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Abstract

Given a regular compact set £ in C, a unit measure 4 supported by OF, a triangular point set

n

p = {{ B }k_l} , PcOE and a function f, holomorphic on E, let n,’Z’mf be the associated
" Jn=1

multipoint S -Padé approximant of order (n,m). We show that if the sequence nﬁ;{ , neA,
A c N, m-fixed, converges exactly x-maximally to f with respect to the m -meromorphy,
then the points S, , are uniformly distributed on OE withrespectto x4 as ne A.Furthermore,

a result about the behavior of the zeros of the exact maximally convergent sequence A is
provided, under the condition that A is “dense enough”.
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1. Introduction

We first introduce some needed notations.
Let IT,, neN be the class of the polynomials of degree<nand R, , = {r =p/q,pell,,qell, qg# O} .
Given a compact set E, we say that E is regular, if the unbounded component of the complement
E°=C\E is solvable with respect to Dirichlet problem. We will assume throughout the paper that E
possesses a connected complement E°. In what follows, we will be working with the max-norm |||| . Oonk,

thatis |-, =max_|--|(z).
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Let B(E) be the class of the unit measures supported on E, that is supp(---) = E . We say that the infinite
sequence of Borel measures { /ln} eB (E ) converges in the weak topology to a measure g and write
#, = p it

_[g(t)dyn - Ig(t)dy

for every function g continuous on E . We associate with a measure € B(E ), the logarithmic potential
u* (Z) , that is,

U*(z lo

)= Jloep, o

Recall that U* ([1]) is a function superharmonic in C, subharmonic in (_C\supp(y), harmonic in
C\supp(x) and

Ut (z)=In -

g

+0(1), Z—>o,

We also note the following basic fact ([2]):

Carleson’s lemma: Given the measures u, p, supported by O, suppose that U" (z)=U"(z) for
every z ¢ E . Then, 1, =pu,.

Finally, we associate with a polynomial p eII,, the normalized counting measure , of p,thatis

number of zeros of pon F
#, (F)= doap ,

where Fis a pointsetin C.

Given a domain Bc C, a function g and a number me N, we say that g is m-meromorphic in B
( gEM, (B)) if g has no more than m poles in B (poles are counted with their multiplicities). We say that a
function f is holomorphic on the compactum E and write f e.A(E ), if it is holomorphic in some open
neighborhood of E.

Let £ be an infinite triangular table of points, [ = {{ ﬂn,k}

n

k—l} , B, € E, with no limit points out-
= =12, ’

side E (we write S € E). Set

n

a)f’l (Z):ZH(Z_ﬂn,k) .
k=1
Let feA(E ) and (n, m) be a fixed pair of nonnegative integers. The rational function 7[ =p/q
where the polynomials p eIl and g eIl aresuch that

=P A(E)

(0

n+m+1

is called a p-multipoint Padé approximant of f of order ( ) As is well known, the function ﬂf ,,{ always
exists and is unique [3] [4]. In the particular case when ﬁ 0, the multipoint Padé approximant 7T'B 7 co-

incides with the classical Padé approximant 7rf of order (n m) ([5D.

Set
- phs
B.f . " nm
ﬂ-n,m T ng N (1)
where the polynomials Pnﬂmf and Qﬂ /" do not have common divisors. The zeros of Qﬂ /" are called free

zeros of ﬂ,f;nf; degQ,, <m.

We say that the points f3, ,  are uniformly distributed relatively to the measure . , if

M, —> M, n—>0.

We recall the notion of m, -Hausdorff measure (cf. [6]). For Q< C, we set
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14

m (Q):= inf{; }

v

where the infimum is taken over all coverings {ZVV} of Q by disks and |Vv| is the radius of the disk 7, .

Let D be a domainin C and ¢ a function defined in D with values in C.A sequence of functions {(pn} ,
meromorphic in D, is said to converge to a function ¢ m, -almost uniformly inside D if for any compact
subset K <D and every &>0 there exists a set K, c K such that m (K\K,)<e& and the sequence
{p,} converges uniformlyto ¢ on K, .

For ueB(E), define

: ~UH(z
Pmin =infe @
zeE

and

*Uﬂ(z)
0 '=Maxe ;
zeE

(U* is superharmonic on E; hence, it attains its minimum (on £)). As is known ([ 1] [7]),

~uk(2)

c
e 2 Puins ZEE,

Set, for 7> p,.. »

"

E, (r)= {z eC,e V"t < r} )

Because of the upper semicontinuity of the function ;((z) =e "0 , the set E, (r) is open; clearly
E,(r)<E,(r) if n<r, and E,(r)2E if r>o,, .

Let feA(E) and meN be fixed. Let R, ,(f)=R,, and D, , (f):Dm,# =E, (Rm,p) denote, re-
spectively, the radius and domain of m-meromorphy with respect to u , that is

R,, = sup{r,f eM, (E,u (r))}

Furthermore, we introduce the notion of a £ -maximal convergence to f with respect to the m-meromorphy of
a sequence of rational functions {rn,v} (a u -maximal convergence), that is, for any & >0 and each compact
set K <D, ,thereexistsaset K, = K suchthat m (K\K,)<e and

—UH

1/n

IA

limsup| f —r,, —
n+v—o || THIK, Rm,y (f)

Hernandez and Calle Ysern proved the followings:

Theorem A [8]: Let E, u, f and w,, n=12,- be defined as above. Suppose that u, —> p as
n—>o© and fe A(E) Then, for each fixed m e N , the sequence ﬁfn{ converges to [ -maximally with
respect to the m -meromorphy.

Theorem A generalizes Saff’s theorem of Montessus de Ballore’s type about multipoint Padé approximants

(see [3]).

We now utilize the normalization of the polynomials Q, (z) with respect to a given open set D, , thatis,

0. (2)=T1(z-a ) [T(1-2/a,). ©)

where a,,, a,, are the zeros lying inside, resp. outside D,, ,. Under this normalization, for every compact
set K and n large enough there holds

where C, =C, (K ) is a positive constant, depending on K . In the sequel, we denote by C, positive constant,
independent on n and different at different occurrences.
In [8], the set K, (look at the definition of a 4 -maximal convergence) is explicitly written, namely

B.f
Qn,m

_<C,.
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K, =K\Q(&), where

For Q(&) we have

For points z ¢ Q(¢), we have
ort (z)| >C, (e;"/mn2 )k” )

k,<m.

where k, stands for the number of the zeros of Qf J in D

mu 2

Let O be the monic polynomial, the zeros of which coincide with the poles of f in D, ,; degQ<m It
was proved in [8] (Proof of Lemma 2.3) that for every compact subset K of D, ,
_UH
: p.f s |V ‘e K
timsup | 00/5 - R/ [} <*——. (3)
n—»0 M, pt

n,m n,m

Hence, ~U*(z)-InR, , isaharmonic majorantin D, , of the family {‘( 100" —oph/ )(z)r/n}
n=1

Theorem B [8]: With E, u, m, o, and fas in Theorem A, assume that K is a regular compact set for which

_UH
€

is not attained at a point on E . Suppose that the function f'is defined on K and satisfies

/R <1.

K

Then R<R,  (f).

Suppose that >R, >0, and D,  is connected. Let V' be a disk in D, \E, (gmax ), centered at a

K

. 1/n _yH
11msup||f—7zf;{" S‘e v
n—»w0 ’ K

point z, ofradius r >0 and such that f’is analyticon V. Fix 7, 0<#5 <r andset 4:= {z,r1 < |z—zO| < r} .
Fix anumber & <(r—7)/4 . Introduce, as before, the set Q(&). Recall that

m (Q(e))<e.

It is clear that the set A4 \Q(s) contains a concentric circle I' (otherwise we would obtain a contradiction
with m, (Q(s)) < (r -1 ) / 4.) We note that the function f'and the rational functions ﬂ,’f /" are well defined on
I". Viewing (3), we may write

R, .,
r/ -

r/Rm’#.
l_/<Rm,,u+a)<l'

—UH
€

timsup00%/ 1 -op%/ " <|
n—»0
Suppose that

—UH
(S

1/n
<
T

limsup||QQY;! f - P/,
n—x ’ ’
or, what is the same,

_UH

. . l/n
timsup00%/ 7 - 0P% " < e
n—ow

for an appropriate o > 0. Then,

(72 )(2), <€ (wmle)’ (

forall zeI' and n large enough. This leads to

—UH
€

r/(R’”‘” +0))” .

r /(RW ‘o).

. I/n _UH
11msup|| f=all <le”
n—>0

F - ‘
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using Theorem B, we arriveat R, +0 <R, , . The contradiction yields
limsup |00/ f - P/ - ‘ <l / R,
where V. is the disk bounded by I'.
Then the function —U* —InR, , is an exact harmonic majorant of the family {|f 00 - Qpnl,ilifr/n} in

_UH

n,m

D,,, (see(3)). Therefore, there exists a subsequence A such that for every compact subset K =D, ,\E
. . I/n
oL -r 0| =[] /R.. @

K =
(see [9] [10]) for a discussion of exact harmonic majorant)). We will refer to this sequences as to an exact u -
maximal convergent sequence to f with respect to the m-meromorphy.
It is clear that for any & >o0 and each compactum K < D, , thereexistsaset K, < K such that

m (K\K,)<¢ and
)

. Uk
lim eV

n—oo,neA

f _ ﬂ.ﬁJ

n,m

lim

n—w,nel

1/n “ _yH

K\K,

2. Main Results and Proofs

The main result of the present paper is

Theorem 1: Under the same conditions on E , assume that e B(@E ) and that f c OF is a triangular
set of points. Let meN be fixed, [ e .A(E) and 0., <R,  <o.Supposethat D, , is connected. If for
a subsequence A of the multipoint Padé approximants 7Z'£ ;lf condition (4) holds, then p, — u as n— o,
nel.

The problem of the distribution of the points of interpolation of multipoint Padé approximants has been
investigated, so far, only for the case when the measure £ coincides with the equilibrium measure 4, of the
compact set E. It was first raised by Walsh ([11], Chp. 3) while considering maximally convergent polynomials
with respect to the equilibrium measure. He showed that the sequence 4z, converged weakly to x; through
the entire set N (respectively their associated balayage measures onto the boundary of F) iff the interpolating
polynomials at the points of B of every function f,(z) of the form f,(z)=1/(t-z), ¢ -fixed,t¢E,
converged 1, -maximally to f,. Walsh’s result was extended to multipoint Padé approximants with a fixed
number of the free poles by Ikonomov in [12], as well as to generalized Pad¢ approximants, associated with a
regular condenser [13]. The case of polynomial interpolation of an arbitrary function f € A(E ) was con-
sidered by Grothmann [14]; he established the existence of an appropriate sequence A such that u, — 4,
n—> o, nel,respectively the balayage measures onto OF . Grothmann’s result was extended to multipoint
Padé approximants ﬂ,f ;'nf with a fixed number of the free poles (see [15]). Finally, in [16] the case was considered,
when the degrees of the denominators tended slowly to infinity, namely, m, =o(n/lnn), n— .

As a consequence of Theorem 1, we derive

Theorem 2: Under the conditions of Theorem 1, suppose that the u -exact maximally convergent sequence
A= {nk }le satisfies the condition to be “dense enough”, that is

, n
limsup L <00,
m—>o,meeh Ny

Then, there is at least one point z, € aD,, , (f ) such that

limsup sz, , (VZ“ (r)) >0.

n—o,neA nm

Proof of Theorem 1: Set Qf S =0, Rf,;f =P, and F:=f0Q.Fixnumbers R, 7, 7 such that
Omn <R<T<r<R,,6 and E,(R) is connected. Then, by the conditions of the theorem, for every

m,u
1/n
k=

compactum K <D, (comp. (4))
Select a positive number 7 suchthat R+n<7r<7r+n<r<R,  .Let I' be an analytic curve in

lir?”FQn -OFP,

_U*
(S

/Rm)”, nel. %)
IS
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E,(r)\E,(z+n) suchthat T' winds around every point in E, (z) exactly once. In an analogous way, we
selecta curve y < E, (R+n)\E, (R). Additionally, we require that U* is constanton I' and . Set

neA. (6)

M

Fn(z)::%ln|FQn PO|(z)+U*(z)+InR

Let >0 be arbitrary. The functions F, are subharmonic in E, (r)\E, (R). By (5) and the choice of T,

max £, (f)<-min +max+o <o, NeA, n>n0n (o),
tell tell tel’

and, analogously,

max F, (1)<-min+max <o, NeA, n>n,.
tey tel’ tel’

Then, by the max-principle of subharmonic functions,

max F,(z)<o, neA, n>n, NeA, (7)
zed, p
where A4, is the “annulus”, bounded by I' and y.
On the other hand, by (5), there exists, for every compact set K < E \E, and n large enough, a point
z,x € K such that

-U* (Zn,K)_lan,ﬂ —GS%IH‘FQH (zn,K)—QF; (zn’K) , n2ny(K), neA.

Therefore,
~0<F,(z,¢), nzn(K.0). (8)
Further, by the formula of Hermite-Lagrange, for zey we have

1 n+m+1 ( ) FQn (t) Q n (t) d

t.
27” n+m+l (t) t

FQ,(2)-0QF,(z)=

Hence, by (5),

1 D+ Dpym+
;ln|FQn (2)= 0P, (2)| < max U (1) =y
< rrtleaer“’”*'"*‘ (1)-Unm ( ) rganU” (t) IR, ,

neA, n2n3:n3(cr)>nl,

where U =U"n  To simplify the notations, we set U“ :=U® (the correctness will be not lost,
since meN is fixed). Involving into consideration the functions F, (see (6)), we getfor zey

F,(z) < max (U™ (1) =U* (1)) +maxU* (1) +(U" (2)~U" (z)).
—minU*(t)+0, neA, n>n,>n,

By Helly’s selection theorem [1], there exists a subsequence of A which we denote again by A such that
M, =M, > o, nel. Passing to the limit, we obtain

n(z)| SmaX(U“ (t)—U” (t))+(U” (z)—U“’ (z)), zey. 9)

tel’

Consider the function ¢, harmonicin 4., and

0, r,
$= {min(O,—min(U” (t)-U”(1)+(U*(2)-U” (z))), y.

tey
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From (7) and (9), we arrive at
limsup F, (z) < ¢,

for z in A . Being harmonic, ¢ obeys the maximum and the minimum principles in this region. The de-
finition yields

We will show that
#(z)=0, (10)

Suppose that (10) is not true. Let Y be a closed curve in the set Eg,, —y°, where y° stands for the
interior of 7. Then there exists a number € >0 such that ¢ <—-® for every z e Y. This inequality con-
tradicts (8), for o close enough to the zero and n € A sufficiently large.

Hence, ¢ =0. Then the definition of ¢ yields

m _J70 — . u _JI0
U“(z)-U (Z)—Htlelyn(U (n)-U (t)), zey.

The function U*(z)-U®(z) is harmonic in the unbounded complement G of y, and by the maximum

principle,

U*(z)-U”(z)=Constant, zeG,
consequently,
U"(z)-U”(z)=Constant, zeE°.

On the other hand, (U” —U’”)(OO) =0, which yields U# =U” in E°. By Carleson’s Lemma, x = .On
this, Theorem 1 is proved. Q.E.D.

The proof of Theorem 2 will be preceded by an auxiliary lemma

Lemma 1 [17]: Given a domain U , a regular compact subset S and a sequence 9= {nk} of positive
integers, n, <n,, , k=12,--- such that

. n,
limsup —** < o0,
n—>o,meh Ny
Suppose that {¢,,k} is a sequence of rational functions, ¢, €R, , ., k=12, ¢ =4 /¢ having no
more that m polesin U and converging uniformly of 0S to a function ¢ #0 such that

limsup ||¢"k —¢||10/Sn <l.

ny =0, n €A
Assume, in addition, that on each compact subset of U

i o, (K) =0 an
Then the function ¢ admits a continuation into U as a meromorphic function with no more than m poles.
Proof of Theorem 2: We preserve the notations from the proof of Theorem 1.

The proof of Theorem 2 follows from Lemma 1 and Theorem 1. Indeed, under the conditions of the theorem
the sequence {ﬂn }ne , converges maximally to f'with respect to the measure 4 and the domain D, , . Hence,
inside D, , (on compact subsets) condition (11) if fulfilled. From tll/lf proof of Theorem 1, we see that there is
a regular compact subset S of D, , suchthat limsup,., | S| <l.

Suppose now that the statement of Theorem 2 is not true. Then there is, for every ze 0D, adisk

m,u
V.(r.)=V., r.>0 with lim, u, (V.)=0.We select a finite covering of disks ¥, such that
z\'z z z n 1P, z z;

W= U VZ/_ >3dD,, . Condition (11) holds inside ¥ . Applying Lemma 1 with respect to the sequence 7z, and

to the domain D U W, we conclude that f e M, (Dm’ ﬂ) . This contradicts the definition of D

m,u myp

On this, the proof of Theorem 2 is completed. Q.E.D.
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Using again Lemma 1 and applying Theorem A, we obtain a more general result about the zero distribution of
the sequence {ﬁf .
Theorem 3: Let E be a regular compactum in C with a connected complement, let pe B (E ) and PeE
be a triangular point set. Let the polynomials @,, n=1,2,---, be defined as above. Suppose that u, —>p as

n—>w and fe A(E) Let meN be fixed, and suppose that R, , <. Then there is at least one point

z,€0D,, , such that limsup,ku”N (1720 (r)) >0 for every positive r.

Acknowledgements

The author is very thankful to Prof. E. B. Saff for the useful discussions.

References
[1] Saff, E.B. and Totik, V. (1997) Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wis-
senschaften, 316. http://dx.doi.org/10.1007/978-3-662-03329-6

[2] Carleson, L. (1964) Mergelyan’s Theorem on Uniform Polynomial Approximation. Mathematica Scandinavica, 15,
167-175.

[3] Saff, E.B. (1972) An Extension of Montessus de Ballore Theorem on the Convergence of Interpolation Rational Func-
tions. Journal of Approximation Theory, 6, 63-67. http://dx.doi.org/10.1016/0021-9045(72)90081-0

[4] Kovacheva, R.K. (1989) Generalized Padé Approximants of Kakehashi’s Type and Meromorphic Continuation of
Functions. Deformation of Mathematical Structures, 151-159. http://dx.doi.org/10.1007/978-94-009-2643-1_14

[5] Perron, O. (1929) Die Lehre von den Kettenbriichen. Teubner, Leipzig.

[6] Gonchar, A.A. (1975) On the Convergence of Generalized Padé Approximants of Meromorphic Functions. Matemati-
cheskii Sbornik, 98, 564-577. English Translation in Mathematics of the USSR-Sbornik, 27, 503-514.
[71 Tsuji, M. (1959) Potential Theory in Modern Function Theory. Maruzen, Tokyo.

[8] Bello Hernandes, M. and De la Calli Ysern, B. (2013) Meromorphic Continuation of Functions and Arbitrary Distribu-
tion of Interpolation Points. Journal of Mathematical Analysis and Applications, 403, 107-119.
http://dx.doi.org/10.1016/j.jmaa.2013.02.014

[9] Walsh, J.L. (1946) Overconvergence, Degree of Convergence, and Zeros of Sequences of Analytic Functions. Duke
Mathematical Journal, 13, 195-234. http://dx.doi.org/10.1215/S0012-7094-46-01320-8

[10] Walsh, J.L. (1959) The Analogue for Maximally Convergent Polynomials of Jentzsch’s Theorem. Duke Mathematical
Journal, 26, 605-616. http://dx.doi.org/10.1215/S0012-7094-59-02658-4

[11] Walsh, J.L. (1969) Interpolation and Approximation by Rational Functions in the Complex Domain. Vol. 20, American
Mathematical Society Colloquium Publications, New York.

[12] Ikonomov, N. (2013) Multipoint Padé Approximants and Uniform Distribution of Points. Comptes Rendus de I’ Aca-
demie Bulgare des Sciences, 66, 1097-1105.

[13] Ikonomov, N. (2014) Generalized Padé Approximants for Plane Condenser. Mathematica Slovaca, Springer, Accepted
for Publication in 2014.

[14] Grothmann, R. (1996) Distribution of Interpolation Points. Arkiv f6r matematik, 34, 103-117.
http://dx.doi.org/10.1007/BF02559510

[15] Ikonomov, N. and Kovacheva, R.K. (2014) Distribution of Points of Interpolation of Multipoint Padé Approximants.
AIP Conference Proceedings, AMEE2014, 1631, 292-296. http://dx.doi.org/10.1063/1.4902489

[16] Blatt, H.P. and Kovacheva, R.K. (2015) Distribution of Interpolation Points of Maximally Convergent Multipoint Padé
Approximants. Journal of Approximation Theory, 191, 46-57.

[17] Kovacheva, R.K. (2010) Normal Families of Meromorphic Functions. Comptes Rendus de I'Academie Bulgare des
Sciences, 63, 807-814.


http://dx.doi.org/10.1007/978-3-662-03329-6
http://dx.doi.org/10.1016/0021-9045(72)90081-0
http://dx.doi.org/10.1007/978-94-009-2643-1_14
http://dx.doi.org/10.1016/j.jmaa.2013.02.014
http://dx.doi.org/10.1215/S0012-7094-46-01320-8
http://dx.doi.org/10.1215/S0012-7094-59-02658-4
http://dx.doi.org/10.1007/BF02559510
http://dx.doi.org/10.1063/1.4902489

	Distribution of Points of Interpolation and of Zeros of Exactly Maximally Convergent Multipoint Padé Approximants
	Abstract
	Keywords
	1. Introduction
	2. Main Results and Proofs
	Acknowledgements
	References

