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Abstract 
In this article, we derive a block procedure for some K-step linear multi-step methods (for K = 1, 2 
and 3), using Legendre polynomials as the basis functions. We give discrete methods used in block 
and implement it for solving the non-stiff initial value problems, being the continuous interpolant 
derived and collocated at grid and off-grid points. Numerical examples of ordinary differential 
equations (ODEs) are solved using the proposed methods to show the validity and the accuracy of 
the introduced algorithms. A comparison with fourth-order Runge-Kutta method is given. The ob-
tained numerical results reveal that the proposed method is efficient. 
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1. Introduction 
Numerous problems in Physics, Chemistry, Biology and Engineering science are modeled mathematically by 
ordinary differential equations (ODEs), e.g., series circuits, mechanical systems with several springs attached in 
series lead to a system of differential equations [1]. Since most realistic differential equations do not have exact 
analytic solutions, therefore, approximate and numerical techniques [2]-[14] are used extensively. Recently in-
troduced power series method [15] has been used for solving a wide range of problems. This method has proven 
rather successful in dealing with both linear as well as nonlinear problems, as it yields analytical solutions and 
offers certain advantages over standard numerical methods. It is free from rounding off errors since it does not 
involve discretization, and is computationally inexpensive. Ercan and Mustafa [16] have applied this method to 
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a system of differential-algebraic equations. 
In this paper, we present an efficient numerical method to solve numerically the ODEs. The proposed method 

is a block procedure for some K-step linear multi-step methods (for K = 1, 2 and 3) [17] using Legendre poly-
nomials as the basis functions. In addition, we give discrete methods used in block and implement it for solving 
the non-stiff IVPs that were the continuous interpolant derived and collocated at grid and off-grid points. In this 
article, we consider the general form of the first order initial value problem 

( ) ( )( ) ( )0 0, ,    y x f x y x y x y′ = = .                             (1) 

The plan of the paper is as follows: In Section 2, the derivation of the proposed methods is presented. In Sec-
tion 3, stability and convergence analysis of the block schemes is given. In Section 4, two numerical examples 
are considered. The paper ends with summary and conclusions in Section 5.  

2. The Derivation of the Proposed Methods 
In this section, we derive discrete methods to solve (1) at a sequence of nodal points 0nx x nh= +  where 0h >  
is the step-length or grid-size defined by 1n nh x x+= −  and ( )y x  denotes the true solution to (1) while the ap-
proximate solution is denoted by ( ) { }1, , ,n n Ny x y y y+=  , for some positive number N. The proposed method 
depends on the perturbed collocation method with respect to the power series method is used as the basis for 
collocation approximation with the Legendre polynomials as the perturbation term. 

In the first we consider the approximate solution of the perturbed form of (1) in the following power series 
[18]-[21] 

( ) ( )
0

,
K

K i i n n K
i

y x c x x x xψ +
=

= ≤ ≤∑ .                             (2) 

where 

( ) ,    0,1, ,i
i x x i Kψ = =  .                                (3) 

Substituting from Equation (2) in Equation (1) we have 

( ) ( ) ( )
1

,
K

i i K
i

c x f x y L xψ λ
=

′ = +∑ ,                              (4) 

where ( )KL x  is the Legendre polynomial of degree K, valid in n n Kx x x +≤ ≤  and λ  is a perturbed parame-
ter. In particular, we shall be dealing with cases K = 1, 2 and 3 in (2) and (3). 

The well-known Legendre polynomials are defined on the interval [ ]1,1−  and can be determined with the 
aid of the following recurrence formula [22] [23] 

( ) ( ) ( )1 1
2 1 ,    1, 2,

1 1i i i
i iL x xL x L x i

i i+ −
+

= − =
+ +

 , 

where the first four polynomials are 

( ) ( ) ( ) ( ) ( ) ( )2 3
0 1 2 3

1 11,    ,    3 1 ,    5 3
2 2

L x L x x L x x L x x x= = = − = − .                (5) 

In order to use these polynomials on the interval [ ],n n Kx x +  we define the so called shifted Legendre poly-
nomials by introducing the change of variable 

( )
( )

2
,    1, 2,3n K n

n K n

x x x
x K

x x
+

+

− +
= =

−
.                             (6) 

Cases Study 
Case 1: If K = 1 
In this case, we take the polynomial ( )1L x x=  and use (6), then collocate this equation at nx  and 1nx + , we 

obtain 
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( ) 1
1

1

2 1,n n n
n

n n

x x xL x
x x

+

+

− −
= = −

−
 

( ) 1 1
1 1

1

2 1n n n
n

n n

x x xL x
x x
+ +

+
+

− −
= =

−
. 

In addition, from Equation (3) we can deduce that ( )0 0xψ ′ = , ( )1 1xψ ′ = . Then, the Equation (4) will reduce 
to the following form 

( ) ( )1 1,c f x y L xλ= + .                                  (7) 

We now collocate Equation (7) at n ix + , 0,1i =  and interpolate (2) at nx x= , we get a system of three 
Equations with ( )0,1ic i =  and parameter λ  

0 1

1

1 1

,
,

.

n n

n

n

c c x y
c f
c f

λ
λ +

+ =

+ =

− =

                                     (8) 

Using a suitable method to solve the above system to obtain 

( ) ( )1 1 0
1 ,    ,    
2 n n n n n nf f c f c y x fλ λ λ+= − = − = − −  

From (2), we have 
( ) 0 1y x c c x= + .                                    (9) 

Now, the required numerical scheme of the proposed method will be obtained if we collocate the above 
Equation (9) at 1nx x +=  and substitute 0c , 1c , λ  as follows 

( )1 12n n n n
hy y f f+ += + + .                               (10) 

Which is the well-known trapezoidal rule. 
Case 2: If K = 2 

In this case, we take the polynomial ( ) ( )2
2

1 3 1
2

L x x= −  and use (6), then collocating this equation at nx , 

1nx +  and 2nx + , we obtain 

( ) ( ) ( )2 2 1 2 2
11,    ,    1.
2n n nL x L x L x+ += = − =  

In addition, from Equation (3) we can deduce that ( )0 0xψ ′ = , ( )1 1xψ ′ = , ( )2 2x xψ ′ = . Then, the Equation 
(4) will reduce to the following form 

( ) ( )1 2 22 ,c xc f x y L xλ+ = + .                              (11) 

We now collocate Equation (11) at n ix + , 0,1, 2i =  and interpolate (2) at nx x= , we get a system of four 
equations with ( )0,1, 2ic i =  and parameter λ  

2
0 1 2

1 2

1 1 2 1

1 2 2 2

,
2 ,

12 ,
2

2 .

n n n

n n

n n

n n

c c x c x y
c x c f

c x c f

c x c f

λ

λ

λ

+ +

+ +

+ + =

+ = +

+ = −

+ = +

                                (12) 

Using a suitable method to solve the above system to obtain 
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( )

( )

( ) ( )

( ) ( )

1 2

2 2

1 1 2 2

2
0 1 2 2

1 2 ,
3

1 ,
4
1 12 2 ,
3 2

1 12 2 .
3 4

n n n

n n

n n n n n n

n n n n n n n n

f f f

c f f
h

c f f f x f f
h

c y x f f f x f f
h

λ + +

+

+ + +

+ + +

= − −

= −

= + − + −

= − + − + −

 

From (2), we have 

( ) 2
0 1 2y x c c x c x= + + .                                 (13) 

Now, the required numerical scheme of the proposed method will be obtained if we collocate the above 
Equation (13) at 1nx x +=  and substitute 0 1 2,  , , c c c λ  as follows 

( )1 1 25 8 11
12n n n n n
hy y f f f+ + += + + + .                           (14) 

Case 3: If K = 3 
For case K = 3, we collocate the continuous scheme 

( ) 2 3
0 1 2 3y x c c x c x c x= + + + ,                              (15) 

at grid and off-grid points 1 2,  ,  n n nx x x x x x+ += = =  and 3nx x +=  and this gives the required block schemes 

( )1 1 2 339 107 54 7
98n n n n n n
hy y f f f f+ + + += + + + − .                      (16) 

3. Stability and Convergence Analysis of the Block Schemes 
In this section, we present a summary on the order, the error constant and the convergence of the proposed block 
schemes. This summary in given in the following table. 

 
Step K = 1 K = 2 K = 3 

Order 2 2 4 

Error Constant 1
12

−  1
12

−  1
96

 

Convergence convergent convergent convergent 

4. Numerical Examples  
In this section, we implement the proposed method with K = 2 and K = 3 to solve two first order initial value 
problems, and compare the obtained numerical results with those obtained from using the fourth-order Runge- 
Kutta method (RK4). 

Example 1. 
Consider the following IVP 

( ) ( ) ( ),    0.1,    0 1y x y x h y′ = − = = . 

With the exact solution ( ) e xy x −= . 
The numerical results of this example are presented in Table 1 and Table 2 with the cases K = 2 and K = 3, 

respectively. In these tables, we presented a comparison the obtained numerical results using the proposed me-
thod with the exact solution and those numerical results obtained from using RK4. 

Example 2. 
Consider the following IVP 
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( ) ( ) ( )1 ,    0.1,    0 0y x x y h y′ = − = =  

With the exact solution ( ) 2 21 e xy x −= − . 
The numerical results of this example are presented in Figure 1 and Figure 2 with the cases K = 2 and K = 3, 

respectively. In these figures, we presented a comparison the obtained numerical results using the proposed me-
thod with the exact solution and those numerical results obtained from using RK4. 

 
Table 1. A comparison the proposed method at K = 2 with the exact solution and RK4: Ex-
ample 1. 

x Block Scheme K = 2 Exact Solution RK4 

0.0 1.000000 1.000000 1.000000 

0.2 0.818712 0.818730 0.818781 

0.4 0.670345 0.670320 0.670541 

0.6 0.548848 0.548811 0.548848 

0.8 0.449215 0.449328 0.449345 

1.0 0.367822 0.367879 0.367836 

 
Table 2. A comparison the proposed method at K = 3 with the exact solution and RK4: Ex-
ample 1. 

x Block Scheme K = 3 Exact Solution RK4 

0.0 1.000000 1.000000 1.000000 

0.2 0.818735 0.818730 0.818738 

0.4 0.670328 0.670320 0.670321 

0.6 0.548817 0.548811 0.548813 

0.8 0.449322 0.449328 0.449325 

1.0 0.367871 0.367879 0.367873 

 

 
Figure 1. A comparison the proposed method at K = 2 with the exact 
solution and RK4: Example 2. 
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Figure 2. A comparison the proposed method at K = 3 with the exact 
solution and RK4: Example 2. 

5. Summary and Conclusions  
In this paper, we presented three new block-schemes (K = 1, K = 2 and K = 3) that are convergent and absolutely 
stable. We used the proposed method to solve numerically a wide-range of linear initial value problems. The re-
sults of the presented examples show that our method was capable for solving such problems of IVPs and gene-
rates the convergence analysis, and closed to their exact solutions. This method is very simple and effective for a 
wide-range of ODEs. All computations are made by Matlab. 
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