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Abstract

In this paper, we obtain unique common fixed point theorems for two mappings satisfying the va-
riable coefficient linear contraction of integral type and the implicit contraction of integral type
respectively in metric spaces.
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1. Introduction and Preliminaries
Throughout this paper, we assume that R* =[0,0) and @ ={¢|¢: R* — R" satisfying that ¢ is Lebesgue
integral, summable on each compact subset of R* and J';(/ﬁ(t)dt >0 foreach ¢>0}.

The famous Banach’s contraction principle is as follows:
Theorem 1.1 ([1]). Let f be a self mapping on a complete metric space (X,d) satisfying

d(fx, fy)<cd(xy) forall x,yeX, (1.2)

where ce[0,1) is a constant. Then f has a unique fixed point Xe X such that lim " (x)=% for each
xeX.

It is known that the Banach contraction principle has a lot of generalizations and various applications in many
directions; see, for examples, [2]-[15] and the references cited therein. In 1962, Rakotch [11] extended the Ba-
nach contraction principle with replacing the contraction constant ¢ in (1.1) by a contraction function y and
obtained the next theorem.

Theorem 1.2 ([11]). Let f be a self-mapping on a complete metric space (X,d) satisfying
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d(fx, fy)<y(d(xy))d(xy) forallx,yeX, (1.2)

where y:R" —>[0,1) is a monotonically decreasing function. Then f has a unique fixed point Xe X such
that lim_,, f"(x)=%X foreach xe X .

In 2002, Branciari [12] gave an integral version of Theorem 1.1 as follows.

Theorem 1.3 ([12]). Let f be a self-mapping on a complete metric space (X,d) satisfying

J'O( ¢ t)dt<c j t)dt forallx,y e X, (1.3)
where ce[0,1) isaconstantand ¢ e @ . Then fhas a unique fixed point Xe X such that

lim,,, f"(x)=X foreach xeX .

In 2011, Liu and Li [13] modified the method of Rakotch to generalize the Branciari’s fixed point theorem
with replacing the contraction constant ¢ in (1.3) by contraction functions « and g and established the fol-
lowing fixed point theorem:

Theorem 1.4 ([13]). Let f be a self-mapping on a complete metric space (X,d) satisfying

B sdeza(duy) [ o0 a0y [0 Vg0t forallxyex, (1)

where ge® and «,f:R" - [0,1) are two functions with

a(t)+p(t)<1 forall teR™; limsup__ . B(s)<1; limsup - 1;;()5) <1 forall t>0.
S S—> S
Then f has a unique fixed point Xe X suchthat lim _, f"(x)=% foreach xe X .
Here, we will use the methods in [3] [9] [13] to discuss the unique existence problems of common fixed
points for two self-mappings satisfying two different contractive conditions of integral type in a complete metric
space.

2. Common Fixed Point Theorems

Lemma 2.1 ([13]). Let ge® and {rn} be a nonnegative sequence with lim___r =r.Then

neN nN—co °n

m,.,. [ #(t)dt = 4(t)dt.
Lemma 2.2([13]). Let g ® and {rn}nEN be a nonnegative sequence. Then

["p(t)dt=0<lim, 1, =0.

Now, we will give the first main result in this paper.
Theorem 2.1. Let (X,d) beacomplete metric space, f,g:X — X two mappings. If foreach x,ye X,

" o0 a(d (xy) [} 00+ (8 () ;7 ple) et

ity (2.1)
+7/(d(x,y))_|'O “g(t)dt,
where ¢ed and a,ﬂ,;/:R*—>[O,l) are three functions satisfying the following conditions
a(t)+B(t)+r(t)<1 forallte[0,x), max{limsups_m B(s).limsup__ . ;/(s)}<1 (2.2)

max{limsup t+az(t),limsup M,Iimsup +M}<l for allt €[0,0). (2.3)
s _ t st 1_7('[)

Then f and g have a unique common fixed point u, and the sequence {xn}neN defined by x,,,= X, ,

ni2 = OXony fOrany x, e X converges to u.

Proof.

Let X, =xe X . We construct a sequence X,

iz = %,y forall ne NU{O}. Let d, =d(

For ne NU{0}, by (2.2),

X

}ne satisfying the following conditions x,.,, = X, .
Xy %,1) forall neNU{0}.

X
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[ g(t)at
= [P g ) dt < ar(d (X X)) o (1)
B(d (an Xon ) 25 (08t 4 7 (0 (X X)) [ (1)
= [ar(d (X0 0))+7(d (e X)) ] (1)t 4 (O 0)) |7 (1)
hence by (2.3),

e i R ST ST 28

Similarly, by (2.1),
[ p(tydt = [ g 1) ot
<[ (A (Xon Xon1)) + B (Kon Xon)) ] 7" #(2)
+7(d (0 %0)) [, (1),

hence by (2.3),

[oas s SO Sl gas (gga e

Combining (2.4) and (2.5), we have

jo”“ dt<_[ ¢(t)dt forallne NU{O}. (2.6)

Now, we prove that

d,,, <d, forallne NU{0}. (2.7)

Otherwise, there exists n, e N such that
dp, >dy o (2.8)

Obviously, d, >0. If n, =2k, then by (2.3), (2.4), (2.6) and (2.8),
0< [0 g(t)dt< [0t g(t)dt < [ p(t)dt= [ g(t)clt

- a(d (szIXZk—l))+7(d (X2k’X2k—l)) dai1
a l—ﬂ(d(xzkixzk—l» IO ¢(t)dt

oy dy
<[ g(t)dt=[ "7 g(t)dt
which is a contradiction. Similarly, if n, =2k +1, then by (2.3), (2.5), (2.6) and (2.8),
0< [ g(t)dt< [t g(t)dt < [ p(t)dt = jdz“qﬁ(t)dt

a(d (X2k1X2k+1))+ﬂ( (X2k1X2k+l dai » 4 4
: #(t g(t)dt = " p(t)dt
1_7(d(xzkvX2k+1)) J. I IO ( )

which is also a contradiction. Hence (2.7) holds. Therefore there exists u>0 such that lim___d =u. If

u>0, then by Lemma 2.1, (2.3) and (2.4), e
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0<[lp(t)dt=lim,_, [ ¢(t)dt

a(d(XZK’XZk ) +7(d(X2k’X2k—l)) dang
1—ﬁ( szlxzk—l)> Io ¢(t)dt]

a(d(sz Xok 1) +7/(d(x2k’X2k—l))
1- ﬁ( Xak 1 Xok 1))

< Iimsup{

/‘\v /—\v

< Iimsup{ ]Iimsupn% jodz”’l¢(t)dt

<j0”¢(t)dt

which is a contradiction. Therefore u=0, thatis, lim ,_ d,=0.
We claim that {Xn}neN is a Cauchy sequence. Otherwise, there &£>0 such that for k e N, there exist
m(k),n(k)e N with m(k)>n(k) such that the parity of m(k) and n(k) is differentand
d (xm(k) n(k ) > €.

Fork, let m(k) denotes the least integer exceeding n(k) and satisfying the above, then

d(Xm(k)vxn(k)>>€ d( (k)-27 Xn(k ))Sg forallk e N, (2.9
hence
g<d( m(k) Xn( ) ( (k) Xm( 2)+d m(k)-2 T m(k)lsg+dm(k)—2+dm(k)fl' (2.10)
Let k — oo, then we obtain ¢ =lim, ,_d ( k)) lim_d ( k)fZ'Xn(k))'BUt

4 (010X )ol(xm 0 )| < Gy

‘d Xm(k)+l’ n( ) d(xm AR )
<

‘d (Xm((k)' Xnk) ) —d (Xm(k)’ Xn(k)+1)

n(k)’

n(k)’

hence we obtain
e=lim_, d (Xm(k)' Xn(k)): lim, . d (Xm(k)’xn(k)+1)
=lim,,.d (Xm(k)+l’ Xn(k)) =lim,_, d (Xm(k)+l’ X”(k)+1)'

If m(k) isevenand n(k) isodd, then by Lemma 2.1, (2.11) and (2.1),

(2.11)

0< [ p(t)dt = limsup,_,, [ 4oy "‘”*1)¢( t)dt =limsup, _, [; (P 25 (”)¢(t)dt
<limsup, ,, [a(d (Koo xn(k))) jo“(xm“)' ) g ) ot

(8 s ) 008 (0 ) )0
J.msupM[a( (o )) 0] g 1)

(4 (s )) “’t”(d( o ) 7 #(0)ct

<limsup,.,, @(s)[; #(t)dt () = 0,dy ) —0)< [ g(t)ct

which is a contradiction. Similarly, we obtain the same contradiction for the case that m(k) is odd and n(k)
is even. Hence {x,} is a Cauchy sequence, therefore lim X, = X~ for some x" e X by the completeness
of X.

If X #x,then d ( X", x*) >0, hence by (2.1) and Lemma 2.1,
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0< j:(fx*'x*)qﬁ(t)dt =limsup, ,.. J'd(ka'gxz"“);zﬁ(t)dt

0

<limsup, ., [a(d (x*, sz))f:(x*,xZn+1)¢(t)dt
(0 (X 0 ) 1T g (1)t (0 (X ) Jj“z“”'%”%(t)dt}
<limsup_ . ,B(s)f;(fxx’x*)
< J.:(fx*'x*)¢(t)dt
which is a contradiction, hence X" =Xx". Similarly, we obtain gx" =x". Therefore x~ is a common fixed

point of f and g.
If y* isanother common fixed point of fand g, then d (x*, y*) >0, hence by (2.1),

p()dt (- d (X %0.1) > 0,00, > 0)

o< [ gyae= [ p(t)et
<a(a(cy )T o p(a () o
(G ) gt
=a(d(x, y*))j:(x*’y*w(t)dt <'f;(x*'y*)¢(t)dt

which is a contradiction, hence x =y",i.e., X" isthe unique common fixed point of f and g.

From Theorem 2.1, we obtain the next more general common fixed point theorem.

Theorem 2.2. Let (X,d) be a complete metric space, m,ne N and f,g:X — X two mappings. If for
each x,ye X,

L g0dsa(@xon) [ s a(d (xo) [ o0
r(d (o) [P g0t

0

(2.12)

where ge®, a,fB,7:R" —>[O,1) are three functions satisfying (2.2) and (2.3). Then f and g have a unique
common fixed point u, and the sequence {x,} defined by X,,,, = "X, Xop = 9" %y, for any x, e X
converges to u.

Proof.

Let F=f" and G=g", then F and G satisfy all of the conditions of Theorem 2.1, hence there exists an
unique element ue X suchthat f"u=Fu=u=Gu=g"u.If fu=u,then d(fu,u)>0,hence by (2.12),

keN

d(fu,u)

O<Lj<fu,u>¢(t)dt:J;(fmfuvg"U)(é(t)dtSa(d(fu,u))jd(fu'u)qﬁ(t)dt<j0

0

$(t)dt

which is a contradiction, hence fu =u. Similarly, gu=u. So u is a common fixed point of f and g. The uni-
queness is obvious.

From now on, we will discuss the second common fixed point problem for two mappings with implicit con-
traction of integral type. 5

Let we¥ ifandonlyif w:(R") — R is a continuous and non-decreasing function about the 4th and
5th variables and satisfying the following conditions:

(i) There exists h, €(0,1) suchthat u<w(v,u,v,0,u+v) implies u<hv;

(ii) There exists h, €(0,1) suchthat u <y (v,v,u,u+v,0) implies u<h,v;

(i) w(t,0,0,t,t)<t,1(0,t,0,0,t)<t,1(0,0,t,t,0) <t forall t>0.

Example 2.1. Define 1//:(R*)5 — R" as follows
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5
1,//(x1,x2,x3,x4,x5)=Zaixi for all x;, X,, X;, X, X € R",

where g >0 forall i=1,2,34,5 and a +a,+a,+2a,+2a, <1.Then weV.
The function ¢ € @ is called to be sub-additive if and only if forall a,b>0,

a+b a b
[ s(0)dt<[ g(t)dt+[ 4(t)dt.
Example 2.2. Let ¢(t)= % foreach t>0. Then obviously ¢ ® andforall a,b>0,
+

J.;+b¢(t)dt _ In(1+a+b) < |n(1+a)(1+b) - I:¢(t)dt +J.;¢(t)dt

Hence ¢ is a sub-additive function.
Theorem 2.3. Let (X,d) be a complete metric space, f,g: X — X two mappings. If for each x,ye X,

[ g(t)at < y/(j:(x'y);ﬁ(t)dt,j:(x'fx)¢(t)dt,jod(y'gy)¢(t)dt,jod(x'gy)¢(t)dt,j:(fx'g)qﬁ(t)dt), (2.13)

where ¢ e ® issub-additive and w € ¥ . Then f and g have a uniqgue common fixed point.
Proof.
We take any element x, € X and consider the sequence {x,} constructed by X, ., = fx, and
Xorin = %, ., forall ke NU{ }.Let d, =d(x,,x,,) forall neNU{0}.
Since

J- dt —J (fx2n.9%2n-1) ¢(t)dt
< ( (XanXon1) J.d(x2n,fx2n)¢(t)dt,J'd(in—lvgxzn—l)¢(t)dt,J‘;(invgxzn—l)¢(t)dt,J-Od(fxznyxzn—l)¢(t)dt)

<y (ot J " () [ ()0, [ g 1))
sw(ffz“qﬁ t)dt, [ g(t)dt, [ g t)dt,o,jo"z"’lqﬁ(t)dt+j;’2"¢(t)dt),
So by (i),
[ p(t)dt<h [ p(t)dt forallne NU{O}. (2.14)
Similarly,

Ijzm1¢(t)dt :J'Od(fXvagXZn+1)¢(t)dt

10znYzna) d(en. bon) d0xn:1.9%2n41) d(X2n.9%2n41) d( fxan Xons1)
SW(IO p(t)dt, | pt)dt, [T g ), [T (), | ¢(t)dt)
<y (I; ()] p(t)dt, [ p(t)dt, [T g, o)
sw(ffz”¢(t)dt,jjz”¢(t)dt,jjz“” Ot [ p(t)dt+ [ p(t)dt, o)

S0 by i),
[ g(t)dt<h, [ p(t)dt foraline NU{O}. (2.15)

Combining (2.14) and (2.15), we have
[ g(t)dt <max{h,h,} [ p(t)dt < [" p(t)dt forallne NU{0}. (2.16)

Obviously, d,,=d, for all ne NU{O}. If there exits n, such that d, >d, ,, then d _>0. If

n, = 2k, then by (2.14) and (2.16)
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0< [ p(t)dt< [ g(t)dt< [ p(t)dt<h, [ g(t)dt < [ g (t)at,
which is a contradiction. Similarly, if n, =2k +1, then by (2.15) and (2.16)
0< [ p(t)at< [ g()at< [ o(t)d <h, [ p(t)at < [ p(t)ot,

which is also a contradiction. Hence we have
d,, <d, forallneNU{0}.

Therefore there exists u>0 lim,,_ x, =u.If u>0,then

0< [ p(t)ydt=lim,, [ p(t)dt<lim,_, b [ g(t)dt<h[ g(t)dt<[ p(t)dt

which is a contradiction. Therefore, u=0,i.e., lim __d, =0.

We claim that {Xn} is Cauchy. Otherwise, just as the line of proof of Theorem 2.1, there exists ¢ >0 such
that for k e N there exist m(k),n(k)e N with m(k)>n(k) such that the parity of m(k) and n(k) is
different and (2.11) holds.

If m(k) isevenand n(k) isodd, then by Lemma 2.1, (2.11), (2.13) and (iii),

0< [ 4(t)dt=lim,_, J.:(Xm(k)ﬂyxn(k)ﬂ)¢(t)dt =lim, jod(fxm<k)~gxn(k>)¢(t)dt
<"mk*°°"/U B R M gx"“)¢(t)dt,ff(fxm‘”’x"‘”)cé(t)dt]
<v([pwaoo Lo swa)< [ pwa

This is a contradiction. Similarly, we obtain the same contradiction for the case that m(k) isoddand n(k)
is even. Therefore, {x,} isa Cauchy sequence. Let lim _ x, =X .

n—o 'n

If £ %X, then d(fx",x")>0, hence by Lemma 2.1 and (2.13) and (iii),
0< j gty = tim, jd(fx*’%““)qﬁ(t)dt
<lim, V’U;(X 'X2”“)¢(t)dt,j0 (X*'fx*);zﬁ(t)dt,J'Od(xz"”'gxzm)gb(t)dt,J':(X*'gxz””)gb(t)dt,_[:(fx*'xm)gﬁ(t)dtj
_ ,,,(o o ) dt,O,OJ‘;(X*'fX*)qﬁ(t)dtJ < .[j(x*'fx*)ﬂt)dt

which is a contradiction, hence fx =x". Similarly, we obtain gx =X . Therefore, x" is a common fixed

point of fand g.
If y* isanother common fixed point of f and g, then d (x*, y*) > 0, hence by (2.13) and (iii),

0< j;(xk'y*)¢(t)dt :j;(fxi’gy*)mt)dt
<o [ oa a0 pwa [ a0 a [ pwar
= V’Uod(x*'y*)qﬁ(t)dt,ol 0.1 g (e, jj(**'“)qs(t)dt] <[ty

This is a contradiction. Hence X" is the unique common fixed point of f and g.

Using Theorem 2.3 and the Example 2.2, we have the next result.
Theorem 2.4. Let (X d) be a complete metric space, f,g: X — X two mappings. If

In(l+d (fx, gy)) (In(l+d (xy)) In(l+d x, X)) In(l+d y.0y)) In(1+d X,0y)) In(1+d (1, g))) for all X,y € X

where € ¥ . Then f and g have a unique common fixed point u.



X.Jin, Y.]. Piao

Combining Theorem 2.4 and Example 2.1, we obtain the following result.
Theorem 2.5. Let (X,d) be a complete metric space, f,g: X — X two mappings. If foreach x,ye X,

1+d(fx,gy) <(1+d(xy))" (T+d (x, &) (1+d (y,9y))* (1+d (x, gy))" (1+d (fx,y))*

where @ >0 forall i=1---,5 and a +a,+a,+2a,+2a; <1.Thenfand g have a uniqgue common.
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