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Abstract 
The Einstein’s program permits to conciliate gravitation and electromagnetism. Besides the stan-
dard model, it forms a consistent system for universe description, founded upon a scalar field 
propagating at the speed of light c. Matter corresponds to standing waves. Adiabatic variations of 
frequencies lead to electromagnetic interaction constituted by progressive waves. Classical do-
main corresponds to geometrical optics approximation, when frequencies are infinitely high, and 
then hidden. As interactions for matter, Gravitation and Electromagnetism derive from variations 
of its energy E = mc2. Electromagnetic interaction energy derives from mass variation dE = c2dm, 
and gravitation from speed of light variation dE = mdc2. Contrarily to gravitation, only electro-
magnetic interaction serves as a bridge between classical and quantum frames, since it leans di-
rectly upon the wave property of matter: its energy dE = hdν = c2dm derives from variations of 
matter energy E = hν = mc2. 
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1. Introduction 
The conciliation of gravitation with electromagnetism is one of the most present resisting problems in physics. 
The main difficulty lies in the fact that, until now, gravitation is still described by general relativity, in a classic-
al and determinist framework, while electromagnetism, incorporated in the standard model, is described by a 
quantum field, in a probabilistic framework. 

For the physicists, the whole universe is nowadays theoretically described by the standard model, which 
forms a consistent system. It is constituted by matter interacting through three different kinds of forces. All are 
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composed of fundamental particles which derive from relativist quantum fields, and behave either as waves or as 
particles. The standard model has been validated in 2012 by the B.E.H, or Higgs, boson detection, representing 
its crowning. Since it does not include gravitation, it describes only a partial aspect of the universe. It is admitted 
as posterior to Planck’s era. 

By comparison, gravitation is well described by general relativity, based on a continuous field [1]-[5]. It has 
been largely confirmed by numerous experiments and by its theoretical consequences and practical applications. 
The graviton, as the quantum particle mediating for gravitation interaction, has not yet been detected and vali-
dated [6] [7]. Consequently, until having proof to the contrary, gravitation remains well described by general re-
lativity, in a classical framework. 

In extension of general relativity and of his different discoveries, including in quantum physics, such as the 
stimulated emission, Einstein had proposed a consistent approach for physics, symmetrical to the standard mod-
el [1]. He privileged a continuous field, leaning on physical representations of phenomena, before their more 
precise mathematical description. 

It has been supported, and validated, by the International Legal Metrology Organization. In one hand, the 
speed of light in vacuum is admitted as a “pure”, or primary, fundamental constant in experimental physics, with 
its numerical value strictly fixed. In other hand, the standard for measures of time is based on the period an elec-
tromagnetic oscillation. 

In a previous article [8], we showed how the Einstein’s program forms a consistent system for universe de-
scription, beside the standard model. It allows us to complete the universe grasp, like both eyes give us access to 
tridimensional vision, or both ears to stereophonic audition. It founds upon a scalar field propagating at light 
velocity. Matter corresponds to standing waves, and electromagnetism, as a quantum interaction, to their adia-
batic variations. Classical domain restricts to the geometrical optics approximation, when frequencies are infi-
nitely high, and then hidden [9]-[12]. 

In this article we propose to show how the Einstein’s program permits to conciliate gravitation and electro-
magnetism. Since both act as interactions of matter, they derive from variations of its energy E = mc2. Electro-
magnetic interaction energy corresponds to the mass variation dE = c2dm, while gravitation energy is linked to 
variation of the light velocity dE = mdc2. Contrarily to gravitation, only electromagnetic interaction energy dE = 
hdν = mdc2, derives directly from the wave character of matter with E = hν = mc2, as an adiabatic variation. 

2. History 
The historical development of interaction properties of matter with gravitation, and of interaction properties of 
charges with electromagnetism, showed from the beginning, how they were all closely linked together. 

Gravitation was the first interaction, discovered and formalized in the 17th century. The Newton’s attractive 
force 

F = Gmm'/r2                                       (1) 

exerted between two localized masses m, m', separated by a distance r, introduced in physics the concept of 
force, applied respectively to point-like gravity centers, together with the concept of particle. Afterward, one 
century later, the problem of harmonizing electromagnetism began to arise, when the Coulomb’s force 

F = kqq'/r2                                        (2) 

between electric charges q, q', revealed similar to (1), beyond the fact that it is attractive or repulsive, depending 
the signs of the charges. Both equations form parts of the same Newtonian field, acting instantaneously between 
two point particles in vacuum. In addition, the charges have necessarily matter as support. 

Special Relativity replaced the instantaneous action at a distance between particles, by an action propagating 
at speed of light c, emphasizing that it occurred in vacuum. Henceforth, the speed of light plaid a fundamental 
role in physics, particularly in the space-time framework, as a link between space and time coordinates. 

However, in spite of its extension feature, in Einstein’s equation of General Relativity, 

Rij − gijR/2 = χTij                                      (3) 

the local variations of space-time properties, characterized by the metric tensor gij, leading to a curvature R, 
prevented to maintain it still empty. (Despite its usefulness, we did not consider the cosmologic constant Λ, 
since the additional term gijΛ may figure either in any side, according to its physical consequences). The left 
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side of (3), which is the principal feature of the theory, describes the gravitation properties of space-time, 
through a classical continuous field propagating at light velocity c, as resulting from the tensors gij and its deriv-
ative Rij. They arise themselves from the matter-energy tensor Tij of the right side, acting as sources, globally in 
motion with a speed v strictly inferior to c, and gathering different phenomenological and theoretical properties 
of matter-energy, through masses and interactions. 

Einstein’s equation law for gravitation (3) derives directly as an extension of Newton’s law (1). (It is known 
that (1) arises as an approximation of (3), remaining largely sufficient for usual terrestrial, and even spatial, ap-
plications for moving matter. It becomes insufficient for GPS because it concerns electromagnetic rays propaga-
tion). Nevertheless, passing over from (1) to (3) was conditioned by the transformation of Coulomb’s equation 
(2) on behalf of static Poisson’s equation ∆V = −4πρ for electricity, after introducing a space-distributed poten-
tial V in place of force F, and continuous charge density ρ, in place of point-like charge q. It led to the Max-
well’s equations. According to Einstein, “The formulation of these equations is the most important event in 
physics since Newton’s time, not only because of their wealth of content, but also because they form a pattern 
for a new type of law… The characteristic features of Maxwell’s equations, appearing in all other equations of 
modern physics, are summarized in one sentence. Maxwell’s equations are laws representing the structure of the 
field.” [2]. Nowadays, it still appears that, “One could believe that it would be possible to find a new and secure 
foundation for all physics upon the path which had been so successfully begun by Faraday and Maxwell. Ac-
cordingly, the revolution begun by the introduction of the field was by no means finished” [1]. 

At the present time, in view of physics unification into the standard model of particles, gravitation remains, 
after almost one century of efforts, the last one to be quantified, in order to rejoin the three others. Einstein’s 
Equation (3) gathers together separately in either side, without fusing them, not only gravitation and electro-
magnetism but also opposite entities, like fields propagating at light velocity c, and localized matter-energy. 

This is why, despite of his awareness of general relativity achievement, Einstein was “dissatisfied with the 
dualism of a theory admitting two kinds of fundamental physical reality: on the one hand the field and on the 
other hand the material particles. It is only natural that attempts were made to represent the material particles as 
structures in the field, that is, as places where the fields were exceptionally concentrated. Any such representa-
tion of particles on the basis of the field theory would have been a great achievement... This theory having 
brought together the metric and gravitation would have been completely satisfactory of the world had only gra-
vitational fields and no electro-magnetic fields. Not it is true that the latter can be included within the general 
theory of relativity by taking over and appropriately modifying Maxwell’s equations of the electro-magnetic 
field, but they do not then appear like the gravitational fields as structural properties of the space-time conti-
nuum, but as logically independent constructions. The two types of field are causally linked in this theory, but 
still not fused to an identity.” [1]. 

3. The Einstein’s Program 
In extension of general relativity and of his different discoveries, including in quantum physics, such as the sti-
mulated emission, Einstein had proposed a consistent approach for physics, which appears at the present time, as 
symmetrical to the standard model: “We have two realities: matter and field… We cannot build physics on the 
basis of the matter concept alone. But the division into matter and field is, after the recognition of the equiva-
lence of mass and energy, something artificial and not clearly defined. Could we not reject the concept of matter 
and build a pure field physics?… We could regard matter as the regions in space where the field is extremely 
strong. In this way a new philosophical background could be created… Only field-energy would be left, and the 
particle would be merely an area of special density of field-energy. In that case one could hope to deduce the 
concept of the mass-point together with the equations of the motion of the particles from the field equations— 
the disturbing dualism would have been removed… One would be compelled to demand that the particles them-
selves would everywhere be describable as singularity free solutions of the completed field-equations. Only then 
would the general theory of general relativity be a complete theory.” [1]. 

As a general manner, new technologies evolve in accordance with the Einstein’s program, when they are 
substituting, progressively and almost systematically, mechanical devices by electronic devices, based upon 
electromagnetic field in place of matter. For instance, instead of printing documents on paper, they are rather 
numerically recorded. What is more specific is that, decades after the Einstein’s program was set, physicists had 
begun to bring it into effect, when they replaced international standards of length and time, based on matter 
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since two centuries, by electromagnetic standards, based on the period of a continuous field propagating at the 
speed of light. As far back as 1905, when Einstein established special relativity theory, he used a light ray, and 
not a material rod, to measure the distance of a moving body. He anticipated the international standard of length 
adopted in 1960 by the International Legal Metrology Organization. Now it derives from the second, defined by 
the radiation period of the cesium 133 atom, and by, the speed of light in vacuum, admitted as fundamental, with 
its numerical value strictly fixed. This allows to measure durations with 10−18 precision. Such measures, carried 
out by electromagnetic frequencies reduction ratio, are the more precise in physics at the present time [13] [14]. 

Thus, not only the Einstein’s program gave numerous proofs of its validity, but it presents itself as precise 
means to investigate the problem of gravitation and electromagnetism conciliation. The more especially as gra-
vitation has strongly resisted to its quantification, since almost one century. For this purpose we point out two of 
their main characteristic features. 

The first one is explicit in the program, and was emphasized by Einstein since 1905 in special relativity: the 
speed of light c. Its basic role in whole experimental and theoretical physics has been legally confirmed in in-
ternational standards, as a “pure” or primary fundamental constant, with its value numerically fixed. It is the 
speed of propagation in vacuum for gravitation and electromagnetism interactions. On another hand, the legal 
standard of time leans on a frequency of oscillation of a field propagating at the speed of light. 

4. Electromagnetism and Special Relativity 
4.1. Standing Field Kinematics 
In previous works [15] [16], we showed how kinematic properties for standing waves of a scalar field propagat-
ing at light velocity c, with constant frequency ω and velocity v, are formally identical with mechanic properties 
of isolated matter. The Lorentz transformation, which plays a fundamental role in special relativity, is specific of 
standing waves. 

Starting from a scalar field ε propagating at light velocity c, we are assured that all following consequences 
are relativistic. The general harmonic solutions of the d’Alembertian’s equation 

ε = ∆ε − (1/c2)(∂2ε/∂t2) = 0,  ∂µ∂µε = 0                           (4) 

may be reduced to two kinds of elementary ones, according to their kinematic, or their geometric, properties. In 
the first case, we find progressive waves propagating at speed of light in opposite direction, like cos(ω0t0 ± k0x0), 
and standing waves with separated variables x0, t0, and distinct functions of space u0(k0x0), and of time ψ0(ω0t0), 
ε0(x0, t0) = u0(k0x0)ψ0(ω0t0) = cos(ω0t0)cos(k0x0), with frequency ω0 = k0c. Since they oscillate locally, they de-
fine then a rest system for coordinates (x0, t0). Since the functions u(k0x0) and ψ0(ω0t0) are independent, the fre-
quency ω0 is necessarily constant in (1/u0)∆0u0 = (1/ψ0)(∂2ψ0/c2∂t0

2) = −k0
2 = −ω0

2/c2 = constant. Progressive and 
standing waves can be considered either as basic, or as composed from others since 

cos(ω0t0 + k0x0) + cos(ω0t0 − k0x0) = 2cos(ω0t0)cos(k0x0),                   (5) 

cos(ω0t0)cos(k0x0) + sin(ω0t0)sin(k0x0) = cos(ω0t0 − k0x0)                     (6) 

when the frequencies of opposite progressive waves are different in a system of reference (x, t), 

cos(ω1t − k1x) + cos(ω2t + k2x) = 2cos(ωt − βkx)cos(kx − βωt),              (7) 

by identification with (5), they form a standing wave with main frequency 0 1 2ω ω ω=  at rest. It becomes ω = 
(ω1 + ω2)/2 = kc, when in motion with a speed v = βc = (ω1 − ω2/ω1 + ω2)c, leading to the Lorentz transforma-
tion between the systems of reference(x0, t0) and (x, t), and to its whole consequences. 

The geometric properties of standing waves are described by the function of space u(k0x0), obeying Helm-
holtz’s equation ∆0u0 + k0

2u0 = 0. Its solutions verify Bessel spherical functions, and particularly its simplest 
elementary solution, with spherical symmetry, finite at origin of the reference system, and representing a lumped 
function, 

u0(k0r0) = (sink0r0)/(k0r0),                                (8) 

In geometrical optics approximation, when the frequency is very high and tends towards infinity ω0 = k0 → ∝, 
the space function u0 tends towards Dirac’s distribution u0(k0r0) → δ(r0). The standing wave of the field behaves 
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as a free classical material particle isolated in space. 
From a kinematical point of view, the central extremum of an extended standing wave, either at rest or in mo-

tion, is appropriate to localize its position x0, exactly like the centre of mass for a material system. It verifies 

∇0u0(x0) = 0.                                    (9) 

The four-dimensional Minkowski’s formalism traduces invariance properties of standing waves at rest, when 
they move uniformly. Confirmation is found into invariant quantities obtained from four-quantities, such as 
coordinates xµxµ = x0

2 or xµxµ = c2t0
2, and functions uµuµ = u2(x0) or ψµψ

µ = ψ2(t0). Their space-like or time-like 
characters are absolute, depending of their refering quantities defined in the rest system, in which the separation 
with respect to space or time occurs. 

In order to point out their constant frequency, we express them as 

ε(ωt, kx) = u(kx, βωt)expi(ωt − βkx)  φ = ωt − βkx                      (10) 

In special and general relativity, the equations are based on particles, as singularities, moving on trajectories. 
They lean then directly upon geometrical optics approximation. The periodic equations, generic of standing 
fields, are hidden. The space coordinates xα, involved in the metric, are point-like dynamical variables, and not 
field variables r which would describe an extended repartition in space. 

4.2. Standing Field Dynamics 
All above equations are unlimited with respect to space and time, since x or t may become infinite. Usually, one 
imposes boundary conditions, in which matter acts either as a source fixing the frequency ω, or as a detector 
annealing it, as well as a geometrical space boundary fixing the wavelength λ through k = 2π/λ. This is not feli-
citous from relativistic consistency, since space and time operate separately. In addition, matter is heterogeneous 
with regard to field. In order to remain in homogeneous frame, we rather consider boundaries provided by wave 
packets. Two progressive waves with different frequencies ω1, ω2 propagating in the same direction at light ve-
locity, give rise to a wave packet propagating in the same direction at light velocity, with a main wave with fre-
quency ω = (ω1 + ω2)/2, modulated by a wave with frequency βω = (ω1 − ω2)/2 = ∆ω/2 = ∆kc/2 and wavelength 
Λ = 2π/βk and period T = Λ/c. Since β < 1, the modulation wave acts as an envelope with space and time exten-
sions ∆x = Λ/2, ∆t = T/2, leading to well known Fourier relations ∆x∆k = 2π and ∆t∆ω = 2π. 

Then, Fourier relations represent homogeneous boundary conditions for the scalar field ε. From a physical 
point of view, they must be compulsory associated with the d’Alembertian’s Equation (4) in order to complete 
them, and to emphasize that the field cannot extend to infinity with respect to space and time. 

When the frequencies difference βω = (ω1 − ω2)/2 = ∆ω/2 << ω is very small, it can be considered as a per-
turbation with respect to the main frequency, βω = δω. Then a wave packet can be assimilated to a progressive 
monochromatic wave with frequency Ω = ω ± δω, inside the limits fixed by the component frequencies ω1 = ω + 
δω and ω2 = ω − δω. By difference with standing waves frequencies, which must be constant and monochro-
matic, progressive fields solutions of (4), may be more complex, with frequencies varying with space and time. 
An almost monochromatic wave is characterized by a frequency Ω(x, t), varying very slowly around a constant 
ω 

Ω(x, t) = K(x, t)c = ω ± δΩ(x, t)  δΩ(x, t) << ω  ω = constant.             (11) 

From a physical point of view, we recognize the definition of an adiabatic variation for the frequency [17]. 
We can then expect that all following properties of almost fields occur inside such a process. Instead of admit-
ting constant frequencies ω of elementary waves propagating all over space-time as given data, we rather con-
sider that it represents the mean value, all over the field, of different varying frequencies Ω(x, t). In other words, 
the modulation waves with perturbation frequency δΩ(x, t), propagating at light velocity, behave as interactions 
between main waves, leading that their frequency ω remains practically constant all over the space-time. 

From a mathematical point of view, almost fields properties derive from monochromatic ones, through the 
variation of constants method (Duhamel principle). Accordingly, following (10), an almost standing wave ob-
eys, 

ε(x, t) = U(x, t)expiɸ(x, t)  ɸ(x, t) = Ω(x, t)t − K(x, t)x + 2nπ,               (12) 

where products of second order δΩdt ≈ 0 and δKdx ≈ 0, defined modulo 2π, are neglected at first order of ap-
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proximation. This is equivalent to incorporate, in almost monochromatic solutions, the boundary conditions de-
fined by Fourier relations. 

dɸ(x, t) = Ω(x, t)dt − K(x, t)dx ≈ ωdt − kdx.  U(x, t) = u(x, t) ± δU(x, t)         (13) 

According to (4), ε(x, t) in (12) verifies, 

∂µ∂µU − U∂µϕ∂µϕ = 0 or ∂2U/c2∂t2 − ∇2U − U[(∂ϕ/c∂t)2 − (∇ϕ)2] = 0           (14) 

∂µ(U2∂µϕ) = 0 or ∂(U2Ω)/c2∂t + ∇(U2βK) = 0                       (15) 

These relations apply to progressive waves for β = ±1, to standing waves at rest for β = 0 and in motion for β 
< 1, to monochromatic waves for ω and k constant, to almost monochromatic waves for varying Ω(x, t) et K(x, 
t). 

They lead to dynamical properties for energy-momentum conservation, and to least action principles, for 
standing fields and almost standing fields [9]-[12]. 

For a standing wave, either at rest or in motion, the frequency is constant δΩ(x, t) = 0, so that (15) reduces to 

∂u0
2/∂t0 = 0.  ∂u2/∂t + ∇u2v = 0 or ∂µwµ = 0                      (16) 

where wµ = (u2, u2v/c) = u0(x0)2(1, v/c)/ ( )21 β−  is a four-dimensional vector. This continuity equation for u2  

is formally identical with Newton’s equation continuity for matter-momentum density 

∂µ/∂t + ∇µv = 0.  with u2 = µc2,                            (17) 

We are then led to admit, by transposition, that u2 represents the energy density of the standing field. 
Following relations (8) and (9), in the spherical symmetry case, and for its kinematical behavior, the space 

function u0 can be reduced to its point-like centre of energy density whose position x0 is such that 

∇0u0
2 = 0  ∇u2 + (∂u2v/c2∂t) = 0  ∇ × v = 0 or πµν = ∂µwν − ∂νwµ = 0,           (18) 

Since u2 is a standing wave energy density spread in space, and then a potential energy density, −∇u2 = −∇wP 
= F is a density force, and ∂u2v/c2∂t a density momentum. Then πµν is a four-dimensional force density. 

Equation (18), where energy density wµ is a four-dimensional gradient ∂µa, is mathematically equivalent to 
the least action relation 

δ da 0=∫   δ μda 0∂ =∫  with wµ = ∂µa.                          (19) 

When transposing the mass density µ = u2/c2, and taking into account the two identities ∇P2 = 2(P∇)P + 2P × 
(∇ × P) and dP/dt = ∂P/∂t + (v∇)P for c and v constant, after integration with respect to space, we get the equa-
tion for matter 

dp/dt = −∇mc2 + {∇(mv)2}/2m  dp/dt = ∇Lm = −∇m0c2 ( )21 β− .               (20) 

We retrieve the relativistic Lagrangian of mechanics for free matter Lm = −m0c2 ( )21 β−  [18]. 

4.3. Electromagnetism 
For of an almost standing wave, the continuity equation applies that the total energy density W = U2Ω = w + δW, 
is sum of the mean standing wave w and of the interactions δW. The relations (18) become 

Πµν = ∂µWν − ∂νWµ = 0 or Πµν = πµν + δΠµν = 0                      (21) 

By difference with the null four-dimensional density force πµν for a standing wave, only the total density force 
Πµν for an almost standing wave vanishes. In the first case, this asserts the space stability of an isolated standing 
wave, while in the second case, the space stability concerns the whole almost standing wave. It behaves as a 
system composed of two sub-systems, the mean standing field with high frequency Ω(x, t) ≈ ω, and the interac-
tion field with low frequency δΩ(x, t), each one exerting an equal and opposite density force πµν = −δΠµν 
against the other. 
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In (18), the vanishing four-dimensional force density tensor πµν of a standing wave, asserts that the en-
ergy-momentum density four-vector wµ is four-parallel, or directed along the motion velocity v. By comparison, 
for an almost standing wave, the total energy-momentum density tensor Πµν which still vanishes, asserts also 
that the total energy-momentum density four-vector Wµ is four-parallel, or directed along the motion velocity v. 
However, the mean energy-momentum density tensor πµν, no longer vanishes in (21) as previously in (18): the 
mean energy-momentum density four-vector wµ is then no longer parallel. This comes from the opposite density 
force δΠµν exerted by the interaction. 

It appears that an almost standing wave behaves as a whole system in motion which can be split in two 
sub-systems, the mean standing wave and the interaction field. Both are moving with velocity v, while exerting 
each other opposite forces in different directions, including perpendicularly to the velocity v. The perturbation 
field, arising from local frequency variations δΩ(x, t), introduces orthogonal components in interaction density 
force and momentum. 

The relations (20), generalized by the constants variation method for the mass M(x, t) = m ± δM(x, t), become 

∇Mc2 + ∂P/∂t = 0  ∇ × P = 0  dP/dt = −∇Mc2 + (∇P2)/2M.                (22) 

The density force δΠµν ≠ 0 exerted by the interaction is formally identical with the electromagnetic tensor Fµν 
= ∂µAν − ∂νAµ ≠ 0. We can set them in correspondence δΠµν = eFµν, through a constant charge e, in which δM(x, 
t) = eV(x, t)/c2 and δP(x, t) = eA(x, t)/c. The double sign for mass variation corresponds to the two signs for 
electric charges, or to emission and absorption of electromagnetic energy by matter. We retrieve the minimum 
coupling of classical electrodynamics, Pµ(x, t) = pµ + eAµ(x, t)/c, with M(x, t)c2 = mc2 + eV(x, t), and P(x, t) = p 
+ eA(x, t)/c where electromagnetic energy exchanged with a particle is very small with respect to ist own energy 
eAµ(x, t)/c = δPµ(x, t) << pµ [18]. Electromagnetic interaction is then directly linked to frequencies variations of 
the field ε. 

From (22) we derive then the relativistic Newton’s equation for charged matter with the Lorentz force 

dP/dt = −∇m0c2 ( )21 β−  + e(E + v × H/c).                    (23) 

4.4. Adiabatic Invariance 
For an almost standing wave, in place of (16), we get from (13) and (15), to first order approximation, 

[∂U2/∂t + ∇U2v]/U2 + δ[∂Ω/∂t + ∇Ωv]/Ω = 0 or (∂νWν)/W + δ(∂νΩν)/Ω = 0.        (24) 

where W = w ± δW = µc2 = µc2 ± δµc2 is energy density, Wν = wν ± δWν = (µc2, µvc) four-dimensional energy 
density, Ω = ω ± δΩ the frequency and Ων = (Ω, Ωv/c) the four-dimensional frequency. These relations imply 
that 

W = IΩ and Wν = IΩν                                 (25), 

when we take into account the double sign in frequency variation δΩ. The constant I is an adiabatic invariant 
density. In first approximation, they reduce to energy-momentum densities, and to their variations, relations 

wν = Iων or µc2 = Iω  µv = Iβk                            (26) 

 

δWν = IδΩν or δµc2 = IδΩ  δµv = IδβK                     (27) 

Integrations of µ and I densities with respect to space, lead to relations between four-energy and 
four-frequency 

Eν = (mc2, pc) = m0c2uν = Hων = H(ω, kc) = Hω0uν  uν = (1, v/c)  m0c2 = Hω0      (28) 

through the adiabatic invariant H. Since the Planck’s constant h behaves as an adiabatic invariant [17], these re-
lations show h proximity with electromagnetism, more especially as they both lean upon slight frequency varia-
tions. However, their rigorous connections remain unsolved since h applies to all particles with different masses, 
while this does not seem to occur for H, after integration of I with respect to space. Consequently, even if, from 
historical point of view, Planck’s constant h was introduced in direct connection with electromagnetism, through 
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black-body radiation, these relations pave only the way to a more complete approach. 

5. Gravitation and General Relativity 
All above, starting from the d’Alembertian Equation (4) for a scalar field ε propagating with a constant velocity 
c in vacuum, we derived almost standing waves properties, characterized in a rest system (x0, t0) by separated 
space and time variables ε0(x0, t0) = u0(k0x0)ψ0(ω0t0), and a constant frequency ω0 = k0c. The Lorentz transfor-
mation expresses that its stability remains in uniform motion with speed v. 

Before its application to mechanics, and more generally to special relativistic physics, the Lorentz transforma-
tion determined the structure of Maxwell’s equations in vacuum. The presence of matter, as support of electric 
charges, modifies locally the field properties, through induced dielectric and magnetic permeability variations, 
so that the field velocity propagation c is no longer constant, and must be written C(x, t) [19]. 

Since localized standing waves behave like matter, we may expect that, as a secondary effect, their energy 
density u2 = µc2 modifies very slightly the field propagation velocity, so that it remains close to its vacuum con-
stant value, becoming C(x, t) = c ± δC(x, t), with δC(x, t) << c. The relation v = βc shows that the local varia-
tions of the motion velocity V(x, t) must follow, leading to V(x, t) = v ± δV(x, t), with δV(x, t) << v. Conse-
quently, the Lorentz transformation (1), in which the velocities v and c are constant, appears as expressing only 
a local approximation limit, from a more general form with varying velocities. In order to find it, we notice that 
in the relation ω = kc, the varying field velocity c tends toward C(x, t). It leads to varying frequency ω and wave 
vector k in Ω(x, t) = K(x, t)C(x, t). Then, in a rest system, space and time terms are no longer fully separated in 
expression ε0(x0, t0) = U0(x0, t0)Ψ0(x0, t0). The invariant interval s2 = c2t0

2 = c2t2 − x2, takes then the more general 
local form ds2 = gijdxidxj, introducing the formalism of general relativity, and leading to all its developments and 
consequences. 

However, for almost standing waves, all quantities variations are very slight in comparison with their standing 
waves constant values. The Lorentz transformation remains locally verified for standing waves, as approxima-
tions of almost standing waves, when the velocity of propagation of the field C(x, t) reduces to c. 

Inversely, dynamical properties of almost standing waves arise from those of standing waves, through varia-
tion of constants method for velocities C and V, while the mass density µ = u2/c2 of the standing wave limit re-
mains unaffected in first approximation, according to (13) in the continuity Equation (16) written in the form 
(20) 

d(µV)/dt = −∇µC2 + ∇(µV)2/2µ  µdV/dt = −µ∇(C2 − V2/2)                      (29) 

dV/dt = −∇(C(x, t)2 − V(x, t)2/2)  dV/dt0 = −∇0C2(x0, t0) = −∇0Φ(x0, t0).          (30) 

The acceleration of an almost standing wave, either at rest or in motion, is locally independent of its energy 
density, equivalent to mass density of matter. This characterizes gravitation interaction [18]. The gravitational 
potential Φ(x, t) = C2(x, t) is formally identical with the square of the local velocity of propagation of the field. 

The relations (29) are consistent with physical origin of gravitation, exposed in 1912 by Einstein, in a prelim-
inary article on general relativity of 1915, on Light velocity and static gravitation field, [20]. He established the 
equation ∆c = 0 in vacuum, generalizing the Poisson equation ∆Φ = 0 for the gravitation potential. 

6. Gravitation and Electromagnetism Conciliation 
By integration of mass density µ all over space, the relation (26) leads to general classical equation [7] 

dP/dt = −∇MC2 + ∇(MV)2/2M. then E0 = M0(x0, t0)C2(x0, t0) = constant             (31) 

when the mass M is constant, the variations of velocities, C of the field, and V of the matter, lead to the gravita-
tion force in (28), and to the gravitational Lagrangian LG = −MΦ(x, t) + Mv2/2, in an inertial frame of relativistic 
mechanics, which remains locally valid in general relativity [18]. When the velocities C of the field and V of the 
matter are constant, the variations δM(x, t) = eV(x, t)/c2 of the mass M derive from electromagnetic interactions, 
leading to the relativistic mechanical Lagrangian of charged matter 

dP/dt = −M∇(C2 − V2/2) − (C2 − V2)∇M = −∇LG − ∇Lm = −∇L.               (32) 

The total Lagrangian L, is then the sum of gravitational LG and charged mechanical Lm Lagrangians. 
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dE0 = d(M0C2) = M0dC2 + C2dM0 = dEG + dEm  dEν = dEν
G + dEν

m             (33) 

For matter at rest, and in uniform motion, interaction energies of electromagnetic charged matter dEm and of 
gravitation dEG , derive from its total energy E0 = M0C2. However, contrarily to gravitation, only electromagnet-
ic energy is quantified dEm = hdΩ, according to (28). 

7. Concluding Remarks 
Following Einstein’s program, founded on a scalar field propagating at speed of light, one can derive main 
physical properties of matter and of gravitational and electromagnetic interactions. Matter corresponds to stand-
ing waves, while interactions correspond to progressive waves. When frequencies are infinitely high, they render 
oscillations inaccessible with time, since they are too rapid, and inaccessible with space, since the wavelengths 
are too small. Only mean effects appear. Physical phenomena exhibit then, theoretically and experimentally, as 
particles. Classical relativist equations of mechanics correspond to geometrical optics approximation. 

In mechanics and electromagnetism domains, the very slight local variations, or local adiabatic variations, of 
almost standing waves frequency, lead to variations of energy density, or to equivalent mass density, while the 
field velocity c and motion velocity v = dx/t, are locally constant. The underlying invariance structure with re-
spect to motion, is expressed by local Lorentz tranformation, with invariant interval ds2 = c2dt0

2 = c2dt2 − dx2. 
We retrieve then the main classical relativist relations for matter, such as the variational principle and the 

energy-momentum conservation laws, and particularly its energy E = mc2. The variations of frequencies lead to 
the quantum relation E = hν for matter (second quantification), and dE = hdν for electromagnetic interaction 
(first quantification), as well as to Fourier relations, homogeneous to the field, leading to the Heisenberg rela-
tions, homogeneous to matter. They lead also to an interaction which is formally identical with electromagnet-
ism. 

The variations of light velocity lead to an interaction, formally identical with gravitation. In gravitational do-
main, the whole equivalent mass of an almost standing wave, or the total mass of matter, including interaction 
energy, is submitted to local variations of the field velocity C(x, t) and of motion velocity V(x, t). The underly-
ing invariance structure with respect to motion, is expressed by the local invariant interval ds2 = gijdxi dxj, of 
general relativity. 

The Einstein’s program permits to conciliate gravitation and electromagnetism. Since they act as interactions 
of matter, both derive from variations of its energy E = mc2: electromagnetism from mass m variation, and gra-
vitation from light velocity c variation. Electromagnetism alone, but not gravitation, derives from the frequency 
ν variation of the matter energy E = hν = mc2, leading to its quantification. 

This would get an insight into theoretical difficulties encountered to incorporate gravitation in standard model 
of particles, and into experimental difficulties to detect the graviton as mediating quantum particle. 
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