
s ss
µα υµυ α+ , = . 

This is the required equation of motion. But, this is the same relationship (27) of a geodesic. We see that the 
motion of a particle in a gravitational field is determined by the quantities {μυ, α}. The derivative 2 2d dx sα =  
d dw sα  is the four-acceleration of the particle. Therefore we may call the quantity 

{ }w wµ υρ µυ α− ,                                    (45) 

the four-force, acting on the particle in the gravitational field. Here, the tensor uμυ plays the role of the potential 
of the gravitational field; in such a way that, its derivatives determine the field intensity {μυ, α} [5] [6]. It can be 
shown that by a suitable choice of the coordinate system it is always make all the {μυ, α} zero at an arbitrary 
point of space-time. We now see that the choice of such a locally-inertial system or locally-geodesic system [5] 
of reference, means the elimination of the gravitational field in the given infinitesimal element of space-time, 
and the possibility of making such choice is an expression of the principle of equivalence in the relativistic 
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theory of gravitation [5]. 

9. The Law of Gravitation in Empty Space 
That law can also be obtained from the fundamental tensors uμν and Bμνσρ. The later has been expressed in terms 
of the former, and its first and second derivatives. Thus, the contracted Riemann-Christoffel tensor, denoted by 
Dμν, is formed setting ε = σ in the relationship (41). That is to say 

{ }{ } { }{ } { } { }, , , , , , .v
v

D v v v
x xµ

σ

µσ α α σ µ α ασ σ µσ σ µ σ∂ ∂
= − + −

∂ ∂
              (46) 

The 3-index symbols containing a duplicated suffix can be simplified by means of the expression (A.7). 
Hence, with some changes of dummy suffixes, it has that 

{ } { }{ } { }
2

, , , log , log .v
v

D v v u v u
x x x xµ
α µ α

µ α µα β β α µ α∂ ∂ ∂
= − + + − − −

∂ ∂ ∂ ∂
          (47) 

The expression 

0vDµ = ,                                       (48) 

in empty space, is chosen as the law of gravitation in a Dynamic Theory of Gravitation. 

10. Conclusion 
Through the present paper, it was possible to demonstrate that the small deformation strain tensor could be used 
as a fundamental metric tensor, instead of the usual fundamental metric tensor. Also, it was possible to prove 
that from that tensor, not only other mathematical structures could be constructed, but also another fundamental 
tensor was obtained; that was to say, we had constructed two of them, uμυ, and Bμυσρ. It is through these tensors 
that the gap between pure geometry and physics is bridged. In particular, uμυ relates the observed interval ds to 
the mathematical coordinate specification dxμ. Also, the uμυ appear as the potentials of the inertial field [6]. 
Therefore, it is reasonable to assume that, in the presence of a gravitational field, the uμυ is again the potential 
which determines the accelerations of free bodies; in other words, the uμυ is the potential of the gravitational 
field. Thus, a stage has been reached at which the results obtained can be applied to the theory of gravitation [4]. 
However, that task that would not be repeated here was established by Albert Einstein, and finally formulated by 
him in 1916, as probably the most beautiful of the physical theories. 
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Appendix 
Some Useful Mathematical Expressions 
Since 

;v vu uµα α
µ δ=                                     (A.1) 

where v
αδ  is the Kronecker delta; such that 

1, if
0, if ;v

v
v

α α
δ

α
=

=  ≠
 

it has that 

d d 0v vu u u uµα µα
µ µ+ = . 

Hence 

d d d d .v v
v vu u u u u u u u uµα β β µα β µα αβ

µ µ µ= − = − = −                        (A.2) 

In a similar way, 

d d .v
vu u u uµ

αβ µα β= −                                   (A.3) 

Now, and multiplying by a contravariant tensor Aαβ ; it has by the rule for lowering suffixes that 

( )d d d d .v v
v vA u u u A u A u A uαβ αβ µ µ αβ

αβ µα β µ αβ= − = − =                     (A.4) 

For any tensor Cαβ other than the fundamental small deformation strain tensor, the corresponding formula 
would be the following 

d dA C A Cα β αβ
αβ αβ= ; 

by the expressions 

;
v v

A C A C

A C A C

αβ αβ
αβ αβ

α α
µα µ α

=

=
                                  (A.5) 

The exception for uαβ arises because a change duαβ has an additional indirect effect through alterning the op-
eration of raising and lowering suffixes. 

On the other hand, du is formed taking the differential of each uµv and multiplying by its co-factor u·uµv in the 
determinant. So that 

d d v
vu u u uµ

µ= ⋅ ⋅ ; 

in such a way that 

d d dv v
v v

u u u u u
u

µ µ
µ µ= = − .                                (A.6) 

In that case, the contracted 3-index Christoffel symbol becomes 

{ } 1 1, .
2 2

u uu u
u u

x x x x
µλ µσσλ σλσλ σλ

σ µ λ µ

µσ σ
 ∂ ∂∂ ∂ = + − = 
∂ ∂ ∂ ∂  

 

The other two terms cancel each other by interchange of the dummy suffixes σ and λ. Hence, by (A. 6) it has 
that 
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{ } 1, log
2

u u
u x xµ µ

µσ σ ∂ ∂
= = −

∂ ∂
;                             (A.7) 

this is so, because for real coordinates u is always negative. 
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