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Abstract 
Recent examples of periodic bifurcations in descendant trees of finite p-groups with p {2,3}∈  are 
used to show that the possible p-class tower groups G of certain multiquadratic fields K with p- 
class group of type (2,2,2) , resp. (3,3) , form periodic sequences in the descendant tree of the 

elementary Abelian root C 3
2 , resp. C 2

3 . The particular vertex of the periodic sequence which oc-
curs as the p-class tower group G of an assigned field K is determined uniquely by the p-class 
number of a quadratic, resp. cubic, auxiliary field k, associated unambiguously to K. Consequently, 
the hard problem of identifying the p-class tower group G is reduced to an easy computation of low 
degree arithmetical invariants.  
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1. Introduction 
In this article, we establish class field theoretic applications of the purely group theoretic discovery of periodic 
bifurcations in descendant trees of finite p-groups, as described in our previous papers [1] [21] [22] (pp. 182-193) 
and [2] (§6.2.2), and summarized in section §2. 

The infinite families of Galois groups of p-class field towers with {2,3}p∈  which are presented in sections 
§§4 and 6 can be divided into different kinds. Either they form infinite periodic sequences of uniform step size 1, 
and thus of fixed coclass. These are the classical and well-known coclass sequences whose virtual periodicity 
has been proved independently by du Sautoy and by Eick and Leedham-Green (see [1], §7, pp. 167-168). Or 
they arise from infinite paths of directed edges in descendant trees whose vertices reveal periodic bifurcations 
(see [1], Thm.21.1, p. 182, [1], Thm.21.3, p. 185, and [2], Thm.6.4). Extensive finite parts of the latter have been 
constructed computationally with the aid of the p-group generation algorithm by Newman [3] and O’Brien [4] 
(see [1] [12]-[18]), but their indefinitely repeating periodic pattern has not been proven rigorously, so far. They 
can be of uniform step size 2, as in §4, or of mixed alternating step sizes 1 and 2, as in §6, whence their coclass 
increases unboundedly. 

2. Periodic Bifurcations in Trees of p-Groups 
For the specification of finite p-groups throughout this article, we use the identifiers of the SmallGroups 
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database [5] [6] and of the ANUPQ-package [7] implemented in the computational algebra systems GAP [8] and 
MAGMA [9]-[11], as discussed in [1] (§9, pp. 168-169). 

The first periodic bifurcations were discovered in August 2012 for the descendant trees of the 3-groups 
= 729,49Q 〈 〉  and = 729,54U 〈 〉  (see [1], §3, p. 163] and [1], Thm.21.3, p. 185), having abelian quotient in- 

variants (3,3) , when we, in collaboration with Bush, conducted a search for Schur σ -groups as possible  
candidates for Galois groups 3 3G ( ) = Gal(F ( ) | )K K K∞ ∞  of three-stage towers of 3-class fields over complex 

quadratic base fields = ( )K d  with 9748d ≤ −  and a certain type of 3-principalization [12] (Cor. 4.1.1,  
p. 775). The result in [12] (Thm. 4.1, p. 774) will be generalized to more principalization types and groups of 
higher nilpotency class in section §6. 

Similar phenomena were found in May 2013 for the trees with roots 2187,168〈 〉  and 2187,181|191〈 〉  of 
type (9,3)  but have not been published yet, since we first have to present a classification of all metabelian 3- 
groups with abelianization (9,3) . 

At the beginning of 2014, we investigated the root 729,45〈 〉 , which possesses an infinite balanced cover [2] 
(Dfn.6.1), and found periodic bifurcations in its decendant tree [2] (Thm.6.4). 

In January 2015, we studied complex bicyclic biquadratic fields = ( 1, )K d− , called special Dirichlet 

fields by Hilbert [13], for whose 2-class tower groups 2G ( )K∞  presentations had been given by Azizi, Zekhnini  
and Taous [14, Thm.2,(4)], provided the radicand d exhibits a certain prime factorization which ensures a 2- 
class group 2Cl ( )K  of type (2,2,2) . 

In Section §4, we use the viewpoint of descendant trees of finite metabelian 2-groups and our discovery of 
periodic bifurcations in the tree with root 32,34〈 〉  [1] (Thm.21.1, p. 182) to prove a group theoretic 
restatement of the main result in the paper [14], which connects pairs ( , )m n  of positive integer parameters 
with vertices of the descendant tree ( 8,5 )〈 〉  by means of an injective mapping ,( , ) m nm n G , as shown 
impressively in Figure 1. 

3. Pattern Recognition via Artin Transfers 
Let p denote a prime number and suppose that G is a finite p-group or an infinite pro-p group with finite 
abelianization /G G′  of order vp  with a positive integer exponent 1v ≥ . 

In this situation, there exist 1v +  layers  
Lyr ( ) := { | ( : ) = },for 0 ,n

n G G H G G H p n v′ ≤ ≤ ≤ ≤  
of intermediate normal subgroups H G  between G and its commutator subgroup G′ . For each of them, we 
denote by , : /G HT G H H ′→  the Artin transfer homomorphism from G to H [15]. In our recent papers [2] [3] 
[16], the components of the multiple-layered transfer target type (TTT) 0( ) = ( ); ; ( )vG G Gτ τ τ  of G, resp. the 
multiple-layered transfer kernel type (TKT) 0( ) = ( ); ; ( )vG G G    of G, were defined by  

Lyr ( ) , Lyr ( )( ) := ( / ) , resp. ( ) := (ker( )) , for 0 .
n nn H G n G H H GG H H G T n vτ ∈ ∈′ ≤ ≤  

The following information is known [16] to be crucial for identifying the metabelianization /G G′′  of a 
p-class tower group G , but usually does not suffice to determine G  itself. 

Definition 3.1 By the Artin pattern of G  we understand the pair 
AP( ) := ( ( ); ( ))G G Gτ                                      (3.1) 

onsisting of the multiple-layered TTT ( )Gτ  and the multiple-layered TKT ( )G  of G . 
If G  is the p -tower group of a number field K , then we put AP( ) := AP( )K G  and speak about the Artin 

pattern of K .  
As Emil Artin [15] pointed out in 1929 already, using a more classical terminology, the concepts transfer 

target type (TTT) and transfer kernel type (TKT) of a base field K , which we have now combined to the Artin 
pattern ( ( ); ( ))K Kτ   of K , require a non-abelian setting of unramified extensions of K . The reason is that 
the derived subgroup H ′  of an intermediate group < <G H G′  between the p-tower group G  of K  and 
its commutator subgroup 'G  is an intermediate group between G′  and the second derived subgroup G′′ . 
Therefore, the TTT ( )Gτ  of the p-tower group = ( )pG G K∞  coincides with the TTT ( ( ))n

pG Kτ  of any higher  
derived quotient ( )( ) /n n

pG K G G , for 2n ≥  but not for = 1n , since ( ) ( )/ ( / ) / ( / )n nH H H G H G′ ′
 ,  
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Figure 1. Pairs ( , )m n  of parameters distributed over ( 8,5 )∗ 〈 〉 . 

 
according to the isomorphism theorem. Similarly, we have the coincidence of TKTs ( ( )) = ( )n

pG K G  , for 
2n ≥ . 

4. Two-Stage Towers of 2-Class Fields 
As our first application of periodic bifurcations in trees of 2-groups, we present a family of biquadratic number 
fields K  with 2-class group 2Cl ( )K  of type (2,2,2) , discovered by Azizi, Zekhnini and Taous [14], whose 
2-class tower groups 2= G ( )G K∞  are conjecturally distributed over infinitely many periodic coclass sequences, 
without gaps. 

This claim is stronger than the statements in the following Theorem 4.1. The proof firstly consists of a group 
theoretic construction of all possible candidates for G , identified by their Artin pattern, up to nilpotency class 
cl( ) 12G ≤  and coclass cc( ) 13G ≤ , thus having a maximal logarithmic order 2(ord( )) 25log G ≤ . (The first 
part is independent of the actual realization of the possible groups G  as 2-tower groups of suitable fields K .) 
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Secondly, evidence is provided of the realization of at least all those groups constructed in the first part whose 
logarithmic order does not exceed 11. The second part (see §5) is done by computing the Artin pattern of 
sufficiently many fields K  or by using more sophisticated ideas, presented in Theorem 4.1. 

Remark 4.1 Generally, the first layer of the transfer kernel type 1( )G  of G  will turn out to be a 
permutation [1] (Dfn.21.1, p. 182) of the seven planes in the 3-dimensional 2 -vector space 2/ Cl ( )G G K′

 . 
We are going to use the notation of [1] (Thm.21.1 and Cor.21.1). 

Theorem 4.1 Let = ( 1, )K d−  be a complex bicyclic biquadratic Dirichlet field with radicand 

1 2=d p p q , where 1 1(mod8)p ≡ , 2 5(mod8)p ≡  and 3(mod 4)q ≡  are prime numbers such that 1

2

= 1p
p

 
− 

 
 

and 1 = 1p
q

 
− 

 
. 

Then the 2-class group 2Cl ( )K  of K  is of type (2,2,2) , the 2-class field tower of K  is metabelian (with 
exactly two stages), and the isomorphism type of the Galois group 2 2= G ( ) = Gal(F ( ) | )G K K K∞ ∞  of the 
maximal unramified pro-2 extension 2F ( )K∞  of K  is characterized uniquely by the pair of positive integer  
parameters ( , )m n  defined by the 2-class numbers 1

2 1( ) = 2mh k +  and 2 2( ) = 2nh k  of the complex quadratic 

fields 1 1= ( )k p−  and 2 2= ( )k p q− . 

The Legendre symbol 2p
q

 
 
 

 decides whether G  is a descendant of 32,34〈 〉  or 32,35〈 〉 : 

• 2 = 1p
q

 
− 

 
 ⇔  ( ) = 1m n≥  ⇔  the first layer TKT 1( )G  is a permutation with five fixed points and a 

single 2-cycle ⇔  G  belongs to the mainline 

0, := 32,35 ( #1;1) , with = 1 0,k
kM k m〈 〉 − − ≥                          (4.1) 

of the coclass tree 3( 32,35 )〈 〉 . 

• 2 = 1p
q

 
+ 

 
 ⇔  > 1n  ⇔  the first layer TKT 1( )G  is a permutation with a single fixed point and 

three 2-cycles ⇔  G  is a descendant of the group 32,34〈 〉 , that is ( 32,34 )G∈ 〈 〉 . 
More precisely, in the second case the following equivalences hold in dependence on the parameters ,m n ≤  , 

where 11≤  denotes a foregiven upper bound: 
• 2m n≥ ≥  (with n  fixed) ⇔  G  belongs to the mainline 

1, := 32,34 ( #2;1) #2;2( #1;1) , with fixed = 2j k
j kM j n+ 〈 〉 − − − −                  (4.2) 

and varying = 0k m n− ≥ , of the coclass tree 2 2( 32,34 ( #2;1) #2;2)n n+ −〈 〉 − − . 
• > 1n m ≥  (with m  fixed) ⇔  G  belongs to the unique periodic coclass sequence 

, := 32,34 ( #2;1) ( #1;1) #1;2, with fixed = 1j k
j kV j m〈 〉 − − − −                  (4.3) 

and varying = 1 0k n m− − ≥ , whose members possess a permutation as their first layer transfer kernel type, of 
the coclass tree 2 1( 32,34 ( #2;1) )m m+ −〈 〉 − . 

We add a corollary which gives the Artin pattern of the groups in Theorem 4.1, firstly, since it is interesting in 
its own right, and secondly, because we are going to use its proof as a starting point for the proof of Theorem 
4.1. 

Corollary 4.1 Under the assumptions of Theorem 4.1, the Artin pattern AP( ) = ( ( ); ( ))G G Gτ   of the 2- 

tower group 2= G ( )G K∞  of the biquadratic field = ( 1, )K d−  is given as follows: 
The ordered multi-layered transfer target type (TTT) 0 1 2 3( ) = ; ; ;Gτ τ τ τ τ  of the Galois group G  is given by 

3
0 = (1 )τ , 3 = ( , )m nτ , and 
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2 3 2 2 2

1
3 6

( 1,2), (2,1) , (1 ) , (2,1) ,if = 1,
=

( 1, 1),(1 ) ,else,

pm
q

m n
τ

  
+ −  

  
 + +

                         (4.4) 

4 2

2
3 4

( 1,1), ( ,2), ( 1,1), (2,1) ,if = 1,
=

( 1, ), ( , 1), (max( 1, 1),min( , )), (1 ) ,else.

pm m m
q

m n m n m n m n
τ

  
+ + −  

  
 + + + +

                  (4.5) 

If we now denote by | 2:= Norm (Cl ( ))i K K ii
N K , 1 7i≤ ≤ , the norm class groups of the seven unramified 

quadratic extensions |iK K , then the ordered multi-layered transfer kernel type (TKT) 0 1 2 3( ) = ; ; ;G      

of the Galois group G  is given by 0 = 1 , 7
2 = (0 ) , 3 = (0) , and 

2
1 2 3 5 4 6 7

1

1 3 2 5 4 7 6

( , , , , , , ), if = 1,
=

( , , , , , , ),else.

pN N N N N N N
q

N N N N N N N

  
−  

  



                   (4.6) 

Thus, 1  is always a permutation of the norm class groups iN . For 2 = 1p
q

 
− 

 
 it contains five fixed 

points and a single 2-cycle, and otherwise it contains a single fixed point and three 2-cycles. 
Proof. The underlying order of the 7 unramified quadratic, resp. bicyclic biquadratic, extensions of K  is 

taken from [14] (§2.1, Thm.1, (3), (5)). 
For the TTT we use logarithmic abelian type invariants as explained in [2] (§2). 0τ  is taken from [14] (§2.2, 

Thm.2, (1)), 1 2,τ τ  from [14] (2.3, Thm.3, (1), (2)), and 3τ  from [14] (§2.2, Thm.2, (5)). 
Concerning the TKT, 0  is trivial, 1 2,   are taken from [14] (§2.3, Thm.3, (3)-(5)), and 3  is total, due 

to the Hilbert/Artin/Furtwängler principal ideal theorem.   
Proof. (Proof of Theorem 4.1) 

Firstly, the equivalence 2 = 1p
q

 
− 

 
 ⇔  = 1n  is proved in [14] (3, Lem.5). 

Next, we use the Artin pattern of G , as given in Corollary 4.1, to narrow down the possibilities for G . The 
possible class-2 quotients of G  are exactly the immediate descendants of the root 8,5〈 〉 , that is, three vertices 
16,11 13〈 〉  of step size 1, nine vertices 32,27 35〈 〉  of step size 2, and ten vertices 64,73 82〈 〉  of step 

size 3. Among all descendants of 8,5〈 〉 , the mainline vertices of the tree ( 32,35 )〈 〉  are characterized 
uniquely by the fact that their first layer TKT 1  is a permutation with five fixed points and a single 2-cycle, 
and that their first layer TTT 1τ  contains the unique polarized (i.e. parameter dependent) component ( 1,2)m + . 
Note that the mainline vertices of the tree ( 32,31 )〈 〉  reveal the same six stable (i.e. parameter independent) 
components 3 2 4((1 ) , (2,1) )  of the accumulated (unordered) first layer TTT 1τ , but their first layer TKT 1  
contains three 2-cycles, similarly as for descendants of 32,34〈 〉 . However, vertices of the complete descendant 
tree ( 32,34 )〈 〉  are characterized uniquely by six stable components 3 6((1 ) )  of their first layer TTT 1τ . 

So far, we have been able to single out that G  must be a descendant of either 32,34〈 〉  or 32,35〈 〉 , by 
means of Artin patterns, without knowing a presentation. Now, the parametrized presentation for the group 

,= m nG G  in [14] (§2.2, Thm.2, (4)), 
1 14 2 2 2 2 2 2

, = , , | = = = 1, = , , = , , = , , = 1 ,
n m n

m nG ρ σ τ ρ σ τ ρ σ ρ σ σ ρ τ τ σ τ
+ +

〈 〉            (4.7) 

is used as input for a Magma program script [10] [11] which identifies a 2-group, given by generators and 
relations, 

Group < , , | relatorwordsin , , >ρ σ τ ρ σ τ , with the aid of the following functions: 
• CanIdentify Group() and Identify Group() if 8| | 2G ≤ , 
• Is In Small Group Database(), pQuotient(), Number Of Small Groups(), Small Group() and Is Isomorphic() 

if 9| |= 2G , and 
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• Generatep Groups(), resp. a recursive call of Descendants() (using Nuclear Rank() for the recursion), and Is 
Isomorphic() if 10| | 2G ≥ .  

The output of the Magma script is in perfect accordance with the pruned descendant tree ( 8,5 )∗ 〈 〉 , as 
described in Theorem 21.1 and Corollary 21.1 of [1] (pp.182-183). 

Finally, the class and coclass of G  are given in [14] (§2.2, Thm.2, (6)).  

5. Computational Results for Two-Stage Towers 
With the aid of the computational algebra system MAGMA [11], we have determined the pairs of parameters 
( , ) = ( ( ), ( ))m n m d n d , investigated in [14], for all 11753 square free radicands 1 2=d p p q  of the shape in 
Theorem 4.1 which occur in the range 60 < < 2 10d ⋅ . As mentioned at the beginning of §4, the result supports 
the conjecture that the corresponding 2-tower groups ( ), ( )m d n dG  cover the pruned tree ( 8,5 )∗ 〈 〉  without gaps. 

Recall that a pair ( , )m n  contains information on the 2-class numbers of complex quadratic fields. So we 
have a reduction of hard problems for biquadratic fields to easy questions about quadratic fields. 

By means of the following invariants, the statistical distribution ( ( ), ( ))d m d n d  of parameter pairs is 
visualized on the pruned descendant tree ( 8,5 )∗ 〈 〉 , using the injective (and probably even bijective) mapping 

,( , ) m nm n G . For each fixed individual pair ( , )m n , we define its minimal radicand ( , )M m n  as an absolute 
invariant: 

( , ) := min{ > 0 | ( ( ), ( )) = ( , )}.M m n d m d n d m n                     (5.1) 

The purely group theoretic pruned descendant tree was constructed in [1] (§21.1, pp. 182-184), and was 
shown in [1] (§10.4.1, Figure 7, p. 175), with vertices labelled by the standard identifiers in the SmallGroups 
Library [5] [6] or of the ANUPQ-package [7]. 

In Figure 1, a pair ( , )m n  of parameters is placed adjacent to the corresponding vertex ,m nG  of the pruned 
descendant tree ( 8,5 )∗ 〈 〉 . There are no overlaps, since the mapping ,( , ) m nm n G  is injective. Each vertex is 
additionally labelled with a formal identifier, as used in [1] (Cor.21.1). 

In Figure 2, the minimal radicand ( , )M m n  for which the adjacent vertex is realized as the corresponding 
group ,m nG , is shown underlined and with boldface font. 

Vertices within the support of the distribution are surrounded by an oval. The oval is drawn in horizontal 
orientation for mainline vertices and in vertical orientation for vertices in other periodic coclass sequences. 

6. Three-Stage Towers of 3-Class Fields 
Our second discovery of periodic bifurcations in trees of 3-groups will now be applied to a family of quadratic 
number fields K  with 3-class group 3Cl ( )K  of type (3,3) , originally investigated by ourselves in [16]-[18], 
and extended by Boston, Bush and Hajir in [19]. The 3-class tower groups 3= G ( )G K∞  of these fields are 
conjecturally distributed over six periodic sequences arising from repeated bifurcations (of the new kind which 
was unknown up to now), whereas it is proven that their metabelianizations populate six well-known periodic 
coclass sequences of fixed coclass 2. 

Theorem 6.1 Let = ( )K d  be a complex quadratic field with discriminant < 0d , having a 3-class 
group 3Cl ( )K  of type (3,3) , such that its 3-principalization in the four unramified cyclic cubic extensions 

1 4, ,L L  is given by one of the following two first layer TKTs  

1( ) = (1,1,2,2) or (3,1,2,2),K  

resp.  

1( ) = (2,2,3,4) or (2,3,3,4).K  

Further, let the integer 2 9≤ ≤  denote a foregiven upper bound. 
Then the 3-class field tower of K  is non-metabelian with exactly three stages, and the isomorphism type of 

the Galois group 3 3= G ( ) = Gal(F ( ) | )G K K K∞ ∞  of the maximal unramified pro-3 extension 3F ( )K∞  of K  is 
characterized uniquely by the positive integer parameter 2 u≤ ≤   defined by the 3-class number 3 0( ) = 3uh k  
of the simply real non-Galois cubic subfield 0k  of the distinguished polarized extension L  among 1 4, ,L L  
(i.e., 1=L L , resp. 2=L L ): 
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Figure 2. Minimal radicands d  distributed over ( 8,5 )∗ 〈 〉 . 

 

729,49 ( #2;1 #1;1) #2;4 or 5 | 6, resp.

729,54 ( #2;1 #1;1) #2;2 or 4 | 6, with = 2.

j

j

G
G j u

〈 〉 − − −

〈 〉 − − − −





                    (6.1) 

The metabelianization /G G′′  of the Schur σ -group G , that is the Galois group 2 2
3 3G ( ) = Gal(F ( ) | )K K K  

of the maximal metabelian unramified 3-extension 2
3F ( )K  of K  is unbalanced and given by 

/ 729,49 ( #1;1 #1;1) #1;4 or 5 | 6, resp.

/ 729,54 ( #1;1 #1;1) #1;2 or 4 | 6, with = 2.

k

k

G G
G G k u

′′ 〈 〉 − − −

′′ 〈 〉 − − − −





                 (6.2) 

Again, we first state a corollary whose proof will initialize the proof of Theorem 6.1. 
Corollary 6.1 Under the assumptions of Theorem 6.1, the Artin pattern AP( ) = ( ( ); ( ))G G Gτ   of the 3- 

tower group 3= G ( )G K∞  of the complex quadratic field = ( )K d  is given as follows: 
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The ordered multi-layered transfer target type (TTT) 0 1 2( ) = ; ;Gτ τ τ τ  of the Galois group G  is given by 
3

0 = (1 )τ , 2 = ( , ,1)u uτ , and 
3 2

1 2

( 1, ),1 , (2,1) , if ( 729,49 ),
=

(2,1), ( 1, ), (2,1) , if ( 729,54 ).
u u G

u u G
τ

 + ∈ 〈 〉


+ ∈ 〈 〉




                          (6.3) 

If we now denote by | 3:= Norm (Cl ( ))
ii L K iN L , 1 4i≤ ≤ , the norm class groups of the four unramified cyclic 

cubic extensions |iL K , then the ordered multi-layered transfer kernel type (TKT) 0 1 2( ) = ; ;G     of the 
Galois group G  is given by 0 = 1 , 2 = (0) , and 

1 1 2 2 3 1 2 2
1

2 2 3 4 2 3 3 4

( , , , ) or ( , , , ), if ( 729,49 ),
=

( , , , ) or ( , , , ), if ( 729,54 ).
N N N N N N N N G
N N N N N N N N G

∈ 〈 〉
 ∈ 〈 〉





                  (6.4) 

Thus, 1  is not a permutation of the norm class groups iN . For ( 729,49 )G∈ 〈 〉  it contains a single or 
no fixed point and no 2-cycle, and for ( 729,54 )G∈ 〈 〉  it contains three or two fixed points and no 2-cycle. 

Proof. First, we must establish the connection of the TTT of G  with the distinguished non-Galois simply 
real cubic field 0k . Anticipating the partial result of Theorem 6.1 that the metabelianization /G G′′  of G  
must be of coclass = 2r , we can determine the 3-class numbers of all four non-Galois cubic subfields <i ik L  
with the aid of Theorem 4.2 in [17] (p. 489): with respect to the normalization in this theorem, we have  

2
2

3 0 3 1( ) = 3 = ( ) = 3
m

uh k h k
−

 and uniformly 3( ) = 3ih k  for 2 4i≤ ≤ , since = 1 = 3e r + , which implies 1 = 1
2

e − , 

and /G G′′  has no defect of commutativity. The parameter m  is the index of nilpotency of /G G′′ , whence 
the nilpotency class is given by = 1c m − . 

Now, the statements are an immediate consequence of §§4.1-4.2 in our recent article [2], where the claims are 
reduced to theorems in our earlier papers: [16] (Thm.1.3, p. 405), and, more generally, [18] (Thm.4.4, p.440 and 
Tbl.4.7, p. 441). We must only take into consideration that the 3-class group 3Cl ( )L  of L  is nearly 

homocyclic with abelian type invariants (3, ) ( 1, )A c u u+ , since 2=
2

mu − , and thus 2 1 = 1 =u m c+ − .  

Proof. (Proof of Theorem 6.1) First, we use the Artin pattern of G , as given in Corollary 6.1, to narrow 
down the possibilities for G . The possible class-3 quotients of G  are exactly the immediate descendants of 
the common class-2 quotient 27,3〈 〉  of all 3-groups with abelianization of type (3,3)  (apart from 27,4〈 〉 ), 
that is, four vertices 81,7 10〈 〉  of step size 1 [1] (Figure 3), and seven vertices 243,3 9〈 〉  of step size 2 [1] 
(Figure 4). All descendants of the former are of coclass 1 and reveal the same three stable (i.e. parameter 
independent) components 2 3((1 ) )  of the first layer TTT 1τ , according to [2] (Thm.3.2, (1)), which does not 
agree with the required TTT of G . Among the latter, the criterion [12] (Cor.3.0.2, p. 772) rejects three of the 
seven vertices, 243,3 | 4 | 9〈 〉 , since the TKT of G  does not contain a 2-cycle, and 243,5 | 7〈 〉  are dis- 
couraged, since they are terminal. The remaining two vertices 243,6 | 8〈 〉  are exactly the parents of the 
decisive groups 729,49 | 54〈 〉 , where periodic bifurcations set in. 

Now, Theorem 21.3 and Corollaries 21.2-21.3 in [1] (pp. 185-187) show that, using the local notation of 
Corollary 21.2,  

:= 729,49 | 54 ( #2;1 #1;1) #2;4 | 5 | 6resp.2 | 4 | 6k
kG S 〈 〉 − − −  

and  
2

0,2/ := 729,49 | 54 ( #1;1) #1;4 | 5 | 6resp.2 | 4 | 6,k
kG G V′′ 〈 〉 − −  

both with = 2k u − .   

7. Computational Results for Three-Stage Towers 
With the aid of the computational algebra system MAGMA [11], where the class field theoretic techniques of 
Fieker [20] are implemented, we have determined the Artin pattern ( ( ); ( ))K Kτ   of all complex quadratic 
fields = ( )K d  with discriminants in the range 810 < < 0d− , whose first layer TTT 1( )Kτ  had been  
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Figure 3. Minimal absolute discriminants 8| |< 10d  distributed over 2 ( 243,6 )〈 〉 . 

 
precomputed by Boston, Bush and Hajir in the database underlying the numerical results in [19]. 

Figure 3, resp. 4, shows the minimal absolute discriminant | |d , underlined and with boldface font, for 

which the adjacent vertex of the coclass tree 2 ( 729,49 )〈 〉 , resp. 2 ( 729,54 )〈 〉 , is realized as the metabe-  
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Figure 4. Minimal absolute discriminants 8| |< 10d  distributed over 2 ( 243,8 )〈 〉 . 

 
lianization /G G′′  of the 3-tower group G  of = ( )K d . Vertices within the support of the distribution are 
surrounded by an oval. The corresponding projections /G G G′′→  have been visualized in the Figure 8 and 
Figure 9 of [1] (pp. 188-189). 
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We have published this information in the Online Encyclopedia of Integer Sequences (OEIS) [21], sequences 
A247692 to A247697. 

We emphasize that the results of section 6 provide the background for considerably stronger assertions than 
those made in [12]. Firstly, since they concern four TKTs E.6, E.14, E.8, E.9 instead of just TKT E.9 [2] (§4), 
and secondly, since they apply to varying odd nilpotency class 5 cl( ) 19G≤ ≤  instead of just class 5. 
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