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Abstract 

For an invertible diagonal matrix D , the convergence of the power scaled matrix sequence N
ND A  is 

investigated. As a special case, necessary and sufficient conditions are given for the convergence of N ND T , 
where T  is triangular. These conditions involve both the spectrum as well as the diagraph of the matrix T . 
The results are then used to privide a new proof for the convergence of subspace iteration. 
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1. Introduction  

The aim of iterative methods both in theory as well as in 
numerical settings, is to produce a sequence of matrices 

0 1,  ,A A  , that converges to hopefully, something useful. 
When this sequence diverges, the natural question is how 
to produce a new converging sequence from this data. 
One of these convergence producing methods is to 
diagonally scale the numbers NA  and form the 
sequence { }N ND A . Examples of this are numerous, such 
as the Krylov sequence ( x , Ax , 2A x ,…), which when 
divergent can be suitably scaled to yield a dominant 
eigenvector. 

The convergence of power scaled iterative methods 
and more general power scaled Cesaro sums were 
studied by Chen and Hartwig [4,6]. In this paper, we 
continue our investigation of this iteration and derive a 
formula for the powers of an upper triangular matrix, and 
use this to investigate the convergence of the sequence 
{ }N N

nD T . 
We also investigate the subspace iterations, which has 

been started by numerous authorss [1,3,10,11,15], and 
turn our attention to the case of repeated eigenvalues. 

The main contributions of this paper are:  
•We present the necessary and sufficient conditions 

for convergence of power scaled triangular matrices 
{ }N N

nD T . We prove that these conditions involve both 
the spectrum as well as the digraph induced by the 
matrix T .  

•We apply the the convergence of power scaled 

triangular matrices with the explicit expression for the 
G-S factors of N ND T  [3] and present a new proof of 
the convergence of simultaneous iteration for the case 
where the eigenvalues of the matrix A  satisfy 

1 2 1| | | | | |>| | | |r r n           

and | |=| | =i j i j    .  

Because of the explicit expression for the GS factors, 
and the exact convergence results, our discussion is more 
precise than that given previously [12,17]. 

One of the needed steps in our investigation is the 
derivation a formula for the powers of a triangular matrix 
T , which in turn will allow us to analyze the 
convergence of N N

TD T . 
Throughout this note all our matrices will be complex 

and, as always, we shall use   and ( )   to denote the 
Euclidean norm and spectral radius of ( ) . 

This paper is arranged as follows. As a preliminary 
result, a formula for the power of an upper triangular 
matrix is presented in Section 2. It is shown in Section 3 
that the convergence of N N

TD T  is closely related to the 
digraph induced by T . Section 4 is the main section in 
which convergence of general power scaled sequence 

N
ND A  is investigated and this, combined with path 

conditions in Section 3, is then used to discuss the 
convergence of N ND T . As an application we analyze 
the convergence results for subspace iterations, in which 
the eigenvalues are repeated, but satisfy a peripheral 
constraint. 
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2. Preliminary Results 

We first need a couple of preliminary results. 
Lemma 2.1. If 1<)(A  and 0 < < 1i , then 

=0

N
k

k
k

A                  (1) 

converges.  
Proof. For 

=0
( ) = k

kk
f z z , we have  

=0 =0

| ( ) |=| | | |k k
k

k k

f z z z
 

  . 

As the geometric summation on the right-hand side 
has radius of convergence 1, ( )f z  converges for all z  
such that | |< 1z , which in turn tells us that the radius of 
convergence of ( )f z  is no less than 1. Therefore, from 
Theorem 6.2.8. of [8], ( )f A  converges.  

Next consider the triangular matrix  

1 12 1

2

1,

0
=

0 0

n

n n

n

u u

u







 
 
 
 
 
 


 

  


U ,         (2) 

which is used in the following characterization of the 
powers of a trangular matrix.  

Lemma 2.2. Let = 0

0 0

Ta

U c

 



 
 
 
 
 

T  where a  and c  

are column vectors and suppose that 

= 0

0 0

N T
N N
N

N
N

a

U c

 



 
 
 
 
 

NT .           (3) 

then 

 

1
1

=0

2 2
2

=0 =0

=

        

N
N k k

N
k

N N k
T k N k i i

k i

a U c

   

 


 

  
  

 
 
 

   
 



 
.     (4) 

in particular,  
1) if = 0 , then  

 
2

1 2

=0

=
N

N T k N k
N

k

a U c  


    ,      (5) 

2) if = 0 , then  

 
2

1 2

=0

=
N

N T k N k
N

k

a U c  


    ,      (6) 

3) if 0   and   , then  

12
1

=0

1 ( / )
=

1 ( / )
       ,

N
N

N

k N kN
N T

k

U
a c

   
 

 
  

 


 
  

         


  (7) 

4) if 0   and =  , then  

2
1 2

=0

= ( 1)
kN

N N T
N

k

U
N a c N k  




      

 
  and (8) 

5) if = = 0  , then  
2= T N

N a U c  .             (9) 

Proof. It is easily verified by induction that =NT  

1
N

N
N

T y

O 
 
 
 

, where  

1
1

=0= =

k
k k k j T jT

j

k

a Ua

O U
O U

 


  
   
       


1
kT    (10) 

and  

1
1

1
=0

= =
N

N N k k

kN

T
c c

 



    

   
  

Ny .     (11) 

Now  
2
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Hence 

 

 

1 2 2
1 2
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,  

completing the proof of (4). The special cases (1) - (5) 
are easy consequences of (4).  

Let us now illustrate how the power of T  are related 
to its digraph. 
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3. The Digraph of T   

Suppose 

0

Ta

O U c

O

 



 
 

  
 
 

T  is an ( 2) ( 2)n n    

upper triangular matrix. Correspondingly we select 
2n   nodes 0 1 1,  , , ,  n nS S S S  , and consider the 

assignment 

0 1 1

0

1 1 12 1

2
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with 1 2= [ ,  , , ]T
na a a a  and 1 2= [ ,  , , ]T

nc c c c . 
We next introduce the digraph induced by T , i.e. 
= ( ,  )G V E  where 0 1 1= { ,  , , }nV S S S   is the vertex 

set and = {( ,  ) | 0}i j ijE S S t   is the edge set. As usual 
we say ( ,  )i jS S E  if and only if 0ijt  . A path from 

jS  to kS  in G  is a sequence of vertices 
1

= ,j rS S  

2
, , =r r kl

S S S  with 
1

( ,  )r ri i
S S E


 , for = 1, , 1i l  , 

for some l . If there is a path from jS  to kS , we say 
that jS  has access to kS  and kS  can be reached 
from jS . We write  

if ( , ) ,

if there is a path from  to ,

if  and 

i j i j

i j i j

i j i j j i

S S S S E

S S S S

S S S S S S

 

  

  

Let 0 1 1
=< ,  >= { , , }n p pt

S S S S   be the sandwich 
set of 0S  and 1nS , i.e., 

1
{ , , }p pt
S S  is the set of all 

the nodes from 1{ , , }nS S  such that 0 pi
S S   

1nS  , i.e., 
ipS  can be reached from 0S  and has access 

to 1nS . Let us now introduce the notation  

 
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1
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1
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T
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T
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
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Then we have the following result. 
Lemma 3.1. cUaUca TT ˆ= .  

Proof. If 0jiji cua , then 0( ,  )iS S , ( ,  )i jS S , ( ,jS  

1)nS E  , thus ,  i jS S  , which implies that  

=1 =1

= =
n n

T
i ij j i ij j

i j i j

a Uc a u c a u c
  

  .  

This completes the proof. □ 
This following corollaries are the direct consequences 

of the above lemma. 

Corollary 3.2. If 0 1nS S   and there is no 
intermediate node that lies in 1{ , , }nS S  on any path 
from 0S  to 1nS , then 

1) 10  nSS , i.e. 0 , 
2) 0=ˆ= cUacUa iTiT   

Corollary 3.3. cUacUa iTiT ˆ= , for = 1,  2, .i    
We now turn to the main theorem of this section. 

Theorem 3.4. Let 
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T  be 

nonsingular and 1= ( ) = ( ,..., )ndiag T diag  TD . Then, 

the following statement are equivalent 
1) NN

T TD  converges. 
2) if i jS S , then ||>|| ji  , i.e. if there is a 

path from iS  to jS , then ||>|| ji  .  
Proof. We prove the theorem by induction on n . For 2=n , 
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
.  

It is easily seen that the convergence of (2)M  implies 

that of 
N
N

1


. Hence if 21 =  , then 0= . Conversely, 

if 0 , then 1|</| 12   which implies that (2)M  

converges. 
Next, assume that the result holds for all triangular 

matrices of size 1n  or less. Let T  be defined as in 
(12) and set 1= ( ,  ,..., ,  ) = ( ,  ,ndiag diag     :TD  

)  which is nonsingular. Consider the vertex set 

0 1= { , , }nV S S   and the assignment 
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U c

O 
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 obey the 

theorem. Suppose i jS S  in V . If 1|<|  nji  

we are done since then both endpoints lie in 0{ , , }nS S  

or 1 1{ , , }nS S  . So we only need to consider the case 

where 0= SSi  and 1= nj SS , i.e. 0 1nS S  . 

Subcase (a): There is an intermediate node from 



X. Z. CHEN  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

66 

1{ , , }nS S , say 0 1p nS S S    ( np 1 ). 
Then by the induction hypothesis ||>||>||  p , and 
we are done. 

Subcase (b): There is no intermediate node between 

0S  and 1nS . In this case 10  nSS , and by Corollary 
3.2., 0  and 0=ˆ= cUacUa iTiT  for arbitrary i . 
Since the sandwich set   is empty, we see from 
Lemma 2.2., that 
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N
N
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N

      
 
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
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Now because we are given that N
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and 0 , we must have 1|</|  . 
Conversely, assume that i jS S    ||>|| ji   

and assume that the hypothesis holds for matrices of size 
1n  or less. Since the graph condition also hold for 

0{ , , }nS S  and 1 1{ , , }nS S  , it follows by the 
hypothesis that all the entries in )(

2
N

nM   converges, with 
the possible exception of N

N  / . Consequently, all we 
have to show is that N

N  also converges, given the 
path conditions. Consider  
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1
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If 0 1nS S  , then 10  nSS  and therefore =  

0 . Moreover,   is empty and the right hand side of (15) 

is zero, i.e. 0=N
N  and we are done. So suppose 

0 1nS S   and thus ||>||  . In this case 

1 ( / )N 
 




 converges (possibly to 0 when 0= ). 

Now if π =   then the second term of (15) vanishes by 
Lemma 2.2. Lastly suppose π   , i.e. there are 
intermediate nodes 

1
, ,p pt

S S . From Lemma 2.2., we 

recall that cUacUa iTiT ˆ=  where 
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Since for each i , 0 1p ni
S S S   , we know 

that ||>||>|| 
ip  and thus )ˆ(|>| U . Hence   

ˆ( / ) < 1U   which implies that 

1
2
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N
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i

U U
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 


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To complete the proof we observe that  
12
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ˆ i N iN

i

U 
 

     
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also converges because of Lemma 2.1. with /ˆ= UA  
and iN

i
)/(=  .  

We at once have, as seen in [3].  
Corollary 3.5. Let T  be an upper triangular matrix and 

1= ( ) = ( ,..., )ndiag T diag  TD . If  

1 2| |>| |> >| |n   , 

then NN
T TD  converges to an upper triangular matrix of 

diagonal 1.  
We now turn to the main result in this paper. Our aim 

is to characterize the convergence of N
N AD  in terms 

of the GS factorization of NA . 

4. Main Theorem 

Let us denote the set of increasing sequences of p  
elements taken from (1,  2, ,m ) by  

, 1 1= { = ( , , ) |1 < < }p m p pQ I i i i i m    

and assume this set , p mQ  is ordered lexicographically. 
Suppose : := ( ,  1,..., )s t s s t    is a subsequence of (1,  
2,..., m ) and we define  

1 1: = { = ( , , ) | < < < < }p p pQ s t U u u s u u t    . 

Clearly, , = 1:p m pQ Q m  . 
Suppose B  is nm  matrix of rank r . The 

determinant of a pp  submatrix of A  (1 minp   
( ,  )m n ), obtained from A  by striking out pm   rows 
and pn   columns, is called a minor of order p  of 
A . If the rows and columns retained are given by 

subscripts (see Householder [9]) 1 , = ( , , )p p mI i i Q  
and 1 , = ( , , )p p nJ j j Q  respectively, then the 
corresponding pp  submatrix and minor are 
respectively denoted by I

JA  and )( I
JAdet . 

The minors for which JI =  are called the principal 
minors of A  of order p , and the minors with 

= = (1,  2, , )I J p  are referred to as the leading 
principal minors of A . 

Let 1 , = ( , , )p p mI i i Q  and 1 , = ( , , )q q mJ j j Q . 
For convenience, we denote by mpk QiI 1,][   the 
sequences of 1p  elements obtained by striking out 
the kth  element ki ; while )( jI  denotes the 
sequences of 1p  elements obtained by adding a new 
element j  after ki , i.e., 1( ) = ( , , ,  )kI j i i j . Note that 
if ji p > , then )( jI  is not an element of 1, p mQ   
because it is no longer an increasing sequence. If 

mqp  , we denote the concaternation 1 1( , , ,  ,pi i j  
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, )qj  of I  and J  by IJ . It has qp   elements. 
Again, IJ  may not be an element of , p q mQ  . 

Since the natural sequence ( 1,  2, , p ) of p  
elements will be used frequently, we particularly denote 
this sequence by = (1,  2, , )p p   ; while [ ] = (1,p t   

, 1,  1, , )t t p    is simply denoted by  tp \ . 
Next recall [2] that the volume )(BVol  of a real 

matrix B , is defined as the product of all the nonzero 
singular values of B . It is known [2] that 

2( ) = |det( ) |I
JVol B B ,        (17) 

where I
JB  are all rr  submatrices of B . In 

particular, if B  has full column rank, then 
*( ) = det( )Vol B B B .          (18) 

Lastly, suppose 1 2= [ ,  , , ]rA a a a  is an rn  
matrix of full column rank and  

=A YG                  (19) 

is its GS  factorization so that the columns of 1= [ ,Y y  

2 , , ]ry y  are orthogonal and G  is rr  upper 
triangular matrix of diagonal 1. For rk  , we define 

1= [ , , ]k kA a a  and  

= ( )k kV Vol A .             (20) 

It follows directly that  

2 *

, 

= |det( ) | = det( )I
k k k k

I Qk m

V A A A 

 .  (21) 

Theorem 4.1. Let A  be an rn  matrix of rank r  
and let YGA =  be its GS factorization. Then 

( ) 2
1 1

1, 

= det( ) det( ) /I k I
kl l l l

I Ql n

y A A V     
 

    (22) 

and  
*

1 ( )

2

det( )
=

j
j k

jk
j

A A
g

V

 
   .          (23) 

Proof. The result of (22) follows from Theorem 2.1. in 
[3], while on account of Corollary 2.1. in [3], *= (G Y  

1 *)Y Y A . Hence we arrive at 
2 2

1 1*
2 2

=1

* \ 2
1

=1 =1

= =

     = ( 1) det( ) /

n
j j

jk j k lj lk
lj j

jn
j t j t

lt lk j j
l t

V V
g y a y a

V V

a a A A V

 

  
  








.  

Because lklt
n

l
aa 1=

 is just the ( ,  t k ) element of 
matrix AA* , we see that  

* \ 2
1

=1 =1

= ( 1) ( )det( ) /
j n

j t j t
jk lt lk j j

t l

g a a A A V  
    , 

which is the Laplace expansion along column j  of 
*

1 ( )det( ) j
j kA A  

   . Thus  

*
1 ( )

2

det( )
=

j
j k

jk
j

A A
g

V

 
   ,  

completing the proof.  
Remark: A different proof of (23) was given in [9,§

1.4]. 
For a diagonal matrix 1= ( ,..., )ndiag d dD , we say that 

D  is  decreasing, if  

1| | | |nd d  .             (24) 

Moreover, D  is called locally primitive, if it is 
decreasing and  

|=| | =i j i jd d d d .           (25) 

It is obvious that we can partition a decreasing matrix 
D  as  

(1) ( )= ( , , )tdiag D DD           (26) 

where each  
( )( )

1= ( , , )
ss ii ps

s diag e e
 sD  with 1| |>  

2| |> >| |t  . As a special case, if D  is locally 
primitive, then D  can be written as  

1 1
= ( , , )p t pt

diag I I D .        (27) 

Now let us define j
s

js pq  0=
=  ( = 1,s t , 

0== 00 pq ) and 1 1 1: = { = ( , , ) |u i i u u iQ q q q       

1 < < < }u iq  . Next, suppose rn
N

ijN aA ][= )(  is a 
sequence of rn  matrices and let  

( ) ( )= = [ ] [ ]N N
N N N ij n r ij r rA Y G y g        (28) 

be their GS  factorization. Suppose B  is a rn  
matrix, we can partition B  conformally as D  in (26). 
It is easily verified that the ( ,  )u v  element of ( ,  )i j  
block ijB  of B  is exactly the 1 1( ,  )i jq u q v    
element of the whole matrix B . B  is said to satisfy 
condition (  ) if for each uqk i 1=  there exists 

  iiuu qqQ :1  such that  
1det 0qi u

kB 
   . 

We now have the following theorem.  
Theorem 4.2. Let NA  be a sequence of rn  matrices 
of full column rank with GS factor NNN GYA = . Also 
suppose D  is a diagonal matrix and rD  is rr  
leading submatrix of D . Then 

1) N
N AD  converges to B

~
 which satisfies 

condition (  )   NG  converges and N
NYD  

converges to Z  which satisfies condition (  )  
2) If in addition D  is decreasing, i.e. D  satisfies 

(26), then for uqk i 1=  and vql j 1=  ( 1 ji )  
2( )

=

NN
jkl

N
ik

y
O

d




 
 
 
 

.           (29) 

Proof. 1) The sufficiency is obvious. So let us turn to 
the necessary part. For 1= ( ,..., )ndiag d dD , there exists 
a permutation Q  such that DQQD *=ˆ  is decreasing. 
Meanwhile, by hypothesis and the fact that =N

ND A Q  
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* * ˆˆ( )( ) =N N
N NQ D Q Q A QD A   with *ˆ =N NA Q A , it 

follows that N
N AD ˆˆ   converges. So without loss of 

generality, we assume that D  is decreasing and 
partition D  as (26) and simply consider N

N AD . We 
shall now, without risk of confusion, abbreviate the set 

1 1 1 1: = { = ( , , ) | < < < < }u i i u u i u iQ q q q q        
 to uQ  and for ),...,(= 1 siiI  set 

siiI dd 
1

= . It at 
once follows that  

1
| |=| |q ki u
    

.           (30) 

We now have from (23)  
( ) * 2

1 ( )

1 ( )

, 

2

, 

1 ( )

1 1

1 1

=det( ) /

det( ) det( )

=  (from Cauchy-Binet)
det(( ) )

( ) det( ) det( )

=
( ) det( )

N k
kl N N k l k

I I
N k N k l

I Qk n

I
N k

I Qk n

I I
N k N k l

I q Q I q Qi u i u

N k
I q Q I q Qi u i u

g A A V

A A

A

A A

A

 
  

    


 


    
    


    



 







 

 
2

1 1
1 ( )

1
2

1

1

211
1 ( ) 1

)

det( ) det( )

=
det(( ) )

det( )det( )

( ) ( )
=

I

q qi u i u
N k N k l

Q I q Qu u i u

qi u
N k

Q I q Qu u i u

Nqq i ui u
N k lN k i

N N
Q ik ku u

Qu u

A A

A

AA
o


 



    
    

    

 
 

    

   
    

     

 

 



  
    

      

 

 


2 21

1
det( )

( )

Nqi u
N k i

N
ik

A
o




 
  

 

 
 
 
 


’ 

On account of (30), this is equal to  

211
1 ( ) 1

1 1

2 21
1

1

det( )det( )

( ) ( )

det( )

( )

Nqq i ui u
N k lN k i

N N
Q iq qu u i u i u

Nqi u
N k i

N
Q iqu u i u

AA
o

A
o


 




   
    

      

 
  

   

  
    

      
 
 
 
 





. 

(31) 

Since N
N AD  convergence, so does the submatrices 

uiq
IN

N AD  1)(  and their determinant and hence  

1
1 1
1

1

1

det( )
=det[( ) ( ) ]

( )

                       =det( )

qi u
q qNN I i u i u

N IqN i u
qi u

qN i u
N I

A
D A

D A



 
    
 

 

  

  

converges, say, to uiq
INAdet  1)

~
( . We have that 

consequently (31) converges to  

1 1
1 ( )

2
1

det( ) det( )

det( )

q qi u i u
k k l

Qu u

qi u
k

Qu u

A A

A

    
    

 

 
 

 





 


,  

in which the denominator is nonzero as A
~

 satisfies 
condition (  ). Hence NG  converges and this implies 
that 1= 

NN
N

N
N GADYD  also converges. 

2) Lastly, what remains is to show that N
rN DY   

converges if D  is decreasing, i.e. D  satisfies (26). 
Now for uqk i 1= , vql j 1=  ( 1 ji ), it follows 
that  

( )
1( )

1,

2
1

( )
1

\ \1 1

2

1

1 1 1 1

det( ) det( )
1

=

( ) det( ) det( )
1

        =
( ) det( )

det( )

        =

I k I
N l N lN

I Ql nkl
N N
k k l

I k I
N l N l

I q k Q I q k Qj v j v

N I
k N k

I q Q I q Qj v j v

q j
N l

Qv v

A A
y

d d V

A A

d A

A

    
 



    
    

  
      



 
 





 





 

 


\ ( ) \1 1

1
\1

2
1 1

1

1 1 1 1

\ ( ) \1 1
1

1 1

det( )

( det(( ) ) )

det( ) det( )

( ) ( )1
        =

k k q kv j v
N l

I q k Qj v

qN j v
l N l

Q I q Qv v j v

q k k q kj v j v
N l N l

N N
Q I ql lv v j

N
k

A

d A

A A

d

 

   
  

  

  
  

      

    
    

       





 
  
 
 



 


1

2
1 1

1

11 1 1 1

det(( ) )

)

Qv

q j v
N l

N
Q I q Qlv v j v

A





  
  

        





 
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\ ( ) \ 21 1
11

2 1\

2 2 21 1
11

1 1 1 1

2

det( ) det( )

( ) ( )| |
=

| | det(( ) )

( )

| |
=

|

q k k q k Nj v j v
jN l N l

N N
N Q il l kv vl
N Nq j vk

jN l

N
Q jqv v j v

N
j

i

A A
o

d

d A
o


 







    
    

     

  
  

      

               
  
       





\ ( ) \ 21 1
11

1\ ( ) \1 1

2 2 21 1
11

1 1 1 1

( ) det( )

( ) ( )
=

| det(( ) )

( )

q k k q k Nj v j v
jN l N l

N N
Q iq k k q kv v j v j v j

N Nq j v
jN l

N
Q jqv v j v

det A A
o

O
A

o


  




    
    

      

  
  

      

               
         





2N

i

 
 
 
 

 

This completes the proof of 2).  
As a consequence of the above theorem we have 

Corollary 4.3. Suppose D  is decreasing and NA 's 
have orthogonal columns. If N

N AD  converges to B
~

 
which satisfies condition (  ), then for uqk i 1=  and 

vql j 1=  ( 1 ji )  

2( )

=

NN
jkl

N
ik

a
O

d




 
 
 
 

  

Proof. In this case the GS  factorization of NA  are 

rNN IAA = . So the result is the direct consequnce of 
Theorem 4.2.  
Lemma 4.4. Suppose D  is decreasing and NA 's are of 
full column rank. If N

NN
pqN ADBB =][= )(  converges, 

say, to B
~

, then N
rN DA   converges iff 

1) ( ) ( )
, ,  1 1

( ) = 0 =j j
jj u v q u q v u vj j

B B    
    ( = 1,j  

, t ) 
2) If ji < , then  

( ) ( )( )( )
, 1 1

N
i jiNNi u v

q u q vi j
j

B e  



  

 
  
 

  

converges.  
Proof. It is not difficult to see that the 1 1( ,  i jq u q   
)v  element of N

rN DA   is  

, 1 1

( ) ( )( )( )
, 1 1

       ( )

=

N
N r q u q vi j

N
i jiNNi u v

q u q vi j
j

A D

B e  



  


  

 
  
 

.      (32) 

As ( )
 ,1 1

N
q u q vi j

B   
 converges and 1<

j

i




 for ji > , 

it follows that (32) converges to zero in this case. Hence 
N

rN DA   converges iff i) and ii) hold.  

Suppose B  is an nn  matrix and correspondingly 
there are n  nodes 1 2,  , , nS S S . We say that B  is 

indecomposable if for every i  and j   

either i jS S  or j iS S .  

Next we have 
Theorem 4.5. Let NA  be of full column rank and 

NNN GYA =  be its GS  factorization. Suppose 
N

ND A  converges, say, to B
~

 which satisfies (  ). 
Then the following statement are true 

1) If N
rN DY   converges to 1= ( ,..., )sdiag Z Z  Z  in 

which each block iZ
~

 ( = 1, ,i s ) is indecomposable, 
then 

sps
s ID =)( , = 1, ,s t  

2) If 
sps

s ID =)( , = 1, ,s t , then N
rN DY   

converges.  
Proof. From Theorem 4.2., the convergence of =NB  

N
ND A  implies the convergence of NG  and N

NYD . 
Suppose ZYD N

N ~
 . Then it follows, on account of 

Lemma 4.4, that N
rN DY  converges to 1= ( , ,diag Z  Z  

)sZ  if 

a) ( ) ( )
, , 1 1

( ) = 0 =j j
j u v q u q v u vj j

Z Z    
   , and 

b) if ji < , then  

 ,1 1

( ) ( )( )
, 1 1

              ( )

= ( )

N
N r q u q vi j

N
i jiNNi u v

N q u q vi j
j

Y D

D Y e  



  


  

 
  
 

 

converges to zero. Now Corollary 4 says that for ji <   

( ) 2
, 1 1

, 1 1
1

( ) = =

N N
q u q vi j jN

N q u q v Ni j
iq ui

Y
D Y O

d




  
  



 
 
 
 

  

and so b) is automatically statisfied in this case. 
Therefore N

rN DY   converges iff a) holds. Since each 

iZ
~

 is indecomposable, for arbitrary ( ,  )u v  there exists 
a path either from uiqS 1

 to viqS 1
 or vice verse. In 

either case this implies that )()( = i
v

i
u   for any u  and 

v . We complete the proof of 1). 
2) This time D  is locally primitive, so we have 

)()( = j
v

j
u   ( = 1, ,j t ) and hence 



X. Z. CHEN  ET  AL. 
 

Copyright © 2011 SciRes.                                                                                AJCM 

70 

, 1 1

( ) ( )( )
, 1 1

, 1 1

                      ( )

( ) if 
=

( ) if =

N
N r q u q vi j

N
i jiNNi u v

N q u q vi j
j

N
N q u q vj j

Y D

D Y e i j

D Y j i

 



  


  


  

 
    



  

By hypothesis, the above converges for ij = . The 
convergence for ji >  is obvious; while the 
convergence for ji <  can be easily achieved by 
noticing that  

( ) 2
, 1 1

, 1 1
1

( ) = =

N N
q u q vi j jN

N q u q v Ni j
iq ui

Y
D Y O

d




  
  



 
 
 
 

.  

Remark. From Theorem 4.5. we know that in the case 
of multiple eigenvalues, if uqk i 1= , then 

1 ( 1)1 1( )

11
[0, ,0,  , , ,  0, ,0]

q q qi i iN
Tk

q qN i i
i

y
p p

d

 




 
 

    .  

Let us now turn to the applications of this theorem. 
Our first application is the following result gives the 
general convergence result of power scaled triangular 
matrix. 
Corollary 4.6. Let D  be diagonal and T  be upper 
triangular. Then NNTD  converges if and only if 

1) Either 1|</| ii d  or ii d=  for each i  
2) If | |>| |i j i jS S    .  
Proof. Let N

N TA = . This time the GS  
factorization for N

N TA =  becomes )( NN
T

N
T TDD   and 

from Theorem 4.2., NNTD  converges if and only if 
both NN

TN TDG =  and N
T

N DD  converge. 
The convergence of N

T
N DD  is equivalent to 1); 

while the convergence of NN
TN TDG = , on account of 

Theorem 3.4., is exactly the same as the path condition 
2).  

A relevant application of Theorem 3.4. is to the 
question of subspace iteration. Armed with Theorem 3.4. 
we can get a sharper theoretical result than was 
previously given. 

5. Application to the Subspace Iteration 

Next, suppose T  is an block upper diagonal matrix of 
the form  

1 12 11

2 22
0

=

0 0

p t

p t

t pt

I T T

I T

I







 
 
 
 
 
 
 





   


T ,      (33) 

where |>||>|>|| 21 t  . Let = ( ) =diag T diagTD  

1 1
( , , )p t pt

I I   and denote 


r
rTrT DD )(= . Then from 

Theorem 3.4. it follows that NN
T TD  converges. 

Assume B  is rn  matrix of full column rank. 

Therefore i

t

i
pnr 

1=
=  and without loss of generality 

we can write wpr i
s

i
 1=

=  for some 1 spw . Thus 

we can write 1 11
= ( , , ,  )r p s p s ws

T diag I I I    . We now 

have 
Corollary 5.1. Let T  be nn  upper triangular matrix 
defined as in (33), and let B  be rn  matrix whose 
columns are linearly independent. If  

NN
N GYBT =   

is its GS  factorization, then the followings hold 
1) BTD NN

T
  converges, say, to a limit A

~
. 

2) N

rTN DY   converges to 







0

P
, where 1= ( ,P diag P  

, ,  )sP P  and each iP  ( = 1, ,i s ) is a ii pp   

matrix and P
~

 is a wps 1  matrix.  

Proof. The result follows by simply choosing 
BTA N

N =  in Theorem 4.2.  
Let us now turn to the question of subspace iteration 

for a restricted class of matrices. Suppose that  
*= VTVA                (34) 

is nn  matrix, where V  is unitary and T  is as in 
(33). Then using the same iP  as above we have 
Corollary 5.2. Suppose that A  is an nn  matrix 
which satisfies (34). let 0Y  be an rn  matrix whose 
columns are linearly independent and }{ NY  be 
sequence of matrices defined by the following 
factorization  

0 =N
N NA Y Y G .  

Then  

1 1 1[ , , ,  ]N
N T s s sr

Y D V P V P V P
  .       (35) 

Proof. Since  

0 =N
N NA Y Y G ,  

it follows that  
*

0( ) =N
N NVT V Y Y G .  

Partition 1= [ , , ]tV V V  conformally to that of T  in 
(33) and set 0

*= YVB , then  
*= ( )N

N NT B V Y G .          (36) 

It is easily seen that the columns of NYV *  are 
orthogonal. Therefore (36) can be regarded as the GS  
factorization of BT N . From Corollary 5.1., we have that 
for 1= [ , , ]tV V V   

*

0
N

N Tr

P
V Y D  

  
 

,  

which is equivalent to  
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1 1 1= = [ , , ,  ]
0

N
N T r s s sr

P
Y D V V P V P V P V P


 

  
 

 .  
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