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Abstract

In the paper, we investigate the pricing behavior of a risk averse monopoly. Since the focus is on
the risk averse attitude of the firm, we ignore cost in our model. Demand is considered to be sto-
chastic demand: as price decreases, the expected number of customers increases, but it has a varia-
tion. Although demand is uncertain, it relates to the aggregation method of individual demands
and the individual demand has the usual form. In our framework a risk neutral (or profit max-
imizer) monopoly does not change the product’s price as the number of clients increases. On
product markets the risk averse monopoly with DARA utility function always increases the price
as the number of clients grows, but in insurance markets the implication can be the opposite: the
price of insurance may decrease as the number of clients increases.
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1. Introduction

Stochastic demand is not unknown in the economic literature. In management science models it is well-studied
(see e.g. [1] [2]). In microeconomic models stochastic demand appears less frequently. If stochastic demand is
considered in microeconomic models, it usually means that the demand depends on some unknown (external)
parameter or it is due to some kind of bounded rationality. Barbera and Pattanaik [3], for example, investigate
the case where the decision maker chooses randomly between alternatives. In this paper, the individual demand
has the usual form, but for a risk averse decision maker it is not appropriate to simply sum up the individual de-
mands. As we will see, for a risk neutral firm summing up is acceptable, but for a risk averse decision maker the
uncertainty about demand has a significant effect on the optimal price (see more on aggregation of stochastic in
e.g. [4] [5D).

It is usual in microeconomic theory that increased demand increases market price. We can think of Marshal-
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lian cross for instance. There are known exceptions, such as the Giffen goods. Hoy and Robson [6] gave an ex-
ample where insurance can be a Giffen good. In our model the individual demand has a downward slope, there-
fore the case of Giffen good is excluded.

Pricing of a monopoly differs from pricing of a competitive firm. It can happen that a monopoly reduces its
price due to the increased demand, but the decrease is related to the costs (natural monopoly for instance) or the
increase of the demand is not uniform. In our model we would like to focus on risk aversion of the decision maker,
thus we ignore costs. On the other side, the increase of demand is uniform.

We provide a simple framework for investigating the pricing of a risk averse monopoly. We distinguish be-
tween product market and insurance market. In the product market increased demand will cause increased mo-
nopoly price, but in the insurance market it can happen, that increased demand results in reduced price.

In the insurance economic literature there are usually two kinds of models: insurer has many (or many type of)
contracts, but the insurer is risk neutral (e.g. [7] [8]). In the other type of model the insurer is risk averse but the
model investigates (one or few) typical contracts (e.g. [9] [10]). It is very rare when a risk averse insurer is con-
sidered to have many insured, which is the everyday situation.

Insurance markets are dominated by a few (or not many) companies, which remind us to the market form of
oligopoly. It depends on the situation whether the competitive economy or the monopoly is a more realistic mar-
ket form. The presence of a monopolistic insurance company is accepted in the literature (see [7]), which is also
the case in our paper.

In Section 2, we present our theoretical model for both cases of product market and insurance market. In Sec-
tion 3, we conclude the results.

2. Theoretical Model

In the model we consider a monopoly. It sells its product to (potential) customers. Cost is considered as sunk
cost which does not affect the optimal price. The monopoly can fulfill the demand of arbitrary number of cus-
tomers. An illustrative example is the case of a software vendor: the firm can sell any copies of a program with-
out cost. Also an insurance company can supply insurance to many clients.

Customers can decide to buy the product or not, but they cannot buy fraction of the product. e.g. it is im-
possible to buy a half of a software. In the insurance market it could be possible to buy fraction of the coverage,
but we exclude this case. The clients’ decision is to buy full coverage or not to buy insurance. In the mo-
nopolistic market the insurance company sets the contract’s properties and it is not interested in fractional cove-
rages.

Each client has a reservation price (which differs from client to client), but the monopoly does not know the
exact price, it knows only the distribution of the reservation prices within a greater community. So let D( p)
be the probability that a (particular) client buys the monopoly’s product at price p. We assume that function
D( p) is decreasing and it is continuously differentiable. If the monopoly has more than one potential client,
say n, then the demand function will not be nD(p), but the number of insureds follows a binomial dis-
tribution. The probability that k clients buy the product is:

[UD(p)k (--o(p))"™"

where Kk can be any integer between O and n.
The monopoly is risk averse and maximizes its expected utility. Its behavior can be described with a concave
(risk averse) utility function u.

2.1. Product Market

In case of a product market we can assume that D(O) =1, and for the simplicity we also assume that there ex-
ists price P such that D(P)=0.
The monopoly’s expected utility at price p:

U (w, p,n)=§{UD(p)k (1—D(p))n7ku(w+kp) (1)

where w denotes the monopoly’s initial wealth.
We assume that the expression U (W, p,n) has a unique maximum in p and it is at least quasi-concave in
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p. Itis hard to give a condition for this property, but according to numerical verification it is not a strict assump-
tion. If function has more than one local maximum then the theorems hold for local maxima.
If the monopoly is risk neutral (utility function is linear) then the expected utility becomes simple:
W+ nD( p) p . The monopoly’s optimal price does not depend on the market size.
In Theorem 1 we prove that a risk averse monopoly applies a lower price than a risk neutral monopoly.
Theorem 1. A risk averse monopoly sets a lower price than a risk neutral firm.
Proof. Let us see the expected utility’s (1) derivative with respect to price:

U (w, p.n)

n-k-1

u(w+kp)

2k pi0(?) @-0(P)
+ nD( p)i(n;l)" D( p)kfl (1_ D( p))n—k U'(W+ kp)

= nni(nlzl)D(p)k (1— D( p))n_l_k [D’(p)(u(w+ p+kp)—u(w+kp))+D(p)u’(w+ p+kp)],
A risk neutral decision maker sets a price p*™™ such that D(p*pm)=—D’(p*"m) p*".Soat p=p™™"
D’( p*”’“)[u(w+ pP" +kp*”"‘)—u(w+ kp*P" )]+ D( p*"’")u'(w+ pP" +kp*pm)

= D'( p*pm)[u(w+ pP" +kp*pm)—u(w+ kp*pm)— p*pmu’(w+ p*P" +kp " )]

*pm

which is negative due to concavity of u and negativity of D’( p). So U;(W, p ,n) <0, this completes the
proof.

The interpretation of Theorem 1 is that a risk averse monopoly is satisfied with a lower price which ensures
higher probability of selling.

What happens if the number of clients increases? The risk aversion solely is not enough to change the mo-
nopoly’s price. Let us consider e.g. exponential utility function u(x)=—exp(-rx), r>0, which is the case of
constant absolute risk aversion (CARA). The closed formula for the expected utility is

U(w,p,n)=—e" [D( p)e™” +(1-D( p))]n (3)

The optimal price is the same forall n.

If we assume decreasing absolute risk aversion (DARA), which is a more realistic assumption, we can state
that the optimum price increases as market size increases:

Theorem 2. Let us consider a risk averse monopoly with a DARA (decreasing absolute risk averse) utility
function. The monopoly determines a higher price in case of n+1 client, than in case of n clients.

The proof can be found in the Appendix.

From Theorem 1 and Theorem 2 we can have the intuition that the optimal price converges to the risk neutral
price as the number of clients tends to infinity. Unfortunately this intuition is false.

Example 1. Let v, =—exp(-rx), r,>0 and v, =—exp(-r,x), r,>0, 1 #r,. Neither the optimal price

p™) for v, nor the optimal price (p™?) for v, will depend on n as can be seen from expression (3).
According to Theorem 1 both of them is below the risk neutral price.

If we set u(x)=—exp(-rx)—exp(-r,x) then the optimal price will be somewhere between p™ and

)
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p*™2 . On the other hand, utility function u is the sum of two utility functions with CARA property which have
DARA property (see [11]). If we have a utility function with DARA property, then according to Theorem 2 the
optimal price will increase with market size (n) , but it tends to have a lower value than the risk neutral price.

2.2. Insurance Market

In case of the product market there is only one source of uncertainty: whether the client buys the product or not.
In case of insurance market there is another source of uncertainty: whether a claim occurs or not. For simplicity
we investigate a two state model: a claim K occurs with probability q.

From classical risk theory we know that D(gqK)=1 and D(K)=0 (see [12] for instance).

The expected utility of an insurance company:

n n n-k k k i —i .
U(w, p,n)= Z[[JD( p)k (1-D(p)) [Z(I jq (l—q)k u(w+ kp—lK)H (4)
k=0 i=0
The expected utility becomes simple for a risk neutral monopoly again: w+nD(p)(p—gK). The optimal
price (p*""‘ does not depend on the market size (on parameter n).
For an exponential utility function, there is a closed formula for the expected utility:

U (w.p.n) =& (D(p)e” (qe* +1-a)+1-D(p)

The optimal price for an exponential utility function p*®® does not depend on market size.

The risk averse insurance monopoly takes two impacts. It would set a lower price than a risk neutral company
to sell more contracts as in the case of a product market. On the other hand, we also know from the classical risk
theory that a risk averse firm applies higher price for insurance than a risk neutral. So there are two opposite effects,
we could not decide on whether the price will be higher or lower than the risk neutral price (we can give ex-
ample for higher and lower prices as well).

From risk theory we know that the average claim amount disperses less for a greater risk community, al-
though greater extreme losses can also happen. A greater risk community can be advantageous for a risk averse
decision maker, and as market size increases this advantage may exceed the profit loss from a lower price. In
Example 2, we demonstrate the previously described situation: the insurance company can decrease its in-
surance’s price as the demand (number of clients) increases. It is an interesting situation; the increase of market
size is a common interest for insurance company and insureds. In product market the interest of the monopoly
and the clients are always in conflict.

Example 2. Let u(x)=/Bx—exp(-x), B>0. Itis a concave utility function with DARA property. Using
this utility function there is a closed formula for the expected utility:

U (w,p.n)= B(w+nD(p)(p-akK))—e"(D(p)e ” (e +1-q)+1-D(p)| ©)

As we can see, the utility function is a mixture of a risk neutral part (,B(W+ nD(p)( p—qK))) and an ex-
ponential part (the remaining part). The optimal (common) price p™ has to be between the risk neutral price and

the price for exponential utility function (CARA price hereafter). If D( p"”)e”’*n (qu +1—q)+1— D( p*“) >1

then as n grows, the common price will be closer to CARA price, if D( p)e?” (qu +1—q)+1— D( p*“)<1,
then the exponential part diminishes and the common price will be closer and closer to the risk neutral price.

Let parameter q and K take values such that p™™" < p**® and D( pPm)e P (qu +1-q)+1- D( p*””‘)<1.
For the second condition it is enough if e e +1—q) <1, which means that the risk neutral price is favor-
able for a decision maker with exponential utility function. Now the common price is higher than the risk neutral
price and lower than CARA price p™™" < p™ < p*®® so the common price is also favorable for CARA deci-
sion maker; as n grows, the exponential part diminishes and the common price gets closer and closer to risk
neutral price, so p™** < p™.

K-p
K-gK
and g =0.01. The indifference price p for CARA utility function is In(qexp(K)+1—q) ~ 4.407 . It can be
easily verified that the CARA price is higher than the risk neutral price. All the conditions hold. We set g =0.01
for a more illustrative example. Table 1 shows the optimal prices.

For numerical check: let D(p)= . Let w=0, K=9

. The risk neutral price is p*™ =%
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Table 1. The optimal market prices for different market size. p*™ denote the risk neutral price, p*®® the optimal price for

decision maker with exponential utility function, p is the indifference price for this decision maker. (u(x)= fx—exp(-x),
$ =001 for K=9 and K=10, =100 for K=12; q=0.01).

# of Client K=9 K =10 K =12
1 5.670 6.608 6.171
2 5.625 6.557 6.261
3 5.573 6.500 6.364
4 5514 6.438 6.460
5 5.452 6.374 6.544
10 5.162 6.085 6.809

20 4.866 5.794 7.028
50 4.636 5.569 7.209
100 4.558 5.486 7.300
200 4.545 5.444 7.346
p 4.545 5.050 6.060
pr 5.834 6.828 8.825

p 4.407 5.400 7.395

We can make two important remarks: let parameter K be increased to 10. Now the risk neutral price is not
favorable for a CARA utility function, but common price can still be favorable. If it is so then p™ optimal
price will decrease, but will tend to a higher value than the risk neutral price (see Table 1).

Let parameter K be increased even more, so the common price will not be favorable for a decision maker
with exponential utility function, so the exponential part does not diminish, the common price is increasing with
the market size. For a more illustrative example, we set parameter S to 100, so K =12 will be large enough
for the demand. This is also a counter example for the intuition that the market price increases if it is lower than
the risk neutral price and decreases if it is higher than the risk neutral price (see Table 1).

3. Conclusions

In the paper, we presented a microeconomic framework, in which a risk averse monopoly’s behavior can be
investigated. We proved that in a product market a risk averse monopoly applies a lower price than a risk neutral
(profit maximizer). If the risk aversion decreases with wealth (DARA), the market price will increase with the
market size.

In the insurance market the price can decrease or increase with the market size even for utility function with
DARA property. We have given numeric example for both cases.
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Appendix
Proof of Theorem 2

Lemma 1. For monopoly’s expected utility the following recursive relationship holds:

U(w, p,n+1)=D(p)U(w+p,p,n)+(1-D(p))U (w, p.n) (6)

Proof. We start from the recursive formula for binomial numbers: n+l _[ " +(n) for all integers
1>k >n. Using this formula: k k=1) (k
U(w,p,n+1)
in+l N+l
-5 " oo (e uweo)
k=0
n+l B Nl n(n
-o(mE] o)D) uwrie)+ (1-D(p) Z | |o(p) (1-D(p)  u(wi0)
k=1 - 0

~o(m)3 1 |o(0) (D0 uws p i)+ (1-D(p)E 1 o (o) 1 D(p) w10

=D(p)U (w+p, p,n-1)+(1-D(p))U (w, p,n-1).
For the sake of simplicity we introduce the following notations:

i@D(p)k (t-D(p)"" v (w+kp)

k=0

du (w, p,n)
And

ddU (w, p,n) Zi:

k=0

@D( p)‘ (1-D(p))" " u"(w-+kp)

It is easy to check that the recursive relationship (6) also holds for expressions dU (W, P, n) and
ddU (w, p,n).

du . P, . .
Lemma2 f(w)= (wp. p.n) is increasing.
U (W+ pv p!n)_U (Wl pyn)
Proof.
fr(w)

= Ax[ddU (w+p, p,n)(U(w+p, p,n)-U(w,p,n))-dU (w+ p, p,n)(dU (w+p, p,n)—dU (w, p,n))],
where A is a positive term. For the determination of the sign of the second term we argue that

ddU (w+p, p,n) S dU (w+p, p,n)—dU (w, p,n)

du(w+p,p,n)  U(w+p,p,n)-U(w,p,n)

By the Cauchy’s mean value theorem there exist 0< p < p such that
ddU (w+p, p,n) dU(w+p,p,n)-dU(w,p,n)

du(w+p,p,n)  U(w+p,p,n)-U(wp,n)

ddU (w, p,n)
ddU (w, p,n)
of utility functions with DARA property is also a utility function with DARA property (see [11], page 104). If

we define v(w)= ZE‘O(EJ D(p) (1-D( p))mk u(w+kp), then for v(w) DARA property also holds, which
is equivalent to the decrease of g(w).

Now one thing is missing: g(w) = is decreasing. We know that positive linear combination

©,
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Proof of Theorem 2. The first order condition of n -client market:

U (w, p,n)=nD’(p)[U (w+p, p,n-1)-U (w, p,n-1)]-nD(p)dU (w+p, p,n-1)=0
Which can be rearranged as
D'(p) _ duU (w+p, p,n-1) @
D(p) U(w+p,p,n-1)-U(w,p,n-1)

We investigate the sign of U;(W, p,n+1) at the optimal price of n-client market (p*”). We can deter-

Dr p*ﬂ
mine the sign of U (W, p™,n +1), if we determine the relationship of ( )

D( p*n )
du (W+ PP ,n) . Using (7) we need to decide the relationship between
U (W+ p*n’ p*”,n)—U (W, p*n'n)

and

du (w+p™, p™,n) du (w+p™, p",n-1)
and .
U (w+ p™, p".n)-U(w,p™".n) U(w+p™, p",n-1)-U(w, p*”,n—l)
Using the recursive relationship (6):
du (W+ p, p*”,n)
U (w+ p*", p*”,n)—U (W, p*”,n)
D(p*”)dU (w+2p*", p*”,n—l)+(1— D(p*”))du (w+ p*", p"”,n—l)
- D(p*")(U (w+2p*”, p*”,n)—U (w+ p, p*”,n))+(1—D(p*"))(U (w+ p", p*”,n)—U (w, p*”,n)),
Applying Lemma 2 and using some algebra we can state, that
du (W+ p, p*",n—l)
U (w+ p*", p*”,n—l)—U (W, p*”,n—l)

D(p*”)dU (W+2p*”, p*”,n—1)+(1— D(p*”))dU (W+ p, p*”,n—l)
D(p*”)(U (w+2p*”, p*”,n)—U (W+ p™, p*”,n))+(1— D(p*”))(U (W+ p™, p*",n)—U (W, p*”,n))’
Which actually means, that U (W, p™,n +1) >0.
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