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Abstract 
Disparity estimation is an ill-posed problem in computer vision. It is explored comprehensively 
due to its usefulness in many areas like 3D scene reconstruction, robot navigation, parts inspec-
tion, virtual reality and image-based rendering. In this paper, we propose a hybrid disparity gen-
eration algorithm which uses census based and segmentation based approaches. Census trans-
form does not give good results in textureless areas, but is suitable for highly textured regions. 
While segment based stereo matching techniques gives good result in textureless regions. Coarse 
disparities obtained from census transform are combined with the region information extracted 
by mean shift segmentation method, so that a region matching can be applied by using affine 
transformation. Affine transformation is used to remove noise from each segment. Mean shift 
segmentation technique creates more than one segment of same object resulting into non-smooth- 
ness disparity. Region merging is applied to obtain refined smooth disparity map. Finally, multila-
teral filtering is applied on the disparity map estimated to preserve the information and to smooth 
the disparity map. The proposed algorithm generates good results compared to the classic census 
transform. Our proposed algorithm solves standard problems like occlusions, repetitive patterns, 
textureless regions, perspective distortion, specular reflection and noise. Experiments are per-
formed on middlebury stereo test bed and the results demonstrate that the proposed algorithm 
achieves high accuracy, efficiency and robustness. 
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1. Introduction 
Stereo vision is a fundamental problem in computer vision. An extensive analysis of stereo matching algorithms 
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can be found in [1]. Stereo vision can be divided into two problems: matching and 3D reconstruction. Out of 
these two, matching is considered to be the significant and complex problem. Matching is done to find corres-
ponding points between stereo image pairs. Two image points Pl in left image and Pr in right image match if they 
result from the projection of the same point P in the scene, for example, Pl and Pr will have similar intensity or 
color. The difference in the location of the two corresponding points in their respective images is called disparity. 
The appearance of corresponding points will vary in stereo images due to different perspective projections. For a 
point in one image, there are many possible corresponding points in the second image, especially in repetitive 
texture or textureless regions. This is called problem of ambiguity. Disparity depends on both, the position of the 
point in the scene and the position, orientation and physical characteristics of the stereo cameras. 

Matching technique may be usually classified on the basis of the type of matching primitives used [2]. Area 
based algorithms [1] [3] are typically based on correlation. These algorithms are easy to implement. These me-
thods calculate the disparity of a pixel by using the intensity values within a fixed corresponding neighboring 
window in another image. A small window will generate various non continuous structures, while a large win-
dow will lead to too smooth disparity map. These algorithms are very susceptible to variation of contrast, abso-
lute intensity, and illumination which decreases the reliability of disparity estimation and cannot be easily inte-
grated with global consistency criterion. These algorithms make smoothness assumption at the cost aggregation 
step i.e., all pixels in a support window have identical disparities. These algorithms generate dense but unrelia-
ble disparity maps. These methods give high-quality results in textured regions and fail at occluded areas, tex-
tureless regions and edges. 

In feature-based approaches [3], features such as texture, edge and corner are used as the matching primitives. 
These methods depend on feature extraction. As the features are sparse and unevenly dispersed, these methods 
produce a sparse disparity map. So it is hard to ensure its accuracy and precision. Disparity map estimated by 
these techniques are reliable because the features are more stable to photometric variations. These algorithms are 
speedy. These methods perform more accurate matching than area based matching techniques. The accuracy 
mostly depends on the number of reliable features identified. It is difficult to match distinct features due to out-
liers. 

In transform-based approaches, transformation of the pixel values in the stereo images is carried out before 
matching. The transformed images may then be matched using area-based metrics. Non-parametric transforms 
including the rank and census transforms [4] are the examples of transform-based approaches. 

There are various issues [5] that make stereo complex problem. The issues are either scene-related or camera- 
related. Occlusions, textureless regions, non-Lambertian surfaces, reflections and translucency are the issues re-
lated to the property of the scene itself. Image noise and errors due to imperfect calibration are the camera-re- 
lated issues. The utilization of many cameras introduces another set of problems like white balancing, variation 
in exposure and other radiometric properties. 

Zabih and Woodfill [4] introduced census transform as a nonparametric local transform to be used as the basis 
for correlation. Census transform is extensively used in many computer vision applications. It provides high re-
sistance to radiometric distortion, vignette, and noise because it is based on the relative ordering of local pixel 
intensity values [4]. It has various advantages like illumination invariance, compared to other matching tech-
niques like Sum of Squared Differences (SSD) or Sum of Absolute Differences (SAD). 

Census transform may create noise in the uniform regions while being able to maintain good result in regions 
having variable disparity. This is because in uniform regions the most of the pixels fit in to the same object. The 
intensities of the pixels in such regions are all identical to each other; hence only by using magnitude relation-
ship it’s tough to calculate the best disparity value. On the other hand, in regions having variable disparity dif-
ferent objects with relevant disparities will all be included in the census transform window which can offer a 
large amount of information to centre pixel by magnitude difference. This clear difference in performance of 
census transform in texture and textureless regions is the motivation for our proposed approach. As adjacent 
pixels with similar colors have similar or continuous disparity, image segmentation is utilized to simplify the 
stereo problem [5]. This has three significant advantages. Firstly, it lessens the uncertainty related to textureless 
areas. Due to image segmentation depth discontinuities takes place at color boundaries. Secondly, larger seg-
ments will decrease the computational complexity. Finally, noise tolerance is improved by aggregating over 
similar colored pixels. Human recognize the objects by analyzing features such as color, texture and shape of the 
objects. Area-based methods alone are inefficient in textureless regions, occluded areas and edges. Thus seg-
ment based stereo matching algorithm is used in our proposed approach along with census transform. 
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The rest of the paper is organized as follows: In Section 2, related work is explained in detail. Section 3 
presents proposed algorithm. Section 4 shows experimental results with its discussions and demonstrates the 
performance of our algorithm. Section 5 draws the conclusion and future work of this paper. Finally, Section 6 
lists out bibliography. 

2. Related Work 
A large number of algorithms for disparity map generation are pixel based in which the disparity is calculated 
pixel-by-pixel. Pixel based methods does not give good results in textureless surfaces. Noise is typically present 
in disparity calculated for such surfaces. Compared to the large number of research papers on pixel-based dis-
parity map generation algorithms, there are not many related to region-based disparity estimation algorithms [6] 
[7]. 

The study of different similarity measures is performed in [8]. Area-based stereo matching algorithms are 
used in most of the real-time stereo vision applications. Sum of absolute difference (SAD), sum of squared dif-
ference (SSD) and normalized cross correlation (NCC) are frequently used similarity measures. Area based dis-
parity estimation algorithms does not make the use of the information associated with the shape of the objects in 
the images. They also perform worse on areas like edges. Segmentation based methods can perform better, as 
they assume that the disparity discontinuities coincides with object’s depth discontinuities (segment’s edges). So 
it is more robust on edges and other depth discontinuous regions. 

While most of the pixel based methods are susceptible to variation in camera gain or bias, non-parametric 
methods such as rank and census transforms [4] and gradient-based methods [9] [10] are not. Nonparametric 
matching costs are robust against outliers that occur in area based methods near edges [4] [11]. Compared to 
area based methods, census based stereo matching methods performs with high efficiency and is suitable for the 
real-time applications. Census based techniques have exceptional ability of signal conversion, and it gives qual-
ity results. It is based on local intensity relations between the actual pixel and the pixels within a certain window. 
The relative ordering of intensity values rather than the intensity values themselves offers robustness against ra-
diometric distortion and vignette [8]. Census transform can significantly enhance the matching performance of 
images in the nonideal condition. The variation in bias and gain between two images will not alter the sequence 
of pixels within a window. It improves the matching cost to additive or multiplicative intensity variations caused 
by different shutter times and illumination conditions of the cameras. Non-parametric transforms works well in 
image regions having same colours and commonly used area based similarity measures like SAD and SSD gives 
good results for image regions with same local structures [12]. The assessment of similarity measures [11] 
shows that census transform gives quality results in the presence of simulated and real radiometric differences 
except in the presence of strong image noise. 

Census [4] cost function is found to be very robust against illumination variations from the assessment of cost 
functions in [8] [11]. False matching is done when the centre pixel is modified by the illumination variation be-
tween two cameras and by the bias. The values of the census transform are very sensitive to high-frequency 
noise because these are dependent on the value of the centrepixel [13]. For census transform calculations, the 
average of the intensity values in the window is used in [13] instead of centre pixel value. The neighborhood 
pixels are probably affected and may have slight deviation in non ideal conditions like illumination variation. 
The performance of census transform is better than other LOG filter-based speedy approaches [13]-[15]. 

In census transform, if fewer pixels in a local neighborhood have a very diverse intensity distribution com-
pared to majority pixels, only comparisons relating that fewer pixels are affected. The variable size increases as 
the dimensions of the window increases. The variable used to store the census value would be of size 23 or 8 bits 
for a census window of 3 × 3. While for a census of window size 5 × 5, 25 or 32 bits are required to store census 
value. 

Figure 1 shows an example of the census transform of image with respect to the centre pixel of the window. 
Census transform translates relative intensity variation to 1 or 0 in one dimensional vector structure. 

Thus using census transform every pixel within an image is transformed into a sequence of bit representing 
the intensity relations between the centre and its neighboring pixels. Census transform is invariant to changes in 
gain and bias. As shown in Figure 2, vector is assigned to a pixel and an image is transformed into 3 dimen-
sional data. 

In [16] segmentation of either the left color image or the computed texture image is done for the improvement  
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Figure 1. Census transform example.                                     

 

 
Figure 2. Disparity space image (DSI) defined by the dimensions of the left 
image and the disparity search range.                                    

 
of the matching quality at textureless regions and occlusions. Census based correlation method is used to calcu-
late the local cost. The confidence of a match is calculated and by computing a disparity plane for the corres-
ponding segment, non-confident or non-textured pixels are estimated. Modified Semi-Global Matching (SGM) 
step with sub pixel accuracy is utilized to enhance the quality of the local optimized matches. Instead of whole 
image, horizontal stripes of the image are used for disparity optimization. 

Various well performed stereo matching algorithms are often complex and have high computational complex-
ity. In [17], the disparity is estimated by using the census diffusion with segment constraint. Compared to adap-
tive support weight, the complexity of the algorithm is same, but the runtime is much shorter than that of the 
adaptive support weight and other global methods excluding Bayesian diffusion. The qualitatively and quantita-
tively performance of this algorithm is somewhat worse than the state-of-the-art complex algorithms, but this 
method is having comparatively lesser complexity and run time. 

Segment-based methods [18]-[21] have become popular because of their excellent performance on managing 
boundaries, textureless areas and improving noise tolerance. Stereo matching becomes easier even in the pres-
ence of outliers, intensity variation and minor deviation in segmented region. They are based on the hypothesis 
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that the scene structure can be estimated by a set of non overlapping planes in the disparity space and that each 
plane of target image is coincident with at least one uniform color segment in the reference image. Larger seg-
ments lead to much reduced computational complexity. Instead of allocating accurate disparity cost to each pixel 
one by one in the local matching methods, segmentation based algorithms assigns a disparity plane to one uni-
form color segment in the image. Thus the robustness of algorithms is enhanced against outliers or noise in the 
image. 

Small segments may be inefficient for estimating surfaces like slanted plane, while segmentation errors in 
large segments can affect the efficiency of disparity cost estimation. Similar colors in image do not always 
represent similar disparity value. For example, the projected image region of an extremely slanted Lambertian 
plane having uniform texture tends to be categorized as one image segment having similar disparity. Image can 
be segmented by a large number of segmentation methods available and after segmentation step further pro- 
cessing is carried out on this segmented image. Few segmentation based stereo matching algorithms do not take 
into consideration the quality of segments, which results into incorrect disparity computation. 

Segment based stereo matching algorithms usually consists of four successive steps. First step is to segment 
the reference image using proper segmentation technique; second step is to generate initial disparity map using 
local matching technique; in third step, a plane fitting method is utilized to obtain disparity planes; lastly, an op-
timal disparity map is estimated using optimization technique like BP or graph cut. 

A hybrid disparity map generation method which combines the pixel-based and region-based approaches is 
proposed in [22]. Initially a pixel-based approach based on the gabor transform and variational regularization is 
carried out and then the region information from the mean shift segmentation is combined with the pixel-based 
disparity results and latter a region matching scheme using affine transform can be applied. This method is used 
to evaluate the change of disparity histograms after region matching to identify the occluded areas and to esti-
mate the true disparity values for such regions. This hybrid algorithm produces quality disparity maps and solves 
few standard problems associated with disparity map generation. 

Mean shift segmentation technique [23] has been used in [6] to segment the images into different areas. Over- 
segmentation is applied to each area rather than direct region matching in the next step. It can be assumed that 
every area in one image of the stereo pair is an affine transform of the same area in another image. Thus region 
based disparity generation is transformed into the evaluation of affine parameters for each area. 

Color mean-shift segmentation on the reference image is carried out and thereafter local matching based on 
windows is utilized in [24]. In [25] a region based cooperative optimization stereo matching algorithm has been 
proposed. From its initial disparity generation, this algorithm gives quality disparity map results. As regions 
contain more information compared to individual pixels, a novel region based progressive stereo matching algo-
rithm is presented in [6]. This method assumes that pixels within the same area have the similar disparity values. 

A novel stereo matching algorithm is presented in [21] in which color segmentation on the reference image is 
carried out and a self adapting matching score increases the number of accurate correspondences. The scene 
structure is modeled by a set of planar surface patches which are estimated using a new method that is more ro-
bust to outliers. Disparity value is not assigned to each pixel but a disparity plane is assigned to each segment. 
The optimal disparity plane labeling is carried out by applying belief propagation. 

3. Proposed Algorithm 
A novel census and segmentation based disparity estimation algorithm using region merging is proposed which 
gives quality disparity map as output from input stereo image pair. Census transform produces quality results in 
depth discontinuous regions but may generate noise in textureless regions. Region matching technique is used to 
solve this issue. Our algorithm solves issues like occluded regions and keeping edges sharp and clear while pre-
serving the smoothness of surfaces. These problems cannot be solved by census and segmentation based tech-
nique separately. The proposed algorithm produces quality results compared to the classic census transform. 

The rectified stereo image pair is given as input to the proposed algorithm. In the rectified images the pixel 
rows are aligned in parallel to the baseline which makes matching efficient. Rectified images satisfy the epipolar 
constraint, which can lessen the search along one corresponding row. Bilateral filter [26] is applied to both left 
and right images as a preprocessing step. A bilateral filter is used to preserve edge and to decrease noise. A 
weighted average of intensity values from neighborhood pixels is used to change the intensity value at each pix-
el in an image. This weight is based on a Gaussian distribution. The weights depend on Euclidean distance as 
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well as on the radiometric differences. This conserves sharp boundaries by methodically looping through each 
pixel and calculating weights to the nearby pixels accordingly. 

Stereo image pairs are generally acquired by different cameras sometimes at different time. Typically the 
brightness is inconsistent in corresponding areas of stereo image pair. This increases complexity for stereo 
matching techniques assuming brightness consistency between two images. Census transform makes use of rela-
tive intensity of input images leading to robustness under different absolute intensities of input images and nois-
es. Census transform is applied on both filtered images for disparity estimation. Census transform can be divided 
into two steps: transform step and correlation step. Calculation of a bit string, which summarizes local texture of 
the current corresponding pixel pair from left and right window centre is done in transform step. Comparison of 
two strings using the hamming distance, i.e. count of differing bits is accomplished in correlation step. Finally, 
disparity is selected by referring to the best window pair containing the minimum hamming distance. Below are 
the details of both steps: 

The census transform is realized with a comparison function ξ (Equation (1)) which converts the intensity 
values into 1 or 0. This function compares the intensity value of the centre pixel 1P  with the other pixels 2P  in 
the neighbourhood. 

( ) 1 2
1 2

1 2

0
,

1
P P

P P
P P

ξ
≤

=  >
       (1) 

where, 1P  is the centre pixel and 2P  is the neighborhood pixels within the image. It produces 1 if the centre 
pixel is larger, otherwise 0. The result then is concatenated (⊕ ) to a bit-vector. 

Matching is the next step after census transform. The cost for possible match has to be calculated for each 
pixel. The hamming distance is computed between census-transformed pixels by performing XOR operation 
between two binary strings and counting the number of set bits in the output string for finding the matching val-
ue for each pixel. The costs are computed using Equation (2) and is stored in three-dimensional data structure 
Disparity space image (DSI) [27], with size disparity ×width × height as shown in Figure 2. Census transform 
creates data of (image size × vector size). 

( ) ( ) ( )( ), , , ,d census censusDSI u v Hamming L u v R u d v= −                        (2) 

where the left image is the reference image and the right image shifts horizontally from right to left. 
The hamming distance is minimized after applying the census transform to calculate the matching value. For a 

pixel lP  in left image, the matching cost is calculated for pixels 1
rP , 2

rP , .…, m
rP  in right image using Equa-

tion (3). 

( ) ( ) ( ) , 1, 2, ,l l r
CTW

M P P P mδ δε ε δ= ⊕ =∑                               (3) 

where ∑ is the hamming distance between two bit strings ( )lPε  and ( )rPδε , ⊕  is the logical operator “ex-
clusive OR”. The best corresponding pixel of lP  is the one rPδ  in right image which minimizes ( )lM Pδ  
and its disparity is l ru uδ− . To generate high confidence disparity map, the most common technique is a simple 
winner-takes-all (WTA) minimum or maximum search over all possible disparity levels [2] [11]. Here, WTA 
minimum search method is used to find the best match, the one having the lowest costs. 

Thus, disparity map between left and right image is computed by using Equations (2) and (3). The output dis-
parity is having integer value but generally the true disparity lies somewhere in between two pixels. Due to this 
the minimum disparity value plus both adjacent disparities are taken into consideration and sub pixel accuracy is 
applied. The sub-pixel refinement adds additional accuracy to the disparity map output. 

Median filter is applied on disparity map obtained to remove some outliers. This filter is popular method for 
removing salt-and-pepper noise from images. It is also used to remove noise generated occasionally because of 
sub pixel refinement. Filtering of disparity map can increase the accuracy of output. Thus in this way, coarse 
disparity map is generated. 

Next step is to estimate region based disparity map. The chances of making an incorrect decision upon an area 
can be greatly reduced, as area contains more information compared to individual pixels. The precision of dis-
parity map generation depends on how well the color segmentation step segments the image. The color segmen-
tation technique has two hypotheses: a) in segmented areas disparity value changes smoothly; b) depth discon-
tinuity occurs on edges only. First of all left image lI  is segmented by using mean shift segmentation method 
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[23]. Many segmentation-based stereo matching algorithms apply mean shift segmentation technique [21] [22] 
[24]. The edge information is integrated in the mean-shift segmentation technique. A large number of segments 
are generated and the segments are merged using hierarchical clustering algorithm. Mean shift usually takes into 
consideration the gray scale and the gradient of pixels, but it ignores other features like the shape, the spatial 
context. Mean shift technique is a time consuming image segmentation algorithm. To find a faster as well as 
more robust real time image segmentation technique is another challenging research work. The mean shift tech- 
nique demonstrates its relative independence from specifying predictable number of segments. But the indepen- 
dence is at the cost of specifying the size (bandwidth) and shape of the influence kernel for each pixel in advance. 

The segmentation based techniques makes it possible to match large textureless regions very well which is a 
considerable problem with area based stereo matching techniques. With the increase in the number of segments 
obtained by utilizing mean shift segmentation method time complexity also increases. The disparity map output 
is improved by removing noise in each area by using affine transformation, but non-smoothness exits among 
few neighboring areas due to over segmentation. Region merging is applied on the segmented image to solve 
this problem and to improve the output. Region merging merges the neighboring areas fulfilling similarity con-
dition. Disparity maps generated are having smoothness within the segments and disparity discontinuity on the 
edges. 

The first step in region based disparity estimation is to compute the disparity for the areas extracted in the 
preceding segmentation step. The segmented image and the coarse disparity map are the inputs to this step and 
each segment is assigned the median of the disparity values of the region pixels. All the pixels of each region are 
assigned same disparity value as it is supposed that pixels within the same region will have the same disparity. It 
is supposed that the coordinates ( ), Tx y  of each pixel in a region in left image lI  are related to corresponding 
pixels ( ), Tx y  in right image rI  by an affine transform [22]. In case of parallel stereo without vertical dis-
placement ( )ry y= , we have: 

11 12 13rx a x a y a= + +                                    (4) 

Thus, the disparity ( ),d x y  is related to these affine parameters as shown below: 

( ) 11 12 13,d x y x a x a y a= − − −                                   (5) 

Every pixel within the region gives one equation as in Equation (5). If the number of pixels within a region is 
N, then we will have N equations of (5) for this particular region. Mostly the number of pixels within region will 
be larger than the number of affine parameters e.g., three for 1-D affine transform. Therefore, the calculated 
( ),d x y  for every pixel within region from the preceding step can be grouped and utilized as known variables 

to estimate the affine parameters by using Equation (5). The estimation of the three parameters 11 12,a a  and 13a  
is done by least squares implemented utilizing singular value decomposition (SVD). Once the affine parameters 
are estimated, a new disparity ( ),d x y  for every pixel within the region is calculated by Equation (5). 

Region based algorithms should be capable to deal with the segmentation errors. When the stereo image pair 
is segmented, errors may occur due to many factors like noise, bad imaging situations, over segmentation and 
limitations of segmentation procedure used. The mean shift algorithm segments the images utilizing color and 
intensity information and hence it produces more than one segment of the same object. Few homogeneous color 
regions are supposed to belong to the same planar or surface model, but due to over-segmentation approach they 
are separated in the partition label and we can refine the disparity map by assigning one universal disparity 
plane/surface to all of them. Grouping similar homogeneous color segments to extract their disparity layer can 
help in regions not having sufficient inliers because of noise or occlusion to get good plane/surface estimation 
by using affine. In such situations, more accurate points for the disparity estimation can be obtained by merging 
regions having similar disparities, resulting in to bigger regions. 

Region merging is a method that groups two different segments into one segment based upon two conditions: 
proximity and homogeneity. Criterion is needed to take decision regarding which neighboring regions are good 
candidates to be merged. Two regions represented by the same set of model parameters can be successfully 
merged. The second criterion, homogeneity, is satisfied by a similarity measure that computes the similarity 
between regions and selects the optimal regions to be merged. We compute the intensity variation between all 
neighboring regions and if the difference value is less than threshold value than those corresponding regions are 
merged. In this technique, deciding the threshold value is an overhead. 

The overview of the region merging [28] can be described as below: First of all region adjacency information 
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is computed based on the current segmentation label. Thereafter a regions similarity measure is computed be-
tween neighboring regions. At last the best chosen region pair having best similarity measure is merged. This 
process merges regions iteratively, two regions at each iteration and always initiates by the most similar regions. 

To facilitate in the region merging process matrix representation of the regions adjacency is created. Region 
Adjacency Matrix (RAM) is the lower triangle of a square table where rows and columns represent regions. If 
cell Cij is marked as true than it means that regions i and j are neighboring and if it is marked as false, than those 
regions are assumed not to be neighbors. 

Finally, a multilateral filtering is applied on the disparity map obtained to preserve information and to smooth 
the disparity map in occluded regions at object boundary, discontinuous and textureless area to generate final 
disparity map as output. 

4. Experimental Results & Discussion 
In this section, we present and discuss the experimental results of our algorithm. The Middlebury dataset [1] [29] 
is used to evaluate the results of the proposed algorithm. The image pairs like Tsukuba, Teddy, Cones, Venus, 
and Sawtooth used for the evaluation purpose are popular and widely used by the stereo vision community. 
These stereo image pairs are well known for the combination of objects having different characteristics and are 
challenging for stereo matching. Computation of our proposed algorithm is carried out in Matlab on Intel(R) 
Core(TM) i3 CPU M 350 @ 2.27GHz (4 CPUs) laptop. 

Figure 3(b) demonstrates coarse disparity map result obtained by using census transform for Tsukuba image 
pair. This coarse disparity map estimated and left mean segmented image are given as input to generate disparity 
map using affine transformation as shown in Figure 3(c), which computes disparity for each segment. We can 
observe that this kind of parameterized estimation process can give more reasonable results in which the noise in 
each region is somewhat eliminated, but still non-smoothness prevails between some neighboring regions due to 
over segmentation. Region merging is used to solve this problem of non-smoothness due to over segmentation 
and to refine the disparity map results. Region merging is applied on the segmented image and it merges the 
 

     
(a)                                  (b)                                   (c) 

     
(d)                                  (e)                                   (f) 

Figure 3. (a) Left image of Tsukuba (b) coarse disparity generated by using census transform [4] (c) result after affine trans-
formation (d) final disparity map estimated (e) disparity map generated by SAD (f) disparity map generated by using seg-
mentation approach [30].                                                                                   
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neighboring regions fulfilling the similarity condition. However, few regions having occlusions give worse ef-
fects. Multilateral filtering is applied to solve this problem and final disparity map is estimated. Figure 3(d) 
shows disparity map generated after region merging and multilateral filtering, which clearly demonstrates im-
provement for most regions: smoothness in disparity within the segment and disparity discontinuity on the ob-
ject boundaries. 

A quantitative approach is required to assess the performance of a stereo matching algorithm by estimating 
the quality of the final disparity map generated. The quality of the estimated disparity map is determined with 
respect to the ground truth by utilizing similarity measure Root Mean Square Error (RMSE). RMSE is computed 
in terms of disparity units between the resultant disparity map ( ),dC x y  and the ground truth map ( ),dC x y , 
which is the reference disparity map of the image. RMSE is given as follows: 

( ) ( )( )
2

,

1 , ,x yR dC x y dT x y
N

 = − 
 

∑                               (4) 

where N is the total number of pixels. 
The performance of the proposed algorithm is summarized in Table 1. Table 1 shows the calculated Root 

Mean Square Error (RMSE) of the final disparity maps estimated by our proposed approach with respect to the 
ground-truth disparity maps for four different stereo image pairs as shown in Figures 4.1-4.4. It also compares 
RMSE values obtained for different stereo image pairs for our proposed approach with the RMSE values ob-
tained for sum of absolute difference (SAD), census based and segment based approach. 
 

    
(a)                         (b)                          (c)                          (d) 

Figure 4.1. Results for Tsukuba image sequence (a) left input image (b) right input image (c) result of our proposed algo-
rithm (d) ground truth.                                                                                   
 

   
(a)                         (b)                          (c)                          (d) 

Figure 4.2. Results for Cones image sequence (a) left input image (b) right input image (c) result of our proposed algorithm 
(d) ground truth.                                                                                         
 
Table 1. RMSE for stereo image pairs.                                                                       

Sr. No Stereo Image 
Pair 

RMSE 
(SAD) 

RMSE 
(Census Based Approach [4]) 

RMSE  
(Segment Based Approach [30]) 

RMSE 
(Our Proposed Approach) 

1 Tsukuba 24.34 4.978 35.38 0.0019 

2 Cones 25.32 3.235 39.42 0.0037 

3 Teddy 20.39 7.519 38.98 0.0011 

4 Venus 17.95 5.892 31.19 0.0048 



V. H. Borisagar, M. A. Zaveri 
 

 
200 

    
(a)                         (b)                          (c)                          (d) 

Figure 4.3. Results for Teddy image sequence (a) left input image (b) right input image (c) result of our proposed algorithm 
(d) ground truth.                                                                                         
 

    
(a)                         (b)                          (c)                          (d) 

Figure 4.4. Results for Venus image sequence (a) left input image (b) right input image (c) result of our proposed algorithm 
(d) ground truth.                                                                                        
 

From the Figure 3(b), Figure 3(d), Figure 3(f) and Table 1, it can be concluded that our census and seg-
mentation based proposed approach gives better results compared to the results obtained by either of the ap-
proach alone. From Figure 3(d), Figure 3(e) and Table 1, it can be shown that the results of our proposed ap-
proach are also better than the results obtained by using (SAD). 

The test images consist of regions having different characteristics like occluded, disparity discontinuous and 
textureless portion. Our proposed algorithm gives excellent disparity map results in all cases. From the results 
shown in Figures 4.1-4.4 and Table 1, it can be demonstrated that our proposed algorithm gives quality dispar-
ity map as output: disparity varies smoothly within segmented region and disparity discontinuities occurs on the 
object boundaries. 

5. Conclusions & Future Work 
This paper presents a novel, robust, efficient, and flexible stereo matching algorithm which combines census- 
based and region-based approach. The algorithm deals with rectified stereo image pair. It is shown that the seg-
mentation based algorithm works well with the census-based algorithm. The originality of our algorithm lies in 
the fact that it offers a robust technique to solve few long standing problems in the disparity map generation like 
the smoothness of regions while keeping edges clear and sharp, occluded regions, textureless regions, repetitive 
patterns, perspective distortion, specular reflection, noise, disparity discontinuous regions. These issues cannot 
be solved by either approach independently. Census measures are appropriate for highly textured areas. It is also 
somewhat computationally complex. Census transform offers high resistance to noise as it is based on the rela-
tive ordering of local pixel intensity values. While segment based methods are popular for its excellent perfor-
mance in dealing with textureless areas, edges and noise. The chances of making a wrong selection of disparity 
upon a segment is significantly lessen as segments enclose a large amount of information compared to individu-
al pixels. It is shown that the segmentation based algorithm makes it possible to match the excellently large tex-
tureless region which is a major issue with standard area-based stereo matching techniques. Time complexity of 
algorithm increases with the increase in the number of segments which are obtained by utilizing mean shift 
segmentation approach. 

Disparity map results are improved using affine transformation as it removes noise in each region, but non- 
smoothness prevails between some neighboring regions due to over segmentation. To solve this problem of non- 
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smoothness we have applied region merging on the segmented image to refine the disparity map results. Region 
merging merges the neighboring areas satisfying the similarity condition. Disparity maps estimated are having 
smoothness within the segments and disparity discontinuity on the object boundaries. At last, multilateral filter-
ing is applied on the disparity map generated to preserve information and to smooth the disparity map in oc-
cluded areas at edges, discontinuous and textureless regions to estimate final disparity map as output. Non pa-
rametric census transform works well in image areas having same colors and commonly used area based simi-
larity measures like SAD and SSD produces quality results for image areas with similar local structures. The 
real-time application of our algorithm will be our future work. The proposed algorithm can be implemented us-
ing FPGA or GPU for hardware acceleration in future. 
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