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Abstract 
Given a regular compact set E  in � , a unit measure µ  supported by E∂ , a triangular point set 

{ }{ }n
n k k n

, 1 1
:β β

∞

= =
= , Eβ ⊂ ∂  and a function f , holomorphic on E , let f

n m
,

,
βπ  be the associated 

multipoint β -Padé approximant of order ( )n m, . We show that if the sequence f
n m

,
,
βπ , n∈Λ , 

⊆ �Λ , m -fixed, converges exactly µ -maximally to f  with respect to the m -meromorphy, 
then the points n k,β  are uniformly distributed on E∂  with respect to µ  as n∈Λ . Furthermore, 
a result about the behavior of the zeros of the exact maximally convergent sequence Λ  is 
provided, under the condition that Λ  is “dense enough”. 
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1. Introduction 
We first introduce some needed notations. 

Let nΠ , n∈�  be the class of the polynomials of degree ≤ n and { }, : , , , 0n m n mr p q p q q= = ∈Π ∈Π ≡/ . 
Given a compact set E , we say that E  is regular, if the unbounded component of the complement 
: \cE E= �  is solvable with respect to Dirichlet problem. We will assume throughout the paper that E 

possesses a connected complement cE . In what follows, we will be working with the max-norm E�  on E, 
that is ( ): max z EE z∈=� � . 
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Let ( )E  be the class of the unit measures supported on E, that is ( )supp E⊆� . We say that the infinite 
sequence of Borel measures { } ( )n Eµ ∈  converges in the weak topology to a measure µ  and write 

nµ µ→ , if 

( ) ( )d dng t g tµ µ→∫ ∫  

for every function g  continuous on E . We associate with a measure ( )Eµ ∈ , the logarithmic potential 
( )U zµ , that is, 

( ) 1: log dU z
z t

µ µ=
−∫ . 

Recall that U µ  ([1]) is a function superharmonic in � , subharmonic in ( )\supp µ� , harmonic in 
( )\supp µ�  and  

( ) ( )1ln 1 ,    U z o z
z

µ = + → ∞ . 

We also note the following basic fact ([2]): 
Carleson’s lemma: Given the measures 1 2,  µ µ  supported by E∂ , suppose that ( ) ( )1 2U z U zµ µ=  for 

every z E∈/ . Then, 1 2µ µ= . 
Finally, we associate with a polynomial np∈Π , the normalized counting measure pµ  of p , that is  

( ) number of zeros of on:
degp

p FF
p

µ = , 

where F is a point set in � . 
Given a domain B ⊂ � , a function g and a number m∈� , we say that g is m-meromorphic in B 

( )( )mg B∈  if g has no more than m poles in B (poles are counted with their multiplicities). We say that a 
function f is holomorphic on the compactum E and write ( )f E∈ , if it is holomorphic in some open 
neighborhood of E. 

Let β  be an infinite triangular table of points, { }{ }, 1 1,2,
:

n
n k k n

β β
= =

=
�

, ,n k Eβ ∈ , with no limit points out-  

side E (we write Eβ ∈ ). Set 

( ) ( ),
1

:
n

n n k
k

z zω β
=

= −∏ . 

Let ( )f E∈  and ( ),n m  be a fixed pair of nonnegative integers. The rational function ,
, :f

n m p qβπ =  
where the polynomials np∈Π  and mq∈Π  are such that  

( )
1n m

fq p E
ω + +

−
∈  

is called a β-multipoint Padé approximant of f of order ( ),n m . As is well known, the function ,
,

f
n m
βπ  always 

exists and is unique [3] [4]. In the particular case when 0β ≡ , the multipoint Padé approximant ,
,

f
n m
βπ  co- 

incides with the classical Padé approximant ,
f

n mπ  of order ( ),n m  ([5]). 
Set 

,
,,

, ,
,

:
f

n mf
n m f

n m

P
Q

β
β

βπ = ,                                     (1) 

where the polynomials ,
,

f
n mPβ  and ,

,
f

n mQβ  do not have common divisors. The zeros of ,
,

f
n mQβ  are called free 

zeros of ,
,

f
n m
βπ ; ,deg n mQ m≤ . 

We say that the points ,n kβ  are uniformly distributed relatively to the measure µ , if  

,    
n

nωµ µ→ →∞ . 

We recall the notion of 1m -Hausdorff measure (cf. [6]). For Ω ⊂ � , we set 
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( )1 : infm Vν
ν

 Ω =  
 
∑  

where the infimum is taken over all coverings { }Vν∑  of Ω  by disks and Vν  is the radius of the disk Vν . 

Let D be a domain in �  and ϕ  a function defined in D with values in � . A sequence of functions { }nϕ , 
meromorphic in D, is said to converge to a function ϕ  1m -almost uniformly inside D if for any compact 
subset K D⊂  and every 0ε >  there exists a set K Kε ⊂  such that ( )1 \m K Kε ε<  and the sequence 
{ }nϕ  converges uniformly to ϕ  on Kε . 

For ( )Eµ ∈ , define 
( )

min : inf e U z

z E

µ
ρ −

∈
= , 

and  
( )

max : max e U z

z E

µ−

∈
= ; 

(U µ  is superharmonic on E; hence, it attains its minimum (on E)). As is known ([1] [7]),  
( )

mine ,    U z cz E
µ

ρ− ≥ ∈ , 

Set, for minr ρ> , 

( ) ( ){ }: , e U zE r z r
µ

µ
−= ∈ <� . 

Because of the upper semicontinuity of the function ( ) ( ): e U zz
µ

χ −= , the set ( )E rµ  is open; clearly 
( ) ( )1 2E r E rµ µ⊂  if 1 2r r≤  and ( )E r Eµ ⊃  if maxr >  . 

Let ( )f E∈  and m∈�  be fixed. Let ( ), ,m mR f Rµ µ=  and ( ) ( ), , ,:m m mD f D E Rµ µ µ µ= =  denote, re- 
spectively, the radius and domain of m-meromorphy with respect to µ , that is 

( )( ){ }, : sup ,m mR r f E rµ µ= ∈  

Furthermore, we introduce the notion of a µ -maximal convergence to f with respect to the m-meromorphy of 
a sequence of rational functions { },nr ν  (a µ -maximal convergence), that is, for any 0ε >  and each compact 
set mK D⊂ , there exists a set K Kε ⊂  such that ( )1 \m K Kε ε<  and  

( )
1

,
,

e
limsup

U
n K

n Kn m

f r
R f

µ

ε
ν

ν µ

−

+ →∞
− ≤ . 

Hernandez and Calle Ysern proved the followings: 
Theorem A [8]: Let ,  ,  E µ β  and nω , 1, 2,n = �  be defined as above. Suppose that 

nω
µ µ→  as 

n →∞  and ( )f E∈ . Then, for each fixed m∈� , the sequence ,
,

f
n m
βπ  converges to f µ -maximally with 

respect to the m -meromorphy. 
Theorem A generalizes Saff’s theorem of Montessus de Ballore’s type about multipoint Padé approximants 

(see [3]). 
We now utilize the normalization of the polynomials ( ),n mQ z  with respect to a given open set ,mD µ , that is, 

( ) ( ) ( ), , ,1n m n k n kQ z z zα α′ ′′= − −∏ ∏ ,                         (2) 

where ,n kα′ , ,n kα′′  are the zeros lying inside, resp. outside ,mD µ . Under this normalization, for every compact 
set K  and n  large enough there holds 

,
, 1

f
n m K

Q Cβ ≤ , 

where ( )1 1C C K=  is a positive constant, depending on K . In the sequel, we denote by iC  positive constant, 
independent on n  and different at different occurrences. 

In [8], the set Kε  (look at the definition of a µ -maximal convergence) is explicitly written, namely
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( ): \K Kε ε= Ω , where 

( ) ( ){ }
,

2
,

1
: , 2

n k

n k
n

z z mn
α

ε α ε
∞

′=

 
′Ω = − <  

 
∪ ∪ . 

For ( )εΩ  we have 
( )( )1m ε εΩ ≤ . 

For points ( )z ε∈Ω/ , we have 

( ) ( ), 2
, 2

nkf
n mQ z C mnβ ε≥ , 

where nk  stands for the number of the zeros of ,
,

f
n mQβ  in ,mD µ ; nk m≤ . 

Let Q  be the monic polynomial, the zeros of which coincide with the poles of f  in ,mD µ ; degQ m≤ . It 
was proved in [8] (Proof of Lemma 2.3) that for every compact subset K  of ,mD µ  

1, ,
, ,

,

e
limsup

U
nf f K

n m n m Kn m

fQQ QP
R

µ

β β

µ

−

→∞
− ≤ .                        (3) 

Hence, ( ) ,ln mU z Rµ
µ− −  is a harmonic majorant in ,mD µ  of the family ( )( ){ }1, ,

, ,
1

nf f
n m n m

n
fQQ QP zβ β

∞

=
− . 

Theorem B [8]: With ,  , ,  nE mµ ω  and f as in Theorem A, assume that K is a regular compact set for which  
e U

K

µ−  is not attained at a point on E . Suppose that the function f is defined on K and satisfies  

1,
, e 1limsup

nf U
n m K Kn

f R
µβπ −

→∞
− ≤ < . 

Then ( ),mR R fµ≤ . 
Suppose that , maxmR µ∞ > >   and ,mD µ  is connected. Let V be a disk in ( )max\mD Eµ  , centered at a  

point 0z  of radius 0r >  and such that f is analytic on V. Fix 1r , 10 r r< <  and set { }1 0: ,A z r z z r= ≤ − ≤ . 
Fix a number ( )1 4r rε < − . Introduce, as before, the set ( )εΩ . Recall that  

( )( )1m ε εΩ ≤ . 

It is clear that the set ( )\A εΩ  contains a concentric circle Γ  (otherwise we would obtain a contradiction 
with ( )( ) ( )1 1 4m r rεΩ < − .) We note that the function f and the rational functions ,

,
f

n m
βπ  are well defined on 

Γ . Viewing (3), we may write  
1, ,

, , ,elimsup
Nf f U

n m n m m
n

QQ f QP R
µβ β

µ
−

Γ Γ→∞
− ≤ , 

Suppose that 
1, ,

, , ,< elimsup
nf f U

n m n m m
n

QQ f QP R
µβ β

µ
−

Γ Γ→∞
− . 

or, what is the same, 

( )1, ,
, , ,e < 1limsup

nf f U
n m n m m

n
QQ f QP R

µβ β
µ σ−

Γ Γ→∞
− ≤ + . 

for an appropriate 0σ > . Then, 

( )( ) ( ) ( )( ), 2
, 3 ,e

nmf U
n m mf z C n m R

µβ
µπ ε σ−

Γ Γ
− ≤ + . 

for all z∈Γ  and n  large enough. This leads to  

( )1,
, ,elimsup

nf U
n m m

n
f R

µβ
µπ σ−

Γ Γ→∞
− ≤ + . 
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using Theorem B, we arrive at , ,m mR Rµ µσ+ < . The contradiction yields  
1, ,

, , ,elimsup
nf f U

n m n m mV Vn
QQ f QP R

µβ β
µ

Γ Γ

−

→∞
− = , 

where VΓ  is the disk bounded by Γ . 

Then the function ,ln mU Rµ
µ− −  is an exact harmonic majorant of the family { }1, ,

, ,

nf f
n m n mfQQ QPβ β−  in  

,mD µ  (see (3)). Therefore, there exists a subsequence Λ  such that for every compact subset , \mK D Eµ⊂   
1, ,

, , ,,
lim e

nf f U
n m n m mKn n K

QfQ P Q R
µβ β

µ
−

→∞ ∈Λ
− = .                       (4) 

(see [9] [10]) for a discussion of exact harmonic majorant)). We will refer to this sequences as to an exact µ - 
maximal convergent sequence to f with respect to the m-meromorphy. 

It is clear that for any oε >  and each compactum ,mK D µ⊂  there exists a set K Kε ⊂  such that  
( )1 \m K Kε ε<  and  

( )1,
, ,\,

lim e
nf U

n m mK Kn n
f R

µ

ε

β
µπ −

→∞ ∈Λ Γ
− = . 

2. Main Results and Proofs 
The main result of the present paper is 

Theorem 1: Under the same conditions on E , assume that ( )Eµ ∈ ∂  and that Eβ ⊂ ∂  is a triangular 
set of points. Let m∈�  be fixed, ( )f E∈  and max ,mR µ< < ∞ . Suppose that ,mD µ  is connected. If for 
a subsequence Λ  of the multipoint Padé approximants ,

,
f

n m
βπ  condition (4) holds, then 

nω
µ µ→  as n →∞ , 

n∈Λ . 
The problem of the distribution of the points of interpolation of multipoint Padé approximants has been 

investigated, so far, only for the case when the measure µ  coincides with the equilibrium measure Eµ  of the 
compact set E. It was first raised by Walsh ([11], Chp. 3) while considering maximally convergent polynomials 
with respect to the equilibrium measure. He showed that the sequence 

nω
µ  converged weakly to Eµ  through 

the entire set �  (respectively their associated balayage measures onto the boundary of E) iff the interpolating 
polynomials at the points of β of every function ( )tf z  of the form ( ) ( ): 1tf z t z= − , t -fixed, t E∈/ , 
converged Eµ -maximally to tf . Walsh’s result was extended to multipoint Padé approximants with a fixed 
number of the free poles by Ikonomov in [12], as well as to generalized Padé approximants, associated with a 
regular condenser [13]. The case of polynomial interpolation of an arbitrary function ( )f E∈  was con- 
sidered by Grothmann [14]; he established the existence of an appropriate sequence Λ  such that 

n Eωµ µ→ , 
n →∞ , n∈Λ , respectively the balayage measures onto E∂ . Grothmann’s result was extended to multipoint 
Padé approximants ,

,
f

n m
βπ  with a fixed number of the free poles (see [15]). Finally, in [16] the case was considered, 

when the degrees of the denominators tended slowly to infinity, namely, ( )lnnm o n n= , n →∞ . 
As a consequence of Theorem 1, we derive 
Theorem 2: Under the conditions of Theorem 1, suppose that the µ -exact maximally convergent sequence 
{ } 1

: k k
n ∞

=
Λ =  satisfies the condition to be “dense enough”, that is 

1

,
limsup
k k

k

n n k

n
n
+

→∞ ∈Λ
< ∞ . 

Then, there is at least one point ( )0 ,mz D fµ∈∂  such that  

( )( ), 0,,
limsup 0f

n m
zPn n

V rβµ
→∞ ∈Λ

> . 

Proof of Theorem 1: Set ,
, :f

n m nQ Qβ = , ,
, :f

n m nP Pβ =  and :F fQ= . Fix numbers ,  ,  R rτ  such that  
max ,mR r R µτ< < < <  and ( )E Rµ  is connected. Then, by the conditions of the theorem, for every 

compactum ,mK D µ⊂  (comp. (4)) 
1

,e ,    lim
n U

n n mK Kn
FQ QP R n

µ

µ
−

∈Λ
− = ∈Λ .                          (5) 

Select a positive number η  such that ,mR r R µη τ τ η+ < < + < < . Let Γ  be an analytic curve in  
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( ) ( )\E r Eµ µ τ η+  such that Γ  winds around every point in ( )Eµ τ  exactly once. In an analogous way, we 
select a curve ( ) ( )\E R E Rµ µγ η⊂ + . Additionally, we require that U µ  is constant on Γ  and γ . Set 

( ) ( ) ( ) ,
1: ln ln ,    n n n mF z FQ P Q z U z R n
n

µ
µ= − + + ∈Λ .                  (6) 

Let 0σ >  be arbitrary. The functions Fn are subharmonic in ( ) ( )\E r E Rµ µ . By (5) and the choice of Γ , 

( ) ( )1 1max min max ,    ,    0n tt t
F t N n n nσ σ σ

∈Γ∈Γ ∈Γ
≤ − + + ≤ ∈Λ ≥ , 

and, analogously, 

( ) 1max min max ,    ,   n tt t
F t N n n

γ
σ

∈Γ∈ ∈Γ
≤ − + ≤ ∈Λ > . 

Then, by the max-principle of subharmonic functions,  

( )
,

1max ,    ,   ,   nz A
F z n n n N

γ
σ

Γ∈
≤ ∈Λ ≥ ∈Λ ,                       (7) 

where ,Aγ Γ  is the “annulus”, bounded by Γ  and γ . 
On the other hand, by (5), there exists, for every compact set \r RK E E⊂  and n  large enough, a point 
,n Kz K∈  such that 

( ) ( ) ( ) ( ), , , , 3
1ln ln ,    ,   n K m n n K n n KU z R FQ z QP z n n K n
n

µ
µ σ− − − ≤ − ≥ ∈Λ . 

Therefore,  

( ) ( ), 2,    ,n n KF z n n Kσ σ− ≤ ≥ .                          (8) 

Further, by the formula of Hermite-Lagrange, for z γ∈  we have  

( ) ( ) ( )
( )

( ) ( )1

1

1 d
2π

n m n n
n n

n m

z FQ t QP t
FQ z QP z t

i t t z
ω
ω

+ +

Γ
+ +

−
− =

−∫ . 

Hence, by (5), 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

1 1
,

1 1 1ln max ln const

                                     max min ln ,

                                                             

n m n m

n m n m

n n n nt

mtt

FQ z QP z U t U z FQ QP
n n n

U t U z U t R

ω ω

ω ω µ
µ σ

+ + + +

+ + + +

Γ∈Γ

∈Γ∈Γ

− ≤ − + − +

≤ − − − +

( )3 3 1           ,    ,n n n n nσ∈Λ ≥ = >

 

where 1 1:n m n mU U
µω ω+ + + += . To simplify the notations, we set 1 :n m nU Uω ω+ + =  (the correctness will be not lost, 

since m∈�  is fixed). Involving into consideration the functions nF  (see (6)), we get for z γ∈  

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) 2 1

max max

min ,    ,   

n n
n t t

F z U t U t U t U z U z

U t n n n n

ω ωµ µ µ

µ σ
∈Γ ∈Γ

≤ − + + −

− + ∈Λ ≥ ≥
. 

By Helly’s selection theorem [1], there exists a subsequence of Λ  which we denote again by Λ  such that  

1
:

n m nω ωµ µ ω
+ +

= → , n∈Λ . Passing to the limit, we obtain 

( ) ( ) ( )( ) ( ) ( )( )max ,    limsup n t
F z U t U t U z U z zω µ µ ω γ

∈ΓΛ
≤ − + − ∈ .              (9) 

Consider the function φ , harmonic in ,A γΓ  and  

( ) ( )( ) ( ) ( )( )( )
0, ,

:
min 0, min , .

t
U t U t U z U zµ ω µ ω

γ

φ
γ

∈

Γ=  − − + −
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From (7) and (9), we arrive at 

( )limsup nF z φ≤ , 

for z  in ,A γΓ . Being harmonic, φ  obeys the maximum and the minimum principles in this region. The de- 
finition yields  

( ) ,0,    z z A γφ Γ≤ ∈ , 

We will show that  

( ) 0zφ ≡ ,                                     (10) 

Suppose that (10) is not true. Let ϒ  be a closed curve in the set o
RE η γ+ − , where oγ  stands for the 

interior of γ . Then there exists a number 0θ >  such that φ ≤ −Θ  for every z∈ϒ . This inequality con- 
tradicts (8), for σ  close enough to the zero and n∈Λ  sufficiently large.  

Hence, 0φ ≡ . Then the definition of φ  yields  

( ) ( ) ( ) ( )( )min ,    
t

U z U z U t U t zµ ω µ ω

γ
γ

∈
− ≡ − ∈ . 

The function ( ) ( )U z U zµ ω−  is harmonic in the unbounded complement G  of γ , and by the maximum 
principle, 

( ) ( ) Constant,    U z U z z Gµ ω− ≡ ∈ , 

consequently, 

( ) ( ) Constant,    cU z U z z Eµ ω− ≡ ∈ . 

On the other hand, ( )( ) 0U Uµ ω− ∞ = , which yields U Uµ ω≡  in cE . By Carleson’s Lemma, µ ω= . On 
this, Theorem 1 is proved.                                                               Q.E.D. 

The proof of Theorem 2 will be preceded by an auxiliary lemma 
Lemma 1 [17]: Given a domain U , a regular compact subset S  and a sequence { }: knϑ =  of positive 

integers, 1k kn n +< , 1, 2,k = � , such that 

1

,
limsup
k k

k

n n k

n
n
+

→∞ ∈Λ
< ∞ , 

Suppose that { }knφ  is a sequence of rational functions, ,k k kn n nRφ ∈ , 1, 2,k − � , 
k k kn n nφ φ φ′ ′′=  having no 

more that m  poles in U  and converging uniformly of S∂  to a function 0φ ≡/  such that  
1

,
1limsup

k
k k

n

n Sn n
φ φ

∂→∞ ∈Λ
− < . 

Assume, in addition, that on each compact subset of U   

( )
,

lim 0
nkk kn n

Kφµ ′
→∞ ∈Λ

= .                               (11) 

Then the function φ  admits a continuation into U as a meromorphic function with no more than m poles.  
Proof of Theorem 2: We preserve the notations from the proof of Theorem 1. 
The proof of Theorem 2 follows from Lemma 1 and Theorem 1. Indeed, under the conditions of the theorem 

the sequence { }n n
π

∈Λ
 converges maximally to f with respect to the measure µ  and the domain ,mD µ . Hence, 

inside ,mD µ  (on compact subsets) condition (11) if fulfilled. From the proof of Theorem 1, we see that there is 
a regular compact subset S  of ,mD µ  such that 1limsup 1n

n n Sf π∈∆ − < . 
Suppose now that the statement of Theorem 2 is not true. Then there is, for every ,mz D µ∈∂  a disk  
( ) :z z zV r V= , 0zr >  with ( )lim 0

k nn P zVµ = . We select a finite covering of disks 
jzV  such that  

,:
jz mW V D µ= ⊃ ∂∪ . Condition (11) holds inside W . Applying Lemma 1 with respect to the sequence nπ  and  

to the domain ,mD Wµ∪ , we conclude that ( ),m mf D µ∈ . This contradicts the definition of ,mD µ . 

On this, the proof of Theorem 2 is completed.                                              Q.E.D. 
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Using again Lemma 1 and applying Theorem A, we obtain a more general result about the zero distribution of 
the sequence { },

,
f

n m
βπ . 

Theorem 3: Let E be a regular compactum in �  with a connected complement, let ( )Eµ ∈  and Eβ ∈  
be a triangular point set. Let the polynomials nω , 1, 2,n = � , be defined as above. Suppose that 

nω
µ µ→  as 

n →∞  and ( )f E∈ . Let m∈�  be fixed, and suppose that ,mR µ < ∞ . Then there is at least one point  

0 ,mz D µ∈∂  such that ( )( ), 0,
0limsup f

n m
zn V rβπ

µ→∞ >  for every positive r . 
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