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Abstract 
In algorithms of nonlinear Kalman filter, the so-called extended Kalman filter algorithm actually 
uses first-order Taylor expansion approach to transform a nonlinear system into a linear system. 
It is obvious that this algorithm will bring some systematic deviations because of ignoring nonli-
nearity of the system. This paper presents two extended Kalman filter algorithms for nonlinear 
systems, called second-order nonlinear Kalman particle filter algorithms, by means of second-order 
Taylor expansion and linearization approximation, and correspondingly two recursive formulas 
are derived. A simulation example is given to illustrate the effectiveness of two algorithms. It is 
shown that the extended Kalman particle filter algorithm based on second-order Taylor expansion 
has a more satisfactory performance in reducing systematic deviations and running time in com-
parison with the extended Kalman filter algorithm and the other second-order nonlinear Kalman 
particle filter algorithm. 
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1. Introduction 
It is well known that the theory of Kalman filter has been widely used in many scientific fields. Particularly, the 
linear Kalman filter algorithm has received a great deal of attention due to its effectiveness in estimating the 
state of an underlying linear system in [1]. However, it has been recognized that nonlinearity and disturbance 
exist in many practical linear systems, which leads to considering nonlinear Kalman filter algorithms of nonli-
near state-space systems in [2]. 

A widely used Kalman filter algorithm for linear systems is called extended Kalman filer algorithm (EKF for 
short), which actually uses first-order Taylor expansion approach to transform a nonlinear system into a linear 
system. Since this nonlinear Kalman filter algorithm is linear in nature and it does not consider the nonlinearity 
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of the system equation, a sub-optimal state estimate for a nonlinear state-space system can be given in [3]. In 
order to reduce error in the estimation of the system state and improve the precision of EKF, various modified 
algorithms have been established. For example, Uhlmann et al. [4] give a kind of unscented Kalman filter (UKF) 
algorithm for nonlinear systems. This algorithm has the same calculation capacity as the EKF algorithm and re-
duces error in linearizing nonlinear model. Merwe et al. [5] present an algorithm called central difference Kal-
man filter (CDKF) and deduce its recursive formula. This algorithm is easier to realize than EKF, because it 
does not need to compute Jacobi matrices. But UKF and CDKF are not suitable for non-Gaussian state-space 
systems. If a state-space model is nonlinear and noise distributions are non-Gaussian, particle filters (PFs) or 
sequential Monte Carlo (SMC) methods provide an effective algorithm to deal with this case [6]. A combination 
of EKF and PF leads to extended Kalman particle filter (EKPF) algorithm, where EKF algorithm updates the 
sampling particles and the particles approximate the filtering distributions. The EKPF algorithm has been ap-
plied to neural networks in [7], and the results show that the algorithm is superior to other basic particle filter 
algorithms. Although these algorithms have some advantages in effectiveness and calculation speed for most of 
nonlinear state-space models, sometimes we need some more accurate Kalman filter algorithms to estimate the 
state of nonlinear systems. 

To this end, this paper will give two Kalman particle filter algorithms for nonlinear state-space models. One is 
based on second-order Taylor expansion of structural functions of nonlinear system (SEKPF), the other, denoted 
by SLEKPF, uses a linearization method to approximate the quadratic of second order Taylor expansion of struc- 
tural functions. Accordingly, recursive formulas of the above nonlinear Kalman filter algorithms are derived. A 
simulation example is given to compare EKPF with SEKPF and SLEKPF. It can be seen from running time and 
root mean square error of the state estimation that they have similar calculation capacity, but SLEKPF is supe-
rior to EKPF and SEKPE in accuracy of state estimation. 

2. Nonlinear Kalman Filter 
2.1. Extended Nonlinear Kalman Filter 
For a nonlinear state-space model, the extended Kalman filter is a frequently used method to estimate the system 
state. The key point of this algorithm is to use first-order Taylor expansion to approximate the structural func-
tions of the model. More precisely, a general nonlinear discrete-time state-space model is given as follows: 
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( ) ( )

1 1,

,    0.
t t t

t t t t

v

y a x h w t

ξ ξ

ξ
+ += Φ +

= + + ≥
 

where the system state tξ  and the noise 1tv +  are r-dimensional, whiled the observation value ty  and the 
noise tw  are n-dimensional. Moreover, the following assumptions are satisfied: 
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If ( )Φ ⋅  is a twice continuously differentiable function and ( )h ⋅  is a continuously differentiable function, 
then we use Taylor expansion of ( )Φ ⋅  and ( )h ⋅  to approximate these function. In this case, the nonlinear 
state-space model (1) can be described approximately as a linear model. Let ( )1 0 1 0, , , , , , ,t t t t ty y y x x xδ − −=    
denote the information flow, namely, the observed data obtained through date 1t −  be summarized. Suppose 
that the initial value of the state vector 1ξ  of the state-space model (1) is normally distributed and the distur-  

bances tv  and tw  are normal. Then t tξ δ  and 1,t
t t

t
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ξ
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 obey normal distributions as well. Since h has  

continuous first-order partial derivatives and Φ  has continuous second-order partial derivative functions, it is 
not difficult to linearize the nonlinear state-space model (1) with the help of Taylor expansion. Now define 
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mated by linear model can be used as follows: 
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Proposition 2.1 If the discrete time linear system (3) satisfies (2), and the disturbances tv  and tw  are in-
dependent and obey normal distributions, then we have 

(1) state estimates 

( )+1
ˆ ˆ
t t t tξ ξ= Φ , 

and 
(2) mean square error matrix of system. 

( ) ( )( )T
1 , ,t t t tP t t P t t Q+ ′ ′= Φ Φ + . 

The proof of Proposition 2.1 can be found in [8]. Although the EKF algorithm is simple and effective for 
some nonlinear state-space models, it is likely to lead to sub-optimal state estimate due to removing higher-order 
terms of structural equations in Taylor expansion. In what follows, two modified nonlinear Kalman filter algo-
rithms will be given for the purpose of reducing errors of the state estimation. 

2.2. Second-Order Nonlinear Kalman Filter Algorithms 
In the extended nonlinear Kalman filter algorithm, an application of first-order Taylor expansion on Φ  results 
in a linear state equation. This linearization approximation will cause some errors and instability of algorithm in 
some sense. It is natural to use second-order Taylor expansion to approximate Φ . 

Proposition 2.2 Under the same conditions as Proposition 2.1, if Φ  is twice continuously differentiable and 
h is continuously differentiable, then the nonlinear state-space model (1) has the following nonlinear Kalman 
filter algorithm, namely, 

(1) state estimates are given by 

( ) ( )( )+1
1ˆ ˆ tr ,
2t t t t t tt t Pξ ξ ′′= Φ + Φ  

and 
(2) mean square error matrix of system 
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Proof: To guarantee normality of ty , we take the linear part of Taylor expansion of h . Thus we have 
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 is normal, so is t tξ δ . By reference [8], 
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An application of Taylor expansion to Φ  gives that 
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Taking conditional expectations on both sides of (5), the state estimates are given by 

( ) ( ) ( )( )11
1ˆ ˆ tr ,
2t tt t t t t tE t t Pξ ξ δ ξ++ ′′= = Φ + Φ  

where we have applied the following fact that, if Z  has mean µ  and variance Σ , then 
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On the other hand, the residual is expressed as 
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Thus the mean square error matrix of system is 
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It should be pointed out that the above nonlinear Kalman filter algorithm needs to calculate Hessian matrix of 
Φ . Such an approximation, on one hand, increases running time, on the other hand, cannot guarantee normality 
of tξ , so it will influence on multi-step predictions of the state. In next proposition, we will apply linearization 
approximation to the quadratic in (5) and deduce corresponding recursive formula of nonlinear Kalman filter 
algorithm. 

Proposition 2.3 Under the same conditions as Proposition 2.2 we have the following nonlinear Kalman filter 
algorithm for the nonlinear system (1): 

(1) state estimates are 
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and 
(2) mean square error matrix of system state is 
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Proof: Firstly, a second-order Taylor expansion of Φ  gives that 
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It is not hard to get that 
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Moreover, the mean square error matrix of system is given by 

( ) ( ) ( ) ( ) ( ) ( )
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Note that in this nonlinear filter algorithm, we have applied first-order Taylor expansion to deal with the qua-  

dratic ( ) ( )( )Tˆ ˆ,t tt t t tt tξ ξ ξ ξ′′− Φ − , thus 1t tξ δ+  still obeys normal distribution in this case. This also implies  

that this algorithm can give multi-step predictions of the system state. 

2.3. Extended Particle Filter Algorithm 
The extended particle filter (EKPF) algorithm was initially given by Freitas in [9], under the framework of 
EKPF algorithm. This algorithm applies recursive formula of EKF to update each particle and will get an ap-
proximate posterior probability density of tξ . By the posterior probability distribution, new samples from the 
distribution are represented by a set of particles. Each particle has a weight assigned to it that represents the 
probability of that particle being sampled from the probability density function. In the resampling step, the par-
ticles with negligible weights are replaced by new particles in the proximity of the particles with higher weights. 
EKPF, SEKPF and SLEKPF algorithm are as follows [10]: 

(1) Set initial value 0k = ; 
(2) Draw N particles from prior distribution (important distribution); 
(3) Apply recursive formulas of EKF, SEKF, and SLEKF to update sampling particles; 
(4) Update weights; 
(5) Normalize weights; 
(6) Resample, 
(7) 1k k= + , 
(8) If the number of particles is enough, the procedure stops. 

3. Two Simulation Examples 
To compare EKPF with SEKPF and SLEKPF algorithms, we use single variable non-stable growth model in [11] 
and gas phase reversible reaction model in [12]. 

Example 3.1 Consider the following nonlinear state-space model: 
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where the initial state 0ξ  is normally distributed with mean 0 and variance 2, the noise tw  has Gamma distri-
bution with mean 0.5 and variance 0.5, and the noise tv  is also normally distributed with mean 0 and variance 
1. The number of particles is 200 and the whole time is 30 seconds, and we have 100 independent experiments. 
The aim is to compute the average value of the particles. A formal formula is as follows [13]: 

1

1ˆ
N

j
t t

jN
ξ ξ

=

= ∑ , 

where N  is number of particles. 
The root-mean-square error is defined as: 

( )2

1

1 ˆRMSE
T

k k
kT

ξ ξ
=

= −∑  

where T is the whole time. 
Figure 1 and Figure 2 show state estimations and the root-mean-square error curves of three kinds of algo-

rithms. It can be seen from these figures that the EKPF algorithm is superior to other two algorithms. In particular,  
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Figure 1. State estimation curve of three algorithms. 

 

 
Figure 2. Root mean square error curves of three algorithms. 

 
the EKPF algorithm has the worst performance in estimating the system state. The reason lies in no considera-
tion of higher-order Taylor expansion term. Means and variances of 100 root-mean-square errors and running 
time for the above particle filter algorithms are given in Table 1. The results show that the SEKPF algorithm 
have the minimum root-mean-square error in average. Although in three algorithms, the running time of EKPF 
is the shortest. We can conclude that the SEKPF and SLEKPF algorithms can effectively increase the precision 
of state estimations. 

Example 3.2 Consider the following nonlinear state-space model: 
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where the noises w1,t and w2,t obey Gamma distributions with mean 0.5 and variance 0.5, the noise vt is normally 
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distributed with mean 0 and variance 0.1. We take vector [ ]1 0 3,1x =  and covariance matrix 1 0

10
36

01
P  

= ×  
 

.  

The number of particles is 200. The whole time is 30 seconds. We have 100 independent experiments. 
Table 2 gives means and variances of 100 independent root-mean-square errors and running time for three 

algorithms. Figure 3 shows state estimations of (6) obtained from three Kalman particle filter algorithms. From 
these, we have similar conclusions to Example 3.1. Therefore, two second-order nonlinear Kalman particle filter 
algorithms proposed in this paper are superior to the EKPF algorithm in the precision of state estimations. 

4. Conclusion 
In many practical state-space models, the observation equations are linear, but the state equations are nonlinear; 
sometimes the disturbances are non-Gaussian [14]. For such a state-space model, we need to give an appropriate 
Kalman filter algorithm to estimate the system state. In this paper, we have proposed two nonlinear Kalman fil-
ter algorithms, and corresponding recursive formulas have been derived. One is based on second-order Taylor  
 
Table 1. Root-mean-square errors and running time of three kinds of algorithms. 

Algorithms 
Root-mean-square error 

Running time (s) 
Mean Variance 

EKPF 0.295 0.309 1.87 

SKEPF 0.179 0.152 1.98 

SLEKPF 0.190 0.240 2.03 

 
Table 2. Root-mean-square errors and running time. 

Algorithm EKPF SEKPF SLEKPF 

Root-mean-squareerrors of X1 
Mean 0.035 0.008 0.016 

Variance 0.142 0.005 0.072 

Root-mean-square error of X2 
Mean 0.064 0.062 0.063 

Variance 0.005 0.001 0.001 

Running time (s) 2.87 2.98 3.05 

 

  
Figure 3. State estimate. 
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expansion of the state equation, and the other uses a linearization approach to approximate the quadratic of 
second-order Taylor expansion of the state equation. In order to improve the precision of state estimation, we 
have combined the above nonlinear Kalman filter algorithms with particle filter and given two nonlinear Kalman 
particle filter algorithms. Through two examples, we compare the two nonlinear Kalman particle filter algo-
rithms with the extended Kalman particle filter algorithm. The simulation results show that our second-order 
Kalman particle filter algorithms are superior to the extended Kalman particle filter algorithm. On one hand, two 
nonlinear Kalman particle filter algorithms have stronger calculation capacity than the extended Kalman filter 
particle algorithm; on the other hand, they can effectively improve state estimations. 
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