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Abstract 
The internal Zappa-Szép products emerge when a semigroup has the property that every element 
has a unique decomposition as a product of elements from two given subsemigroups. The external 
version constructed from actions of two semigroups on one another satisfying axiom derived by G. 
Zappa. We illustrate the correspondence between the two versions internal and the external of 
Zappa-Szép products of semigroups. We consider the structure of the internal Zappa-Szép product 
as an enlargement. We show how rectangular band can be described as the Zappa-Szép product of 
a left-zero semigroup and a right-zero semigroup. We find necessary and sufficient conditions for 
the Zappa-Szép product of regular semigroups to again be regular, and necessary conditions for 
the Zappa-Szép product of inverse semigroups to again be inverse. We generalize the Billhardt 
λ-semidirect product to the Zappa-Szép product of a semilattice E and a group G by constructing an 
inductive groupoid. 
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1. Introduction 
The Zappa-Szép product of semigroups has two versions internal and external. In the internal one we suppose 
that S is a semigroup with two subsemigroups A and B such that each s S∈  can be written uniquely as s ab=  
with a A∈  and .b B∈  Then since ,ba S∈  we have ba a b′ ′=  with a A′∈  and b B′∈  determined 
uniquely by a and b. We write a b a′ = ⋅  and .ab b′ =  Associativity in S implies that the functions 
( ),a b b a⋅  and ( ), aa b b  satisfy axioms first formulated by Zappa [1]. In the external version we assume 
that we have semigroups A and B and assume that we have maps ,A B A× →  defined by ( ),a b b a⋅  and a 
map A B B× →  defined by ( ), aa b b  which satisfy Zappa axioms [1]. 

For groups, the two versions are equal, but as we show in this paper for semigroups this is true for only some 
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special kinds of semigroups. 
Zappa-Szép products of semigroups provide a rich class of examples of semigroups that include the self- 

similar group actions [2]. Recently, [3] uses Li’s construction of semigroup C*-algebras to associate a C*-algebra 
to Zappa-Szép products and gives an explicit presentation of the algebra. They define a quotient C*-algebra that 
generalises the Cuntz-Pimsner algebras for self-similar actions. They specifically discuss the Baumslag-Solitar 
groups, the binary adding machine, the semigroup N N× , and the ax b+ -semigroup Z Z × . 

In [4] they study semigroups possessing E-regular elements, where an element a of a semigroup S is E-regular 
if a has an inverse a  such that ,aa a a   lie in ( )E E S⊆ . They also obtain results concerning the extension 
of (one-sided) congruences, which they apply to (one-sided) congruences on maximal subgroups of regular 
semigroups. They show that a reasonably wide class of ED -simple monoids can be decomposed as Zappa-Szép 
products. 

In [5] we look at Zappa-Szép products derived from group actions on classes of semigroups. A semidirect 
product of semigroups is an example of a Zappa-Szép product in which one of the actions is taken to be trivial, 
and semidirect products of semilattices and groups play an important role in the structure theory of inverse 
semigroups. Therefore Zappa-Szép products of semilattices and groups should be of particular interest. We 
show that they are always orthodox and ℑ -unipotent, but are inverse if and only if the semilattic acts trivially 
on the group, that is when we have the semidirect product. In [5] we relate the construction (via automata theory) 
to the λ -semidirect product of inverse semigroups devised by Billhardt. 

In this paper we give general definitions of the Zappa-Szép product and include results about the Zappa-Szép 
product of groups and a special Zappa-Szép product for a nilpotent group. 

We illustrate the correspondence between the internal and external versions of the Zappa-Szép product. In 
addition, we give several examples of both kinds. We consider the structure of the internal Zappa-Szép product 
as an enlargement. We show how a rectangular band can be described as the Zappa-Szép product of a left-zero 
semigroup and a right-zero semigroup. 

We characterize Green’s relations (  and  ) of the Zappa-Szép product M G  of a monoid M and a 
group G. We prove some results about regular and inverse Zappa-Szép product of semigroups. 

We construct from the Zappa-Szép product of a semilattice E and a group G, an inverse semigroup by 
constructing an inductive groupoid. 

We rely on basic notions from semigroup theory. Our references for this are [6] and [7]. 

2. Internal Zappa-Szép Products 
Let S be a semigroup with subsemigroups A and B such that each element s S∈  is uniquely expressible in the 
form s ab=  with a A∈  and .b B∈  We say that S is the “internal” Zappa-Szép product of A and B, and 
write .S A B=   Since ba S∈  with b B∈  and a A∈ , we must have unique elements a A′∈  and b B′∈  
so that .ba a b′ ′=  This defines two functions ( ),a b b a⋅  and ( ), .aa b b  Since ba S∈  with b B∈  and 
a A∈ , we must have unique elements a A′∈  and b B′∈  so that .ba a b′=  Write a b a′ = ⋅  and .ab b′ =  
This defines two function ,A B A× →  ( ),a b b a⋅  and ,A B B× →  ( ), .aa b b  Thus ( ) .aba b a b= ⋅  
Using these definitions, we have for all ,a a A′∈  and ,b b B′∈  that 

( )( ) ( ) .aab a b a b a b b′′ ′ ′ ′= ⋅  

Thus the product in S can be described in terms of the two functions. Using the associativity of the semigroup 
S and the uniqueness property, we deduce the following axioms for the two functions. By the associativity of S, 
we have  

( ) ( ) .b aa ba a′ ′=  

Now 
( ) ( ) aab aa b aa b ′′ ′ = ⋅   

and 

( ) ( ) ( )( )( ) .
aa a aba a b a b a b a b a b
′

′ ′ ′= ⋅ = ⋅ ⋅  

Thus, by uniqueness property, we have the following two properties 
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(ZS2) ( ) ( )( ).ab aa b a b a′ ′⋅ = ⋅ ⋅  

(ZS3) ( ) .
aa aab b
′ ′=  

Similarly by the associativity of S, we have  

( ) ( ).bb a b b a′ ′=  

Now 

( ) ( )( )abb a bb a bb′ ′ ′= ⋅  

and 

( ) ( )( ) ( ) .a b a ab b a b b a b b b a b b′⋅′ ′ ′ ′ ′= ⋅ = ⋅ ⋅  

Thus, by uniqueness property, we have the following two properties 
(ZS1) ( ).bb a b b a′ ′⋅ = ⋅ ⋅  
(ZS4) ( ) .a b a abb b b′⋅′ ′=  
In the following we illustrate which subsemigroups may be involved in the internal Zappa-Szép product. 
Lemma 1. If the semigroup S is the internal Zappa-Szép product of A and B then ( ) ( ).A B RI A LI B=   
Proof. Consider .x A B∈   Then since ( ) ( )ax b a xb=  we have ax a=  for all ,a A xb b∈ =  for all 

.b B∈  Thus x is a right identity for A and left identity for B, whereupon ( ) ( )A B RI A LI B⊆  . Observe 
that ( ) ( ) ,RI A LI B A B⊆   thus ( ) ( ).A B RI A LI B=                                         

Of course, if S is a monoid and A and B are submonoids then ( ) ( ) { }1 .SRI A LI B =  
Proposition 1. If S A B=   the internal Zappa-Szép product of A and B, then ( ) ( ) .RI A LI B ≠ ∅   
Proof. We use Brin’s ideas in [8] Lemma 3.4. If a A∈  then ( )a a aβ′=  for unique a A′∈  and 
( ) ,a Bβ ∈  giving us a function : ,A Bβ →  and likewise, if b B∈  then ( )b b bα ′=  for some unique 

b B′∈  and some function : .B Aα →  But for all b B∈  we have ( ) ,ab a a bβ′=  and therefore a a′=  and 
( )a b bβ = : that is ( )aβ  is a left identity for B. Similarly, b b′=  and ( )bα  is a right identity for A. In 

particular, ( )bα  and ( )aβ  are idempotents. Now 

( ) ( ) ( ) ( )( ) ( ) 2
1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 .aa a a a a a a a a a a a a a a aβ β β β β= = = = ⋅  

Therefore 

( )( )
( ) ( ) ( ) 2

1 2 1 1 2

1 2 2 1
a

a a a a a

a a a a

β

β β β

= ⋅

= =
                                   (1) 

Similarly 

( ) ( ) ( )( ) ( )( ) ( )2
1 2 1 2 1 2 1 2 2 1 2 1 2 1 1 2.bb b b b b b b b b b b b b b b bαα α α α= = = ⋅ =  

Therefore 

( ) ( ) ( )
( )2

1 2 1 1 2

1 2 1 2.b

b b b b b

b b b bα

α α α= = ⋅

=
                                 (2) 

Set 1a a=  and for any ( )2,b B a bα∈ =  in (1): 

( ) ( )( ) ( )( ).a a b bβ β α β α= =  

Hence β  is constant: ( )a f Bβ = ∈  for all .a A∈  Similarly, setting ( )1b aβ=  and 2b b=  in (2): 

( ) ( )( ) ( )( )b a b aα α β α β= =  

Hence α  is constant: ( )b e Aα = ∈  for all .b B∈  But now we have that for all a A∈  and  
,b B ae a af∈ = =  and .fb b eb= =  But then putting a e=  and b f=  we have 2 2e e ef f f= = = =  and 

in particular .e f=                                                                          



S. Wazzan 
 

 
1050 

Lemma 2. Let ,S A B=   the internal Zappa-Szép product of A and B and ( )e E S∈  be a right identity 
for A and a left identity for B. Then ( )ae e b e= = ⋅  and , .eea e a be b= ⋅ =  

Proof. We have , , ,e A B a A b B∈ ∈ ∈  then ( ) aea e a e= ⋅ , but ,ae a=  thus ( ) ( )ea e ae ea e= =  and by 
uniqueness we have ,ea e a= ⋅  .ae e=  

Similarly, since eb b=  we have ( ) ebe b e b= ⋅ . Also ( ) ( ).be eb e e be= =  Thus , .ee b e be b= ⋅ =  Hence 
( )ae e b e= = ⋅  and , .eea e a be b= ⋅ =                                                           

In an internal Zappa-Szép product ,S A B=   we find an idempotent ( ) ( ).e RI A LI B∈   This shows (for 
example) that a free semigroup cannot be a Zappa-Szép product. But in a monoid Zappa-Szép product 
M A B=   of submonoids A and B the special idempotent ( ) ( )e RI A LI B∈   must be 1M , since we have 
1M ab=  uniquely. Then for all ( ) ( ), 1Mx A x xe x x ab xa b∈ = = = =  and thus x xa=  and .b e=  Similarly 
a e=  and 21 .M ab e e= = =  

In the following we give a definition of the enlargement of a semigroup introduced in [8] for regular 
semigroups, and in [9] this concept is generalized to non-regular semigroups by describing a condition (enlarge- 
ment) under which a semigroup T is covered by a Rees matrix semigroup over a subsemigroup. We describe the 
enlargement concept for internal Zappa-Szép products. 

Definition 1. A semigroup T is an enlargement of a subsemigroup S if STS S=  and TST T= . 
Example 1. [9] Let S be any semigroup and let I be a set of idempotents in S such that S SIS= . Then S is an 

enlargement of ISI because ( ) ( ) ,S ISI S SIS IS SIS S= = =  and  
( ) ( ) ( )( ) ( ) ( ) .ISI S ISI I SIS ISI IS ISI I SIS I ISI= = = =  If { }I e=  and ,S SeS=  then S is an enlargement of 
the local submonoid eSe . 

Proposition 2. Let S be the internal Zappa-Szép product of subsemigroups A and B. Then S is an enlargement 
of a local submonoid eSe for some ( ) ( ) ,e RI A LI B∈   and eSe is the internal Zappa-Szép product of the sub-  
monoids A  and B  where { } { }: , , : , .A x x ea a A B y y be b B= = ∈ = = ∈  

Proof. We have ( )e E S∈  such that e is a right identity for A and a left identity for B. Then  
S AB AeeB AeB SeS S= = = ⊆ ⊆  so S SeS=  for ( ).e E S∈  So S is an enlargement of the local submonoid 
eSe  ( eSe  is a monoid with identity e). It is clear that A  and B  are submonoids of eSe . We must show 
that each element z eSe∈  is uniquely expressible as z xy=  with , .x A y B∈ ∈  If z eSe∈  then  

, .z ese s S= ∈  But s ab=  for unique , ,a A b B∈ ∈  and so ( ) ( )( ) ,z e ab e ea be xy= = =  where  
, .x ea A y be B= ∈ = ∈  Since A A⊆  and B B⊆  this expression is unique, because .z S A B∈ =   There- 

fore each element z eSe∈  is uniquely expressible as z xy=  with , .x A y B∈ ∈                       
We note that if T A B=   such that T is an enlargement of S eTe A B= =  , where A A⊆  and ,B B⊆  

if ,A B  are regular with the assumption that if ea ea′=  then a a′=  and if be b e′=  then .b b′=  Then A, B 
are regular, since if A  is regular monoid, then for each 1x A∈  there exists 2x A∈  such that  

1 2 1 1 2 1 2 2, .x x x x x x x x= =  Now 1 2 1 1x x x x=  which implies 1 2 1 1 2 1 1.ea ea ea ea a a ea= =  Since A has a right identity 
e, then 1 2 1 1a a a a= . Similarly we get 2 1 2 2a a a a= . Thus A is regular. Similarly, we get B is regular. 

Following [9] we describe the Rees Matrix cover for the Zappa-Szép product T A B=   such that T = TeT 
and is an enlargement of S eTe=  for some idempotent e T∈  where 2S S=  such that Ae = A and eB = B 
and S is the Zappa-Szép product of A  and ,B  S A B=   with { }: ,A x x ea a A T= = ∈ ⊆  and  

{ }: , .B y y be b B T= = ∈ ⊆  Then by Corollary 4 in [9] the Rees matrix semigroup is given by 
( ) ( ); , ; ; , ;M M S U V P M eTe A B P= =  such that 

x A y B
T xT Ty

∈ ∈

= =
 

 since .T TST=  For each z A B∈  , we  

can find zr TS∈  and zr ST′∈  such that .z zz r r′=  So if ,x A∈  then xr e TS= ∈  and xr a ST′ = ∈  such that 
.x ea eeae TSST= = ∈  Similarly, for ,y B∈  ,b by be r r′= =  therefore br b=  and .br e′ =  Now for each  

,z A B∈   fix elements , ,z zr r T′∈  and define B A×  matrix P by putting ( )( ) .yx y xp r r ST TS STS S′= ∈ ⊆ =   
Thus ( ); , ;M M eTe A B P=  is the Rees matrix cover for T A B=   where the map ( ): ; , ;M S A B P Tθ →   

defined by ( ) ( ), , , ,x yx s y r sr ea s be easbeθ θ′= = =  is the covering map (θ  is a strict local isomorphism from 
M to T along which idempotents can be lifted). 

3. Green’s Relations  and  on Zappa-Szép Products 
In this Section we give some general properties of the Zappa-Szép product. We characterize Green’s relations 
(  and  ) of the Zappa-Szép product M G  of a monoid M and a group G.  
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Proposition 3. [10] Let A B  be a Zappa-Szép product of semigroups A and B. Then 
(i) ( ) ( )1 1 2 2 1 2, ,a b a b b b⇒   in B; 

(ii) ( ) ( )1 1 2 2 1 2, ,a b a b a a⇒   in A. 
Proof. Suppose ( ) ( )1 1 2 2, ,a b a b  in ,A B  then there exist ( ) ( )1 1 2 2, , ,x y x y A B∈   such that 

( )( ) ( )1 1 1 1 2 2, , ,x y a b a b=  and ( )( ) ( )2 2 2 2 1 1, , ,x y a b a b= . Then 

( )( ) ( )1
1 1 1 1 1 2 2, ,ax y a y b a b⋅ =  

and 

( )( ) ( )2
2 2 2 2 2 1 1, , .ax y a y b a b⋅ =  

Hence 

( ) ( )1 2
1 1 1 2 1 1 2 2 2 2 1 2 2 1, , , .a ax y a a y b b x y a a y b b⋅ = = ⋅ = =  

It follows that 1 2b b  in B. Similar proof for (ii).                                                
Proposition 4. In the Zappa-Szép product M G  of a monoid M and a group G. Then 

( ) ( ), , in .m g n h m n M⇔   

Proof. By Proposition 3 we have ( ) ( ), ,m g n h  implies that m n  in M. To prove the converse suppose 
that m n  in M then there exist z1 and z2 in M such that 1mz n=  and 2 .nz m=  To show that ( ) ( ), ,m g n h  
we have to find ( )1 1,x y  and ( )2 2,x y  in M G  such that  

( )( ) ( )1 1, , ,m g x y n h=  

( )( ) ( )2 2, , , .n h x y m g=  

Then ( ) ( )1
1 1 2, ,xm g x n g y h n h x m⋅ = = ⋅ =  and 2

2 .xh y g=  Hence  

( ) ( )1 2
1 1

1 2and .x xy g h y h g
− −

= =  

Therefore we set 1 1
1 1 2 2, .x g z x h z− −= ⋅ = ⋅  Hence  

( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )

1 1 1
1 1 1

1 1
1 1

1 1 1 1

1
1 1

, , , , ,

, , ,

g z g z g zm g x y m g g z g h m g g z g g h

m gg z h mz h n h

− − −− −
⋅ ⋅ ⋅− −

−

   = ⋅ = ⋅ ⋅   
   

= ⋅ = =
 

Similarly ( )( ) ( )2 2, , , .n h x y m g=  Hence ( ) ( ), , .m g n h                                         
But from the following example we conclude that the action of the group G is a group action is a necessary 

condition. 
Example 2. Let { }, , ,A e t f b=  be a Clifford semigroup with the following multiplication table. Note that 

{ } 2,e t C≅  and { } 2, ,f b C≅  
 

 e t f b 

e e t f b 

t t e b f 

f f b f b 

b b f b f 

 
Let ( ),+ , the group of integers. Suppose that the action of   on A for each m∈  is as follows: 

, , , .m e f m t b m f f m b b⋅ = ⋅ = ⋅ = ⋅ =  

Observe that m a fa⋅ =  for all a A∈ . The action of A on   as follows: 
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, , , .e f t bm m m m m m m m= = = − = −  

Thus Zappa-Szép axioms are satisfied, since define { } 2: ,A f b Cφ → ≅  by 
,e f f t b bφ φ φ φ= = = =  

is a morphism (this is easy to see from the fact that ( )a afφ = ). Now define { }: ,f b Sψ →   (where S  is 
the group of permutations on  ) by 

,f I bψ ψ α= =  

where ,m mα = −  for all m∈ . Clearly ψ  is a morphism (of groups). Now for a A∈  and m∈  we de- 
fine the action arises from the composition φψ  as follows 

( ) ( ), bya aa m m m m aφψ=  

and  

( ), by .a m m a m a fa⋅ ⋅ =  

We therefore have ( ) ( ) ( )1 , 3 , 2ZS ZS ZS  and ( )4ZS  as following. 
For ( )1 :ZS  ( ) ( ) ( )2 ,m m a m fa f a fa m m a′ ′⋅ ⋅ = ⋅ = = = + ⋅  and for ( )3 :ZS  

( )( ) ( )( ) ( )( ) ( ) ,
aaa a am m aa m a a m a mφψ φψ φψ φψ
′′ ′ ′ ′= = = =  

For ( )2 :ZS  ( ) ,m aa faa′ ′⋅ =  and using af fa=  for all a A∈  we have  

( )( )am a m a fafa faa′ ′ ′⋅ ⋅ = =  

For ( )4 :ZS  

( ) ( )( )
{ }
{ }

if , ,

if , .
a m m a e f

m m m m a
m m a t b

φψ
′ + ∈′ ′+ = + = 
′− − ∈

 

and 

{ }
{ }

if , ,

if , .
m a a fa a

m m a e f
m m m m

m m a t b
′⋅

′ + ∈′ ′+ = + = 
′− − ∈

 

Thus ( ){ }, : ,M A a m a A m B= = ∈ ∈  the Zappa-Szép product of A and B. The set ( ) ( ){ },0 ,E M f=   
since ( )( ) ( )( ) ( ),0 ,0 0 ,0 0 ,0ff f f f f= ⋅ =  and ( ) ( ),a m E M∈  if and only if ( )a a m a= ⋅  and ,am m m=   

since am m=  or m−  for all a A∈  so 2am m m+ =  or 0 .m≠  
Now, we note that 1  acts non-trivially. We have e t  and b f  in A but ( ),e m  not  -related to 

( ),t n  where ,m n∈  since if we suppose ( ) ( ), ,e m t n  then there exist ( )1 1,x y  and ( )2 2,x y  in A  
such that  

( )( ) ( )1 1, , ,e m x y t n=  

( )( ) ( )1
1 1, ,xe m x m y t n⋅ =  

But ( ) { }1 ,e m x f b⋅ ∈  so ( ),e m  not  -related to ( ), .t n  To calculate the  -class of ( ), ,e m  if  
( ) ( ), ,e m a n  then e a  and so a e=  or a t=  we prove a t=  is impossible so .a e=  If  
( ) ( ), ,e m e n  for some n∈  then we have  

( )( ) ( )1 1, , ,e m x y e n=  

( )( ) ( )1
1 1, ,xe m x m y e n⋅ =  

But ( ) { }1 ,e m x f b⋅ ∈  so ( ),e m   -related only to itself. Similarly ( ),t n   -related only to itself. To 
calculate the  -class of ( ),f m  suppose ( ) ( ), ,f m a n  then a f=  or .a b=  Let a f=  so  
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( ) ( ), ,f m f n  then 

( )( ) ( )1 1, , ,f m x y f n=  

( )( ) ( )2 2, , ,f n x y f m=  

and so ( ) ( )1
1 1, , ,xm x m y f n⋅ + =  which implies 1x e=  or 1x f=  so 1 .xm m=  Thus ( ) ( ), ,f m f n  for all 

, .m n∈  By similar calculation we have ( ) ( ), , .f m b n  So if 1  acts non-trivially we have a different 
structure for the  -classes of A  and A. 
 

 
 

Proposition 5. Let M G  be the semidirect product of a monoid M and a group G. Then 

( ) ( ) ( ) ( )1 1, , in .m g n h g m h n M− −⇔ ⋅ ⋅   

Proof. Suppose that ( ) ( ), ,m g n h  then there exist ( ) ( )1 1 2 2, , ,x y x y  in M G  such that  

( )( ) ( )1 1, , ,x y m g n h=  

( )( ) ( )2 2, , ,x y n h m g=  

Then ( )( ) ( )1 1 1, ,x y m y g n h⋅ =  and ( )( ) ( )2 2 2, , .x y n y h m g⋅ =  Hence 1
1 ,y hg −=  1 1

2 1y gh y− −= =  there- 
fore 

( ) ( )1
1 1 1x y m x hg m n−⋅ = ⋅ =  

which implies 
(1) ( )( )1 1 1

1h x g m h n− − −⋅ ⋅ = ⋅  

and  
( ) ( )1

2 2 2x y n x gh n m−⋅ = ⋅ =  

which implies 

(2) ( )( )1 1 1
2g x h n g m− − −⋅ ⋅ = ⋅  

Thus by (1) and (2) we have ( ) ( )1 1g m h n− −⋅ ⋅  in M.  
Now suppose ( ) ( )1 1g m h n− −⋅ ⋅  in G then there exist 1z  and 2z  in G such that ( )1 1

1z g m h n− −⋅ = ⋅  and  

( )1 1
2z h n g m− −⋅ = ⋅ . Therefore ( )( )1

1 .h z hg m n−⋅ ⋅ =  Hence 

( ) ( )( )( ) ( )( )1 1
1 1, , , ,n h h z hg m h h z hg m g− −= ⋅ ⋅ = ⋅  

Therefore we set ( ) ( )1
1 1 1, ,x y h z hg −= ⋅  in M G  other formula by symmetry ( ) ( )1

2 2 2, ,x y g z gh−= ⋅  so 
( ) ( ), , .m g n h                                                                              

Proposition 6. If ( ) ( )1 1g m h n− −⋅ ⋅  such that ( )1 1m
g g− −=  and ( )1 1n

h h− −=  in G, then ( ) ( ), ,m g n h   

in .M G  
Proof. Suppose ( ) ( )1 1g m h n− −⋅ ⋅  then there exist 1z  and 2z  in M such that ( )1 1

1z g m h n− −⋅ = ⋅  which 
implies that 

( )( ) ( )1 1 1 1
1 2and .zn h z h g m z h n g m− − −= ⋅ ⋅ ⋅ = ⋅  
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We set ( ) ( )1 1
1 1 1, , zx y h z h g −= ⋅  and ( ) ( )2 1

2 2 2, , zx y g z g h−= ⋅  then  

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

1 1

1 11

1 1
1 1 1 1 1 1

1
1 1 1

, , , ,

, , , , .

mz zm

m nz g m h n

x y m g x y m y g h z h g m h g g

n h g g n h g g n h n h
− −

− −

−⋅ − ⋅ − −

= ⋅ = ⋅ ⋅

  = = = =  
   

 

Similarly ( )( ) ( )2 2, , , .x y n h m g=  Hence ( ) ( ), ,m g n h  in .M G                               

4. Regular and Inverse Zappa-Szép Products 
The main goal of this Section is to determine some of the algebraic properties of Zappa-Szép products of 
semigroups in terms of the algebraic properties of the semigroups themselves. 

The (internal) Zappa-Szép product ,M A B=   of the regular subsemigroups A and B need not to be 
regular in general. A special case of the Zappa-Szép product is the semidirect product for which one of the 
actions is trivial. We use Theorem 2.1 [11] to construct an example of regular submonoids such that their 
semidirect product is not regular. 

Example 3. Let { }1, , ,0T e f=  be a commutative monoid with 0, each of whose elements is idempotent and 
such that .ef f=  Let { }1, ,S a b=  be a monoid with two left zeros a and b. Then both S and T are regular 
semigroups. Let 1 acts trivially, , 0 0, 0 ,1 1 1.a b a a b b a be e e f f f= = = = = = = =  There is no 2e e S= ∈  such 
that , eSs Se t t T= ∈  for all , .s S t T∈ ∈  Thus the semidirect product R S T=   is not regular. For example, 
( ),a f  is not a regular element of R.  

Example 4. Take { }1, ,A e f=  such that 2 2, , ,e e f f ef f fe= = = =  and { }1,B b=  such that 2 .b b=  Let 
1 A∈  act trivially on B, 1 1 1, 1,e f e fb b= = = =  and 1 B∈  act trivially on A, 1 1, , .b b e f b f f⋅ = ⋅ = ⋅ =  Then 
A and B are regular monoids but their Zappa-Szép product M A B=   is not regular.  

However, there are criteria we can prove that the internal Zappa-Szép product M A B=   of regular A and 
B is regular as the following Propositions illustrated. 

Proposition 7. If A is a regular monoid, B is a group, ( )1 , 1 1a
B B Ba a⋅ = =  for all ,a A∈  then M A B=   

is regular.                                                                                 
Proof. Let ( ),a b M A B∈ =   where a A∈  and ,b B∈  we have to find ( ),c d M A B∈ =   such that  

( )( )( ) ( ), , , ,a b c d a b a b= . Now ( )( )( ) ( ) ( )( ) ( )( ), , , ,
ac ca b c d a b a b c b d a b d b= ⋅ ⋅  and so we choose  

( ) ( )1 1
1, , ,b ac d b a b

− −
′− ⋅ ′= ⋅ 

 
 where ( ).a V a′∈  Since we must have ( )acb d b b=  but B is a group, so  

( ) 1 .
ac

Bb d =  Suppose we are given c, and choose ( ) 1cd b
−

=  since B is a group, so ( ) ( )1 1 ,
a ac

B Bb d = =  and  

then ( ) ( )( ) ( )( ) ( )1 .c
Ba b c b d a a b c a a b c a⋅ ⋅ = ⋅ ⋅ = ⋅  Since A is regular, we choose any ( )a V a′∈  and set  

1 ,c b a− ′= ⋅  thus ( ) ( )1 1 1 .Bb c b b a bb a a a− −′ ′ ′ ′⋅ = ⋅ ⋅ = ⋅ = ⋅ =  Thus ( ) ( ) ( ) ( )1 1
1, , , , ,b aa b b a b a b a b

− −
′− ⋅ ′⋅ = 

 
  

whereupon M A B=   is regular.                                                            
Proposition 8. Let A be a left zero semigroup and B be a regular semigroup. Suppose that for all b B∈ , there 

exists some a A∈  such that ,ab b=  and for all x A∈  there exists some ( )b V b′∈  such that ( ) .xb b′ ′=  
Then M A B=   is regular. 

Proof. Let ( ),a b M A B∈ =   where a A∈  and .b B∈  We have to find ( ),c d M A B∈ =   such that  

( )( )( ) ( ), , , ,a b c d a b a b= . Now ( )( )( ) ( )( ) ( )( ), , , , c d a aa b c d a b a b c d a b d b⋅ = ⋅ ⋅   and we choose  

( ) ( ), , ,c d c b′=  where ( ).b V b′∈  Now since A is a left zero semigroup  

( )( ) ( )( ) ( ), , ,c d a a c aa b c d a b d b a b d b⋅ ⋅ ⋅ =   and by our assumptions we can choose c A∈  such that ,cb b=   

and b d′ =  that is fixed by a. Then ( )( )( ) ( ) ( ) ( ), , , , , , .c aa b c d a b a b b b a bb b a b′ ′= = =  Thus M A B=   is 
regular.                                                                                   

Theorem 1. [12] For any arbitrary semigroup S, ( )Reg S  is a subsemigroup of S if and only if the product 
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of any pair of idempotents in S is regular. 
We now give a general necessary and sufficient condition for Zappa-Szép products of regular semigroups to 

be regular. Consider the internal Zappa-Szép product M A B=   of regular semigroups A and B. Then each 
m M∈  is uniquely a product of regular elements: m ab=  where ( ), .a b Reg M∈  Hence M is regular if and 
only if ( )Reg M  is a subsemigroup of M and so by Hall’s Theorem 1, M is regular if and only if the product of 
any two idempotents is regular. But in fact we need only consider products of idempotents e A∈  and f B∈ , 
as our next theorem shows. 

Theorem 2. Let A and B be regular subsemigroups and ( )e E A∈  and ( ).f E B∈  Then ( )ef Reg M∈  if 
and only if M A B=   is regular. 

Proof. Given m M∈  with m ab=  (uniquely) where , ,a A b B∈ ∈  since A and B are regular subsemi- 
groups, then there exist ( )a V a′∈  and ( ).b V b′∈  Then ( )a a E A′ ∈  and ( ).bb E B′∈  Set e a a′=  and 

.f bb′=  Then by the assumption ( )( ) ( )a a bb Reg M′ ′ ∈  and the set  

( ) ( ) ( ) ( ){ }, , : .M a a bb M e f g V ef E M ge fg g′ ′ = = ∈ = =  

is not empty, see [14]. Because ( )ef Reg M∈  let ( )x V ef∈ , and let .g fxe=  Then 

( ) ( ) ( ) ( ) 2 2ef g ef ef fxe ef ef xe f efxef ef= = = =  

and 

( ) ( ) ( )2 2g ef g fxe ef fxe fxe f xe f xefx e fxe g= = = = =  

and so ( ).g V ef∈  Also 

( )2 ,g f xefx e fxe g= = =  

and so ( ).g E M∈  Also  
,ge fxee g= =  

.fg ffxe g= =  

Thus ( ), .g M e f∈  Also ( )b ga V m′ ′∈  because 

( )( )( ) ( )ab b ga ab afgeb ageb agb aa agbb b a egf b′ ′ ′ ′= = = = =  

we have 

( ) ( ) ( )
,

.
egf ef
egf e fge f ef g ef ef

=

= = =
 

Then  

( )( )( ) ( ) ( )( ) ,ab b ga ab a ef b aa a bb b ab′ ′ ′ ′= = =  
and  

( ) ( ) 2 .b ga ab b ga b gefga b g a b ga′ ′ ′ ′ ′ ′ ′ ′ ′ ′= = =  

and so ( )b ga V m′ ′∈ . Then m ab=  is a regular element which implies that M A B=   is regular. 
Conversely, if M A B=    is the regular internal Zappa-Szép product of the regular subsemigroups A and 

B, each element m of M is uniquely written in the form m ab=  where a A∈  and .b B∈  Thus if e A∈  and 
f B∈  this implies that ,ef M∈  then ( ).ef Reg M∈                                              

Corollary 1. If A and B are regular and ( ) ( ),E A E B  act trivially, then M A B=   is regular. 
Proof. If we take ( )e E A∈  and ( )f E B∈ , then ef  is an idempotent in M. Because  

( )( ) ( )( ) ,eef ef e f e f f eeff ef= ⋅ = =  since ( ) ( ),E A E B  act trivially. Therefore ( ).ef Reg M∈  Hence  

M A B=   is regular.                                                                      
In this case: if m ab M= ∈ , we can find ( ).m V m′∈  First find ( ) ( ), , ,g M a a bb M e f e a a′ ′ ′∈ = =  and  

,f bb′=  g fefe fe= =  since idempotents of A commute with those of B. Then ( )m b ef a xy′ ′ ′= =  for some  

, .x A y B∈ ∈  Thus ( ) ( ) ( ) ( )( )( )( )f ae a e e am b e b f a f b e b f a b f
′⋅′ ′′ ′ ′ ′ ′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅ ⋅  where x b a′ ′= ⋅  and  
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( ) .ay b ′′=  Then ( )( ) .am xy b a b ′′ ′ ′ ′= = ⋅  
Now we discuss inverse Zappa-Szép products. Let S and T be inverse semigroups/monoids with  

( ): S End Tθ →  and let P S T=   be the semidirect product of S and T. We can see from the following 
example that P need not be inverse. 

Example 5. [11] Let { }1,S a=  be the commutative monoid with one non zero-identity idempotent a. Let 
{ }1, ,0T e=  be the commutative monoid with zero an with 2.e e=  Then S and T are both inverse monoids, and 

there is a homomorphism ( ): S End Tθ →  given by 1 1a =  and 0 .a ae e= =  Then P S T=   is regular. 
However, the element ( ),a e P∈  has two inverses, namely ( ),a e  and ( ),0 ,a  and hence P cannot be an 
inverse monoid. 

A complete characterization of semidirect products of monoids which are inverse monoids is given in Nico 
[11]. 

Theorem 3. [11] A semidirect product P S T=   of two inverse semigroups S and T will be inverse if and 
only if ( )E S  acts trivially.  

In the general case of the Zappa-Szép product of inverse semigroups P S T=   we have also P need not be 
inverse semigroup as we can see from the following example. 

Example 6. Let { }, ,A E e f ef= =  where 2 2, ,e e f f ef fe= = =  and { }1, , ,B G a b ab= = —Klein 4-group 
where 2 21, 1, .a b ab ba= = =  Suppose that the action of G on E is defined by:  

, , , , ,a e f b e f a ef ef a f e b f e⋅ = ⋅ = ⋅ = ⋅ = ⋅ =  

and 

, , , .b ef ef ab e e ab f f ab ef ef⋅ = ⋅ = ⋅ = ⋅ =  

and 1 G∈  acts trivially (that is each of ,a b  permutes { },e f  non-trivially). The action of E on G is defined 
by: 

, , , , ,e e f f efa b b b a b b b a b= = = = =  

and 

( ) ( ) ( ), 1, 1, 1.e f efefb b ab ab ab= = = =  

We check Zappa-Szép axioms by the following: define { }2: 1,G C tφ → =  by  

( ) ( ) ( ), , 1.a t b t abφ φ φ= = =  

This is a homomorphism of groups since 2C  is the automorphism group of E. We have an action of G on E 
using φ : if g G∈  and x E∈  define 

( )( ).g x g xφ⋅ =  

We have a homomorphism : G Gψ →  given by a bψ =  and .b bψ =  The action of E on G is given by: 
e f efg g g gψ= = =  

We note that ( ) ( ) ,g gφ ψ φ=  for all .g G∈  For ( )1ZS  we have for ,g h G∈  

( ) ( )( )( ) ( ) ( )( ) ( )( ) .g h x g h x g h x gh x gh xφ φ φ φ⋅ ⋅ = = = = ⋅  

Since 2ψ ψ=  it is clear that ( )3ZS  holds. For ( )2ZS  we have for ,x y E∈  

( ) ( )( ) ( )( ) ( )( )g xy g xy g x g yφ φ φ⋅ = =  

and 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )xg x g y g x g y g x g yφ φ ψ φ φ⋅ ⋅ = =  

So ( )2ZS  holds and for ( )4ZS  

( ) ( ) ( )( )xgh gh g hψ ψ ψ= =  
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and 
( )( ).h x xg h g hψ ψ⋅ =  

Thus ( )4ZS  holds. Then M E G=  . Since every element of M is regular, then M is regular. ( )E M  is a 
closed subsemigroup of M, so M E G=   is orthodox, but since ( )E M  is not commutative for example 
( )( ) ( ), ,1 ,f a f ef b=  while ( )( ) ( ),1 , ,f f a f a= , then M is not inverse.  

The achievement of necessary and sufficient conditions was difficult; so we try to find an inverse subset of 
the Zappa-Szép product of inverse semigroups. This achieved and described in Section 9. We have given the 
necessary conditions for Zappa-Szép products of inverse semigroups to be inverse in the following theorem. 

Theorem 4. P S T=   is an inverse semigroup if 
(i) S and T are inverse semigroups; 
(ii) ( )E S  and ( )E T  act trivially; 
(iii) For each ( ) ( ),p s t E P= ∈  where s S∈  and t T∈ , then s and t act trivially on each other.  
Proof. We know that P S T=   is regular. Since a regular semigroup is inverse if and only if its idem- 

potents commutes, it suffices to show that idempotents of P S T=   commute. If ( ) ( ), , ,a t b u  are idem- 
potents of P S T=  , then 

( )( ) ( ) ( )( ), , , , aa t a t a t a t a t t= = ⋅  

Thus 

( ) and ,aa a t a t t t= ⋅ =  

and 

( ) and ,bb b u b u u u= ⋅ =  

By (iii) a and t act trivially on each other, b and u act trivially on each other, then  
2 2 2 2, , , .a a b b t t u u= = = =  

But since S and T are inverse semigroup, then idempotents commutes that is  
= , = ,ab ba S tu ut T∈ ∈  

Then ( )( ) ( )( ), , , ,ba t b u a t b t u= ⋅  but t and c are idempotents they are act trivially then 

( )( ) ( ) ( ) ( )( ) ( )( ), , , , , , , .aa t b u ab tu ba ut b u a u t b u a t= = = ⋅ =  

Thus P S T=   is inverse.                                                                

5. External Zappa-Szép Products 
Let A and B be semigroups, and suppose that we are given functions ,A B A× →  ( ),a b b a A⋅ ∈  and 

,A B B× →  ( ), aa b b B∈  where a A∈  and .b B∈  satisfying the Zappa-Szép rules ( ) ( ) ( )1 , 2 , 3ZS ZS ZS  
and ( )4 .ZS  Then the set A B×  with the product defined by: ( )( ) ( )( ), , , ca b c d a b c b d= ⋅  is a semigroup, 
the external Zappa-Szép product of A and B, which is written as .A B  

If A and B are semigroups that both have zero elements ( 0A  and 0B  respectively), and we have in addition 
to ( ) ( ) ( )1 , 2 , 3ZS ZS ZS  and ( )4ZS  for all a A∈  and b B∈  the following rule: 

(ZS5) ( ) ( )00 0 , 0 , 0 0 , 0 0 .A a
A A B B A B Bb b a⋅ = = ⋅ = =   

Then by Proposition [10] we have that S is a semigroup with zero ( )0 ,0 .A B  But from the following example 
we deduce that ( )9ZS  is not a necessary condition: 

Example 7. If A and B are semigroups with 0A  and 0B  respectively, acting trivially on each other. Then 
(ZS5) is not satisfied. However, in the Zappa-Szép product S A B= ×  we have  
( )( ) ( )( ) ( ) ( )0 ,0 , 0 0 ,0 0 ,0 0 ,0 ,a

A B A B B A B A Ba b a b a b= ⋅ = =  and  

( )( ) ( )( ) ( ) ( )0, 0 ,0 0 , 0 0 , 0 0 ,0 .A
A B A B A B A Ba b a b b a b= ⋅ = =  Thus ( )0 ,0A B  is zero for .A B   

From the following example we deduce that the zeros 0A and 0B of A and B respectively do not necessarily 
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give a zero for the external Zappa-Szép product .A B  
Example 8. If A is a monoid with identity 1A  and zero 0A  and B is a semigroup with zero 0 ,B  such that 

the action of A on B is trivial action ( ), aa b b b=  and the action of A on B is ( ), 1Aa b b a⋅ =  for all 
, .a A b B∈ ∈  Then Zappa-Szép rules ( ) ( )1 - 4ZS ZS  are satisfied. But (ZS5) is not satisfied since  

0 1 0 ,A A Ab ⋅ = ≠  and ( )0 ,0A B  is not a zero for .A B  
The Zappa-Szép rules can be demonstrated using a geometric picture: draw elements from A as horizontal 

arrows and elements from B as vertical arrows. The rule ( )( )aba b a b= ⋅  completes the square 
 

 
 

From the horizontal composition we get ( )2ZS  and ( )3ZS  as follows: 
 

 
 

From the vertical composition we get (ZS1) and (ZS4) as follows: 
 

 
 

These pictures show that a Zappa-Szép product can be interpreted as a special kind of double category. This 
viewpoint on Zappa-Szép products underlies the work of Fiedorowicz and Loday [13]. In the theory of quantum 
groups Zappa-Szép product known as the bicrossed (bismash) product see [14]. 

6. Internal and External Zappa-Szép Products 
In general, there is not a perfect correspondence between the internal and external Zappa-Szép product of semi- 
groups. For one thing, embedding of the factors might not be possible in an external product as the following 
example demonstrates. 

Example 9. Consider the external Zappa-Szép product ,P =    where for all m∈  and n∈  we 
have n m n m⋅ = +  and 0,mn =  so that the multiplication in P is  
( )( ) ( )( ) ( ), , , , .mm n m n m n m n n m n m n′′ ′ ′ ′ ′ ′= ⋅ = + +  Then for each k∈  the subset ( ){ }, :k m k m= ∈   is  

a subgroup of P isomorphic to   (with identity ( ),k k− ). However P cannot be an internal Zappa-Szép pro- 
duct of subsemigroups Z, N isomorphic to   and   respectively: If ( ),p q  generates N, then the second 
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coordinate of every non-identity element of N is q, and so the second coordinate of any product xy  with 
x Z∈  and y N∈  is equal to q.  

However, under some extra hypotheses, the external product can be made to correspond to an internal product 
for example: 
• if we assume the two factors A and B involving in the external Zappa-Szép product have an identities ele- 

ments 1A  and 1B  respectively such that the following is satisfied  
( )6ZS  11 1 , ,1 ,1 1 ,aA

A A B B Bb b b a a⋅ = = ⋅ = =  for all a A∈  and .b B∈  
So if M A B=  , the external Zappa-Szép product of A and B, then each A and B are embedded in 

M A B=   Define :M A A Bτ →   by ( ) ( ),1M Ba aτ = . We claim Mτ  is an injective homomorphism since 
( ) ( )1 2 1 2 ,1M Ba a a aτ =  and ( ) ( ) ( )( ) ( )( ) ( )2

1 2 1 2 1 2 1 2,1 ,1 1 ,1 1 ,1a
M M B B B B B Ba a a a a a a aτ τ = = ⋅ = . Thus τM is a homo-  

morphism, also Mτ  is injective since ( ) ( ) ( ) ( )1 2 1 2 1 2,1 ,1 .M M B Ba a a a a aτ τ= ⇔ = ⇔ =  Denote its image by 
A . Define :M B A A Bψ → →   by ( ) ( )1 ,M Aa bψ = , then Mψ  is also an injective homomorphism. Denote 

its image by B . Observe that ( ) ( )( ), ,1 1 , .B Aa b a b=  Thus M A B AB= = . This decomposition is 
evidently unique. Thus M A B=   is the internal Zappa-Szép product of A  and B . 
• If A is a left zero semigroup and B is a right zero semigroup, then the external Zappa-Szép product of A and 

B is a rectangular band and it is the internal Zappa-Szép product of ( ){ }, :A a b a A= ∈


 and  
( ){ }, :B a b b B= ∈


 where ,a b
 

 are fixed elements of A and B respectively. Note that in a left-zero semi- 
group A, ( )RI A A=  and in a right-zero semigroup B, ( ) ,LI B B=  and we have the following Theorem: 

Theorem 5. M is the internal Zappa-Szép product of a left-zero semigroup A and a right-zero semigroup B if 
and only if M is a rectangular band. 

Proof. Let A be a left-zero semigroup and B a right-zero semigroup. In the rectangular band M A B= × , let  
( ){ }, :A a b a A= ∈



 and ( ){ }, : ,B a b b B= ∈


 where ,a b
 

 are fixed elements. Then  

( ) ( )( ), , ,a b a b a b A B= ∈ ×
 

 uniquely and ( )( ) ( ), , , ,a b a b a b A′ = ∈
  

 and ( )( ) ( ), , , .a b a b a b B′ = ∈
  

 So 
M A B= ×  is the internal Zappa-Szép product of A  and B , M A B=  , where A A≅  (as left-zero semi- 
group) and B B≅  (as right-zero semigroup). 

Conversely, Let M A B=   where A is left-zero semigroup and B is right-zero semigroup. Then 1 2 1a a a=  
for all 1 2,a a A∈  and 1 2 2b b b=  for all 1 2, .b b B∈  M is a rectangular band if for all ,x y M∈  then ,xyx x=  
where 1 1x a b=  and 2 2y a b=  for unique 1 2,a a A∈  and 1 2, .b b B∈  Now 

( ) ( ) ( ) ( )

( ) ( )( )( )( ) ( )( )

2 1 2

2 1 2 12 2 2

1 1 2 2 1 1 1 1 2 1 2 1 2 1 1 1 2 1 2 1 1

1 1 2 1 2 1 1 1 1 1 1 1 1

a a a

b a b aa a a

xyx a b a b a b a b a b b a b b a b a b b a b

a b a b b a b b a b b a b x
⋅ ⋅

= = ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ ⋅ = = =
 

Thus M is a rectangular band.                                                                

7. Examples 
1) Let { }, , ,A e t f b=  be a Clifford semigroup. Note that { } 2,e t C≅  and { } 2, .f b C≅  Let ( ), ,B = +  

the group of integers. Suppose that the action of   on A for each m∈  is as follows:  
, , , .m e f m t b m f f m b b⋅ = ⋅ = ⋅ = ⋅ =  The action of A on   as follows: , , , .e f t bm m m m m m m m= = = − = −  

Then the Zappa-Szép multiplication is associative. Thus ( ){ }, : ,M A B x m x A m B= = ∈ ∈  the Zappa-Szép 
product of A and B. The set ( )E M  of idempotents of M is the empty set, since ( ) ( ),x m E M∈  if and only if 

( )x x m x= ⋅  and ,xm m m=  since xm m=  or m−  for all x A∈  so 2xm m m=  or 0 .m≠  
2) Suppose that A is a band. Then the left and right regular actions of A on itself allows us to form the Zappa- 

Szép product ,M A A=   since if we define b a ba⋅ =  and ab ba=  with , ,a b A∈  we obtain the multi- 
plication ( )( ) ( )( ) ( )2

1 1 2 2 1 1 2 1 2 1 1 2 1 2 2, , , , .aa b a b a b a b b a b a b a b= ⋅ =  Then M A A=   is the external Zappa-Szép 
product of A and A. Moreover M is a band if and only if A is a rectangular band, in which case M is a rectangular 
band. 

3) Let { }, ,A E e f ef= =  where 2 2, ,e e f f ef fe= = =  and { }1, , ,B G a b ab= = —Klein 4-group, where  
2 21, 1, .a b ab ba= = =  Suppose that the action of G on E is defined by:  

, , , , ,a e f b e f a ef ef a f e b f e⋅ = ⋅ = ⋅ = ⋅ = ⋅ =  and , , , .b ef ef ab e e ab f f ab ef ef⋅ = ⋅ = ⋅ = ⋅ =  and G∈1  
acts trivially. The action of E  on G  is defined by: , , , , ,e e f f efa b b b a b b b a b= = = = =  and  
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( ) ( ) ( ), 1, 1, 1.e f efefb b ab ab ab= = = =  Then M E G=   is the Zappa-Szép product of E and G. Since every 
element of M is regular, then M is regular. ( )E M  is a closed subsemigroup of M, so M E G=   is 
orthodox, but since ( )E M  is not commutative for example ( )( ) ( ), ,1 ,f a f ef b=  while ( )( ) ( ),1 , ,f f a f a= , 
then M is not inverse. 

4) For groups, M A B=   is the Zappa-Szép product of subgroups A and B if and only if, M B A=   
since for any m M∈  we have 1m ab− =  for unique a A∈  and .b B∈  This implies that 1 1m b a− −=  for 
unique 1b B− ∈  and 1 .a A− ∈  Thus .M B A=   But this is not true in general for semigroups or monoids. 
Let { }1,A a=  be a commutative monoid with one non-identity idempotent a. Let { }1, ,B e f=  be a com- 
mutative monoid with two idempotents e and f and .ef fe e= =  Let B act trivially on A and 1 A∈  act trivially  
on B and 1 1, .a a ae f e= = =  Then ( ) ( ){ }1,1 , ,1A a A= ≅  and ( ) ( ) ( ){ }1,1 , 1, , 1, .B e f B= ≅  Then  

M A B=   is the internal Zappa-Szép product of A  and B . But M B A≠  , since  
( )( ) ( )( ) ( )1, ,1 1 , 1 , ,a ab a b a b a b= ⋅ =  so ( ),a f  can not be written as b a′ ′ . Moreover, ( )( ) ( ),1 1, ,a f a f=  so  

BA  is not a submonoid of M. 

8. Zappa-Szép Products and Nilpotent Groups 
In this section we consider a particular Zappa-Szép product for nilpotent groups. Note that G being nilpotent of 
class at most 2 is equivalent to the commutator subgroup G′  being contained in the center ( )Z G  of G. Now, 
let G be a group and let G act on itself by left and right conjugation as follows: 

1 1and .ab a bab b a ba− −⋅ = =  

In the following we show that these actions let us form a Zappa-Szép product P G G=   if and only if G is 
nilpotent group of class at most 2.  

Proposition 9. Let G be nilpotent group of class at most 2. Then the left and right conjugation actions of G on 
it self can be used to form the Zappa-Szép product P G G=  .  

Proof. Let G act on itself by left and right conjugation as follows: 
1 1and ab a bab b a ba− −⋅ = =  

where , .a b G∈  Thus the multiplication is given by: 

( )( ) ( )1 1
1 1 2 2 1 1 2 1 2 1 2 2, , , .a b a b a b a b a b a b− −=  

We prove that the Zappa-Szép rules are satisfied if G is a nilpotent group of class less than or equal 2, which 
implies that [ ], , 1a b c  =   for all , , .a b c G∈  For ( )1ZS  and ( )3ZS  clear they are hold. 

( )2ZS  ( ) ( )( )1
1 2 1 2 .ab a a b a b a⋅ = ⋅ ⋅  

. . .L H S : ( ) 1
1 2 1 2 ,b a a ba a b−⋅ =  

. . .R H S : 

( )( ) ( )( )1 1 1 1 1 1 1
1 2 1 1 1 2 1 1 1 2 1 1

ab a b a ba b a ba a ba b a ba a a b a− − − − − −⋅ ⋅ = ⋅ =  

since G is nilpotent of class ≤ 2,then 

( )( )1 1 1 1 1 1 1 1 1 1
1 2 1 1 1 2 1 1 1 2 1 1 1 1 1 2 . . .ab a b a ba b a ba a a b a ba a a a b a bb a ba a b R H S− − − − − − − − −⋅ ⋅ = = = =  

Thus ( )2ZS  holds. 
( )4ZS  ( ) 2

1 2 1 2 .a b a ab b b b⋅=  
. . .R H S : ( ) 1

1 2 1 2 ,ab b a b b a−=  
. . .L H S : 

1
2 2 2

1 2 1 2
b a b aba ab b b b

−⋅ =  

since G is nilpotent of class 2, then  
2 1 1 1 1 1 1 1 1 1

1 2 2 2 1 2 2 2 2 2 2 2 1 2 1 2 . . .b a ab b b a b b b ab a b a b a b b ab a b b a a b b a R H S⋅ − − − − − − − − −= = = =  
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Thus ( )4ZS  holds. Hence P G G=   is the Zappa-Szép product.                                
Proposition 10. If the left and right conjugation actions of G on itself satisfy the Zappa-Szép rules, then G is 

nilpotent of class at most 2. 
Proof. Suppose the Zappa-Szép rules satisfied, we prove that G is nilpotent of class ≤ 2. If ( )2ZS  holds,  

then for all 1 2, ,a a b G∈  we have ( ) ( )( )1
1 2 1 2

ab a a b a b a⋅ = ⋅ ⋅ . Thus 

1 1 1 1 1
1 2 1 1 1 2 1 1

1 1 1 1 1
2 1 1 2 1 1

ba a b ba b a ba a a b a

a b b a ba a a b a

− − − − −

− − − − −

=

=
 

Therefore 1 1 1 1
1 1 2 2 1 1 .a b a ba a a b a b− − − −=  Hence 1 1

1 1a b a b− −  is central in G. Similarly if ( )4ZS  holds.        
Combining Propositions 9 and 10 we prove the following: 
Proposition 11. P is the Zappa-Szép product of the group G and G with left and right conjugation actions of 

G on itself if and only if G is nilpotent of class at most 2. 
Next we prove the following: 

Lemma 3. The center of P G G=   is ( ) ( ).Z G Z G×  
Proof. Suppose ( ) ( ), .a b Z P∈  Since for all ( ),c d P∈  we have ( )( ) ( )1 1, , , .a b c d abcb c bcd− −=  and 

( )( ) ( )1 1, , , .c d a b cdad a dab− −=  Then 

(1) 1 1.abcb cdad− −=  
and 

(2) 1 1 .c bcd a dab− −=  
Put in (1) 1c = : then 1a dad −=  for all .d G∈  Therefore .ad da=  So ( ).a Z G∈  Put in (2) 1d = : then 

1b c bc−=  for all .c G∈  Therefore .cb bc=  So ( ).b Z G∈  So  
( ) ( ) ( ){ } ( ) ( ), : , ,Z P a b a b Z G Z G Z G= ∈ ≅ ×  since if ( ), , , .a a b b Z G′ ′∈  Then  

( )( ) ( )( ) ( ), , , , , .a b a b a b a b aa bb P′ ′ ′ ′ ′ ′= = ∈                                                       
Lemma 4. If P G G=   then P is abelian if and only if G is abelian. 
Proof. If G is abelian then G is nilpotent of class 1 if and only if ( ) .Z G G=  This implies ( )Z P G G P= × =  

and so P is abelian. 
If P is abelian then ( ) ,Z P P=  but ( ) ( ) ( )Z P Z G Z G= × . Thus ( ) ( )P G G Z G Z G= = ×  if and only if 

( ).G Z G=  Hence G is abelian group. In which case .P G G= ×                                     
Proposition 12. If P is the non-abelian Zappa-Szép product P G G=   and G is nilpotent group of class at 

most 2, then P is nilpotent of class 2. 
Proof. We have G is nilpotent group of class ≤ 2 if and only if for all , ,a b c G∈  we have  
1 1 1 1 ,a b abc ca b ab− − − −=  that is [ ] [ ], ,a b c c a b=  the commutator elements are central. Let ( ) ( ), , ,a b c d    be a 

commutator in P. We prove it is central in P. We have 

( ) ( ) ( ) ( ) ( )( ) ( )( )( ) ( )( )11 1, , , , , , , , , , , .a b c d a b c d a b c d c d a b a b c d
−− −  = =   

Now 

( )( ) ( ) ( ) ( )
( ) ( )( )

1 1 1 1 1 1 1 1

1 1 1 1

, , , , , , ,

, , , , , , , .

a b c d abcb c bcd acc bcb c bcb bd ac c b c b bd

ac c b bd c b ac bd c b c b

− − − − − − − −

− − − −

   = = =    

       = =       
 

and 
( )( ) ( ) ( )

( )
[ ] [ ]( )

( ) [ ] [ ]( )( )

1 1 1 1

1 1 1 1 1 1

1 1

1 1

, , , , , ,

, , ,

, , , , ,

, , , , , , , .

c d a b cdad a dab ca a d a d db

acc a ca a d a d bdd b db

ac c a a d a d bd d b

ac bd c a d b a d a d

− − − −

− − − − − −

− −

− −

   = =    

   =    

   =    

   =    

 

Write [ ] [ ]1 1, , , , , , , .x a d y c b u c a v d b− −   = = = =     Then 
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( ) ( ) ( )( )( ) ( )( ) ( ) ( ) ( ) ( )( )1 1 1 1, , , , , , , , , , , ,a b c d c d a b a b c d x x u v ac bd ac bd y y
− − − −  = =   

Since [ ] [ ]1 1, , , , , , ,c b a d c a d b− −        are commutators, then 

( ) ( ) ( ) [ ] [ ]( ) ( )1 11 1 1 1, , , , , , , , , , , , .a b c d a d a d c a d b c b c b
− −− − − −         =           

This implies that ( ) ( ), , , .a b c d G G′ ′ ∈ ×   Thus ( ) ( ) ( ).P G G Z G Z G Z P′ ′ ′⊆ × ⊆ × =  So commutators in 
P are in the center ( and P is not abelian) so P is nilpotent of class 2.                                   

Combining Propositions 11, 12 and Lemma 4 we have the following. 
Theorem 6. Let G be a group that is nilpotent of class at most 2, and let P G G=   with left and right con- 

jugation action of G on it self. Then: 
1) P is abelian if and only if G is abelian, in which case ;P G G= ×  
2) If G is non-abelian and hence nilpotent of class 2, then P is also nilpotent of class 2. 

9. Zappa-Szép Products of Semilattices and Groups 
The Zappa-Szép product of inverse semigroups need not in general be an inverse semigroup. This is even the 
case for the semidirect product as we see (Nico [11] for example) However, Bernd Billhardt [15] showed how to 
get around this difficulty in the semidirect product of two inverse semigroups by modifying the definition of 
semidirect products in the inverse case to obtain what he termed λ -semidirect products. The λ -semidirect 
product of inverse semigroups is again inverse. In this Section, we construct from the Zappa-Szép product P of a 
semilattice E and a group G, an inverse semigroup by constructing an inductive groupoid. We assume the 
additional axiom for the identity element 1 G∈  we have 1 .e e⋅ =  

Note that if 1 e e⋅ =  for all ,e E∈  then ( )8 1 1eZS =  holds, since by cancellation in the group G.  

( ) 11 1 1

1 1 .

ee e e e e

e

g g g g⋅= = =

=
 

We consider the following where E a semilattice and G a group, and subset ( )B P


 of the Zappa-Szép 
product P E G=  : 

( ) ( ) ( ){ }1 1, : .
e

B P e g P g g− −= ∈ =


 

We form a groupoid from the action of the group G on the set E which has the following features: 
• vertex set: ( )( ) ( ){ },1 :E B P e e E E= ∈ ≅



; 

• arrow set: ( )B E G


 ; 
• an arrow ( ),e g  starts at ( )( ) ( )1, , ,1 ,e g e g e− =  finishes at ( ) ( ) ( )1 1, , ,1 ;e g e g g e− −= ⋅  

• the inverse of the arrow ( ) ( ),e g B P∈


 is ( )1 1, ;g e g− −⋅  

• the identity arrow at e is ( ),1 ;e  and 
• an arrows ( ),e g  and ( ),f h  are composable if and only if 1g e f− ⋅ = , in which case the composite arrow  

is ( )( ), .fe g f g h⋅  

Lemma 5. If ( ) ( ), ,e g B P E G∈ =


  then 
1

.g eg g
− ⋅=  

Proof. we have 1 1e=  for all ,e E∈  then ( ) ( )1 11 1 11 1 .
e ee g e g egg g g g g

− −− ⋅ − ⋅ −= = = =  Then 
1

.g eg g
− ⋅=    

Lemma 6. Suppose that ( ), ,e g B∈


 then ( ),e g  is a regular element and ( ) ( )1 1, , .g e g V e g− −⋅ ∈   
Proof. We have 

( )( )( ) ( )( )( ) ( )( ) ( )( ) ( )11 1 1 1, , , , , ,1 , 1 ,1 ,g e ee g g e g e g e gg e g g e g e e g e e g e g
−− − − ⋅ −⋅ = ⋅ = = ⋅ =  

and 

( )( )( ) ( )( ) ( ) ( )11 1 1 1 1 1 1 1 1 1 1, , , , , ,1 ,e g eg e g e g g e g g e g g g e g g e g g e g
−− − − − − − − − − ⋅ − − −⋅ ⋅ = ⋅ ⋅ = ⋅ = ⋅  
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Thus ( ),e g  is a regular.                                                                   
Proposition 13. If ,P E G=   where E is a semilattice and G is a group then  

( ) ( ) ( ){ }1 1, :
e

B P e g P g g− −= ∈ =


 

with composition defined by 

( )( ) ( )( ), , , fe g f h e g f g h= ⋅  

if ( ) ( )1 ,1 ,1g e f− ⋅ =  and 1 G∈  acts trivially on E is a groupoid.  
Proof. 
 

 
 

We have to prove 
 ( )( ) ( ), fe g f g h B P⋅ ∈



 

( )( ) ( ) ( )
( )

( )1 1
,

e g f
f f fe g f g h B P g h g h

⋅− − ⋅ ∈ ⇔ =  

 

Now 

( )
( )

( )
( ) ( ) ( ) ( )

( )1
1 1 11 1

fe g f e g f e g fg e g ff f fg h h g h g
−⋅ ⋅ ⋅− − −⋅ ⋅− −      = =            

 

Since 1g e f− ⋅ =   implies that 1 ,g g e g f−⋅ ⋅ = ⋅  this implies that ,e g f= ⋅  therefore 

( ) ( ) ( ) ( )1 1 1 1 1.
g f g f efg g g g g

− ⋅ ⋅− − − −= = =  

Then 

( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 1

1

1 1 11 1

1 11 1 1 .

f fe g f e e eg e e g ef f f

g e e f f

g h h g h g

h g h g g h

− −

−

⋅− − −⋅ ⋅− −

− −⋅− − −

        = =             

   = = =   

 

 ( )( ), fe g f g h⋅  starts at ( ),1e  

But ( )( ), fe g f g h⋅  starts at ( )( ),1e g f⋅  and ,g f e⋅ =  so ( ) ,e g f e⋅ =  

 ( )( ), fe g f g h⋅  ends at ( )1 ,1h f− ⋅  

But ( )( ), fe g f g h⋅  ends at ( ) ( )( )11 ,1fh g e g f
−− ⋅ ⋅  

( ) ( )
11 1 1 2 1 1 1 .fh g e g f h g e h g e h f
−− − − − − −⋅ ⋅ = ⋅ = ⋅ ⋅ = ⋅  

Thus ( )B P


 is a groupoid.                                                                
Now we introduce an ordering on ( )B P



. The ordering is giving as follows: 

( ) ( ) 1
, , and .h ee g f h e f g h

− ⋅≤ ⇔ ≤ =  

Lemma 7. The ordering on ( )B P


 defined by 

( ) ( ) 1
, , and .h ee g f h e f g h

− ⋅≤ ⇔ ≤ =  
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is transitive. 
Proof. We have to prove that if ( ) ( ) ( ), , , ,e g f h l k≤ ≤  then ( ) ( ), , .e g l k≤  We have  

( ) ( ), ,e g f h e f≤ ⇔ ≤  and 
1h eg h
− ⋅=  and ( ) ( ), ,f h l k f l≤ ⇔ ≤  and 

1
.k fh k

− ⋅=  Since  

( ) ( )11 1 1 .
e g ee eg g g g⋅−= = = −  Thus ( ) ( )1 1 .

g eeg g
− ⋅−=  We conclude ( )1 1h e eg h h

− −⋅ −= =  and  

( )1 1
.k f fh k k

− −⋅ −= =  Now, e f l≤ ≤  implies that e l≤  and  

( ) ( )( ) ( ) ( ) 111 1 1
.

ee f fe e k eg h k k k k
−−− − −− − − − ⋅= = = = =  Thus ≤ is transitive.                               

Lemma 8. The ordering on ( )B P


 defined by  

( )( ) ( ) 1
, , and .h eB P e g f h e f g h

− ⋅≤ ⇔ ≤ =


 

is antisymmetric. 
Proof. We have to prove if ( ) ( ), ,e g f h≤  and ( ) ( ), ,f h e g≤ , then ( ) ( ), , .e g f h=  Now  

( ) ( ), ,e g f h e f≤ ⇔ ≤  and 
1h eg h
− ⋅=  and ( ) ( ), ,f h e g f e≤ ⇔ ≤  and 

1
.g fh g

− ⋅=  Thus e f=  and  

( ) ( )( ) ( ) 111 1
.

ee f f g fg h g g g h
−−− −− − − ⋅= = = = =  Thus ≤ is antisymmetric.                              

Proposition 14. ( ) ( ) ( ){ }1 1, :
e

B P e g P g g− −= ∈ =


 with ordering defined by 

( ) ( ) 1
, , and .h ee g f h e f g h

− ⋅≤ ⇔ ≤ =  

is a partial order set. 
Proof. Clear from the definition of the ordering that ≤ is reflexive. By Lemma 7 and Lemma 8 ≤ is transitive 

and antisymmetric. Thus ( )( ),B P ≤


 is a partial order set.                                         
Next we prove that ( )( ),B P ≤



 is an ordered groupoid. 

Lemma 9. If ( ) ( ), ,e g f h≤ , then ( ) ( )1 1, ,e g f h− −≤  for all ( ) ( ) ( ), , , .e g f h B P∈


  

Proof. Suppose that ( ) ( ), , ,e g f h≤  so that e f≤  and 
1

.h eg h
− ⋅=  Now, we have 

( )1 1
1 1 .h e eg e h e h e h e

− −
− ⋅ − −⋅ = ⋅ = ⋅ = ⋅  

Thus 
( )( ) ( )( ) ( )( )

( ) ( )( )
1 1 1 1 1 1

1 1 1 1 1f

g e h f h e h f h f h e

h f h e h fe h e g e

− − − − − −

− − − − −

⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅

= ⋅ ⋅ = ⋅ = ⋅ = ⋅
 

and 

( )( ) ( )( ) ( ) ( )( )1 1 1 1 1 1 1 1 1 .
f

h f g e h f h e h f h e h fe h e g e− − − − − − − − −⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ = ⋅ = ⋅  

Therefore 1 1 .g e h f− −⋅ ≤ ⋅  Also 

( ) ( ) ( ) ( ) ( )
1 1 1 1.1 1 1 1 1 1.

h g e h h e hh e e e
h h h h h g

− − −⋅ ⋅ ⋅ ⋅ ⋅− − − − − −= = = = =  

and hence ( ) ( )1 1, ,e g f h− −≤  as required.                                                        
Lemma 10. If ( ) ( ), ,p s e g≤  and ( ) ( ), ,q t f h≤  such that the composition ( )( ), ,p s q t  and ( )( ), ,e g f h  

are defined, then  

( )( ) ( )( ), , , ,p s q t e g f h≤  

for all ( ) ( ) ( ) ( ) ( ), , , , , , , .p s e g q t f h B P∈


 
Proof. Suppose that ( )( ) ( ), , ,p s q t p u=  and ( )( ) ( ), , ,e g f h e k=  are defined 
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Then we have 
1

and .g pp e s g
− ⋅≤ =  

and 
1

and .h qq f t h
− ⋅≤ =  

and we have the following 
 

 
 
where 

1q s pu s t s t st
− ⋅= = =  

 

 
 
where 

1
.f g ek g h g h gh

− ⋅= = =  Now 

( )( ) ( )( )
( )( ) ( )( )

1 1 1 1 1

1 1 1 1 1 1

g p h q g p h s p

g p h g p g p h g p

u st g h g h

g h g h

− − − − −

− − − − − −

⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅

= = =

= =
 

and 

( ) ( ) ( ) ( )1 111 1 1 1 1 1 1 1
.

h h g pgh pk p h g p h g p g p h g pk gh gh g h g h
− −−− − − − − − − −⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅= = = =  

Then 
1

.k pu k
− ⋅=  Moreover, .p e≤  Thus ( ) ( ), ,p u e k≤  as required.                              

Lemma 11. If ( ) ( ),e g B P∈


 and ( ),1f  is an identity such that ( ) ( ),1 ,1 ,f e≤  then ( )1
, g ff g

− ⋅  is the  

restriction of ( ),e g  to ( ),1 .e   
Proof. Suppose ( ) ( ),e g B P∈



 and ( ),1f  is an identity such that ( ) ( ),1 ,1 ,f e≤  since 

( ) ( )1 1
,

fg f f fg g g
− −
⋅ − −= =  then ( ) ( )1

, .g ff g B P
− ⋅ ∈



 Also 

( )( ) ( )( )

( ) ( ) ( )

1 1 11

1 1

, , , ,

, ,1 .
f

g f g f g f f f

g f
f f f f

f g f g f g g f g

f g g f g g f

− − −

−

−
⋅ ⋅ ⋅ − −

⋅− −− − − −

= ⋅

    = ⋅ ⋅ =         

 

Moreover, ( ) ( )1
, ,g ff g e g

− ⋅ ≤  and unique by definition. 

Thus ( )1
, g ff g

− ⋅  is the restriction of ( ),e g  to ( ),1 .e                                            

Proposition 15. ( )( ),B P ≤


 is an inductive groupoid.  
Proof. We prove that ( ) ( )1 , 2OG OG  and ( )3OG  hold. By Lemma 9 we have ( )1 ,OG  by Lemma 10 
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( )2OG  holds and by Lemma 11 ( )3OG  holds. Since the partially ordered set of identities forms a meet semi-  
lattice ( )( )E B P E≅



. Thus ( )( ),B P ≤


 is an inductive groupoid.                                 

Theorem 7. If ,P E G=   where E is a semilattice and G is a group, then  

( ) ( ) ( ){ }1 1, :
e

B P e g P g g− −= ∈ =


 

is an inverse semigroup with multiplication defined by  

( )( ) ( )( )1 1
, , , .f h g ee g f h e g f g h

− − ⋅= ⋅  

Proof. Let ( ) ( ) ( ), , ,e g f h B P∈


 since ( ) ( ) ( )1 1, , ,1e g e g g e− −= ⋅  and ( )( ) ( )1, , ,1 ,f h f h f− =  we form  

the pseudoproduct ( ) ( ), ,e g f h⊗  using the greatest lower pound. 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )1 1 1 1 1, , , , ,1 ,1 ,1 ,1 ,1e g e g f h f h g e f g e f g e f− − − − −= ∧ = ⋅ ∧ = ⋅ = ⋅  

and 

( )( ) ( )( ) ( )( ) ( )
( ) ( )

1
1 1 1

1 1, ,1 , ,

g e
h g e h f

f h g e f f h g e f h

− ⋅− − −
 
 ⋅ ⋅
 − −  

 
 = ⋅ = ⋅ 
 
 

  

and 

( )( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( )
( ) ( ) ( )( )

( )
( )

( ) ( )
( )

1

1
1

1
11 1 1 1

1
1

1 1 1 1

1 1

1 1 1

, , ,

, ,

, .

g e

g g e f

g g e g f e g f

e g f e g f

e g g e g g e f g

g e f g g e f g

g g e f g

−

− ⋅−

−
− ⋅ ⋅− − − −

−
  − ⋅ ⋅ ⋅ ⋅− − − − 
 

− −⋅ ⋅
− − −

 = ⋅ = ⋅ 
 

 
 = ⋅ = ⋅
 
 
    
 = ⋅ ⋅        

 

 

Now, since ( ) ( ),e g B P∈


 then 1eg g− −=  and so ( )
( )

( )
( )1 1

1 1 .
e g f g f

g g
− −⋅ ⋅

− −   
=   

   
 We have  

( )
( ) 1

1 .
g f

fg g
−⋅

− 
= 

 
 Then 

( )( ) ( )( )1, , ,f fe g g g e f g−= ⋅ ⋅  

Therefore 

( ) ( ) ( )( ) ( )( )

( )( ) ( )
( ) ( )

( )( ) ( )( ) ( ) ( )

( ) ( )

1
1 1 1

1
1 1 1

1

1 1

1 1

1

1

, , , ,

, ,

,

, .

g e

g e

h g e h f
f f

h g e h f
g e ff f

h g e ff f

e g f h e g f h

g g e f g g e f h

g g e f g h

g g e f g h

− ⋅− − −

− ⋅− − −
−

− −

 
 ⋅ ⋅
 − −  

 
 ⋅ ⋅

⋅  −  

 ⋅ ⋅−   

⊗ =

 
 = ⋅ ⋅ ⋅ 
 
 

 
 = ⋅ ⋅ 
 
 
 

= ⋅ ⋅ 
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Now, we have in the ordering defined on ( ) ,B P


 ( )1 1g e f g e− −⋅ ≤ ⋅  and 1g e− ⋅  acts trivially on g this  

implies that ( )1

.
g e f fg g
− ⋅

=  Then we have 

( ) ( ) ( ) ( )
( ) ( )( ) ( )( ) ( )

1

1

1 1 1

1 1

g e ff

g e

g g e f g g e f g g e f

g g e g f gg e g f e g f

−

−

⋅− − −

− ⋅ −

   ⋅ ⋅ = ⋅ ⋅ = ⋅ ⋅   

= ⋅ ⋅ ⋅ = ⋅ ⋅ = ⋅
 

and 

( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 11 1 1 1

1 1
1 1 1

.

f
h f h g eh g e f h f g ef f f

h g e
f h f f h g e

g h g h g h

g h g h

− − −− − − −

− −
− − −

 
    ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅        

⋅ ⋅
⋅ ⋅

= =

= =

 

Therefore 

( )( ) ( )( )1 1
, , , .f h g ee g f h e g f g h

− − ⋅= ⋅  

Thus ( )B P


 is an inverse semigroup.                                                       
We summarize the main results of this paper in the following: 
1) We characterize Green’s relations (  and  ) of the Zappa-Szép product M G  of a monoid M and a 

group G we prove that ( ) ( ), ,m g n h m n⇔   in M. And If ( ) ( )1 1g m h n− −⋅ ⋅  such that ( )1 1m
g g− −=  and  

( )1 1n
h h− −=  in G, then ( ) ( ), ,m g n h  in .M G  
2) We prove that the internal Zappa-Szép product S of subsemigroups A and B is an enlargement of a local 

submonoid eSe for some ( ) ( ) ,e RI A LI B∈   and eSe  is the internal Zappa-Szép product of the submonoids 
A  and B  where { } { }: , , : , .A x x ea a A B y y be b B= = ∈ = = ∈  And M is the internal Zappa-Szép product of 

a left-zero semigroup A and a right-zero semigroup B if and only if M is a rectangular band. 
3) We give the necessary and sufficient conditions for the internal Zappa-Szép product M A B=   of re- 

gular subsemigroups A and B to again be regular. We prove that M A B=   is regular if and only if 
( )ef Reg M∈  where ( )e E A∈  and ( ).f E B∈  

4) The Zappa-szep products P G G=   of the nilpotent group G with left and right conjugation action of G 
on it self is abelian if and only if G is abelian, in which case ;P G G= ×  and if G is non-abelian and hence 
nilpotent of class 2, then P is also nilpotent of class 2.  

5) The Zappa-Szép product of inverse semigroups need not in general be an inverse semigroup. In this paper 
we give the necessary conditions for their existence and we modified the definition of semidirect products in the 
inverse case to obtain what we termed λ -semidirect products. The λ -semidirect product of inverse semi- 
groups is again inverse. We construct from the Zappa-Szép product P of a semilattice E and a group G, an 
inverse semigroup by constructing an inductive groupoid. 
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