
Intelligent Information Management, 2015, 7, 80-92 
Published Online March 2015 in SciRes. http://www.scirp.org/journal/iim 
http://dx.doi.org/10.4236/iim.2015.72008   

How to cite this paper: Haily, A. and Harzalla, D. (2015) On the Automorphism Group of Distinct Weight Codes. Intelligent 
Information Management, 7, 80-92. http://dx.doi.org/10.4236/iim.2015.72008   

 
 

On the Automorphism Group of Distinct 
Weight Codes 
Abdelfattah Haily, Driss Harzalla 
Department of Mathematics, Faculty of Sciences, University Chouaib Doukkali, El Jadida, Morocco 
Email: afhaily@yahoo.fr, drissHarzalla@yahoo.ca 
 
Received 15 January 2015; accepted 24 March 2015; published 25 March 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In this work, we study binary linear distinct weight codes (DW-code). We give a complete classifi-
cation of [ ]2,n k -DW-codes and enumerate their equivalence classes in terms of the number of so-
lutions of specific Diophantine Equations. We use the Q-extension program to provide examples. 
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1. Preliminaries 
One of the main objective of algebraic coding theory is to classify codes up to equivalence by using a list of 
invariants. The present work is following this way. We study here a class of linear binary codes whose all 
codewords have distinct weight and will give a classification theorems. Throughout this work all codes are  
linear binary codes. We call an [ ]2,n k -binary code every k  dimensional subspace   of 2

n . Recall also that 
the Hamming weight ( )wt x  of vector x  is defined to be the number of nonzero components of x . The mi- 
nimum of weights where 0x ≠  is the minimal distance d  of the code. 

A Hamming isometry of 2
n  is a linear application 2 2: n nσ →   such that ( )( ) ( )wt x wt xσ = , for every  

2
nx∈ . It is well known that in binary case, the isometries are merely the permutations of the coordinates, that 

is the elements of n , the permutation group of { }1,2, , n . 
Two codes   and ′  are said to be equivalent if there exists an isometry σ  of 2

n  such that ( )σ ′=  . 
An automorphism of   is a Hamming isometry σ  such that ( )σ =  . The automorphisms of   form a 
subgroup of n  called the automorphism group of   and we denote it by ( )Aut  . Note also that the vector  
space n

2  can be endowed with a product ( ) ( ) ( )1 1 1 1, , , , , ,n n n nx x y y x y x y⋅ =   , so that ( )2 , ,n + ⋅  becomes  
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a Boolean ring. Furthermore, ( ) ( ) ( ) ( )2wt x y wt x wt y wt xy+ = + − , for every 2, nx y∈ . The code   is said  
a constant-weight code (CW-code) if all nonzero codewords have the same weight. The dual of binary  
Hamming codes ( )2H m  are simplex codes mΣ  of parameters 

2
2 1,m m −  . simplex codes mΣ  are constant  

weight code (CW-code). 
Any permutation of the columns of a k by n binary matrix G  which maps the rows of G  into rows of the same 

matrix, is called an automorphism of the binary matrix G  [1]. The set of all automorphisms of G  is a subgroup of 
the symmetric group nS  and we denote it by ( )Aut G . More treatment of linear codes can be found in the book [2]. 

Ideally, we would like the rate kR
n

=  to be high, in order to be able to send a large number of errors. The  

rate of a DW-code approch zero very quickly when the code length increase: 
( )
( )

ln 11 0
ln 2

nk
n n

 +
≤  

  


 
as shown 

in Figure 1 where kR
n

=  and ( )
2 1k

kr k =
−

, so ( )R r k≤ . 

It is more convenient to use the DW-codes in the construction of other codes by using some technic of 
construction and not to use it alone. 

2. Distinct Weight Codes 
Definition 1 A linear binary code   of length n  is said to be a Distinct Weight Code, (in short: DW-code), if  
the weight mapping: { }wt : 0,1, , n→  , is one to one, that is x y=  whenever ( ) ( )wt x wt y= , ,x y∀ ∈ .  

The simplest example of such codes are the repetition codes. Later we shall give more nontrivial examples. 
Let   a DW-code of length n  and dimension k . Since the number of element of   is 2k , then we have 
2 1k n≤ + . In the sequel we fix our interest to the extreme case 2 1k n= + , in which we give a construction. 

Proposition 2 Let k  such that 2 1k n≤ + . Then every family 1 2, , n
ku u ∈   of words such that 

( ) 12r
rwt u −=  is linearly independent.  

Proof. Suppose on the contrary that 1, , ku u  are not linearly independent, then we have a linear combi- 
nation 1 0k

i ii uα
=

=∑ , where some iα  is nonzero. Let r  be the maximal integer such that 0rα ≠ . Then  

1rα = , and 1
1

r
r i iiu uα−

=
= ∑ . Now taking the weights leads to:  

( ) ( )
1 1

1 1 1

1 1
2 2 2 1

r r
r i r

r i i
i i

wt u wt uα
− −

− − −

= =

= ≤ ≤ = −∑ ∑  

a contradiction.   
Now we give a construction of a 2 1,k k −   DW-code. 

Let k  be a nonzero integer and 2 1kn = − . Take ( )1, , ne e  the canonical basis of 2
n . Put 1

2 1
2

r

rr iic e−
−

=
= ∑ ,  

then clearly ( ) 12r
rwt c −= . By the proposition 2, the code-words 1 1, , , kc c c  are linearly independent and  

generate a [ ],n k  linear code that we denotes by ( )k . It also seen that 0i jc c = , whenever i j≠ . This  
 

 
                                  Figure 1. ( )R r k≤  where ( ) 0r k  .  
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implies that ( ) ( ) 1
1 1 1 2k k k i

i i i i ii i iwt c wt cα α α −
= = =

= =∑ ∑ ∑ . 

A generator matrix of ( )k  looks like: 
1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

kG

 
 
 
 =
 
 
 
 







            



 

Proposition 3 The 2 1,k k −  -code ( )k  is a DW-code. 

Proof. Since the cardinal of ( )k  is 2 1k n= + , it suffices to show that wt: ( ) { }0,1, ,k n→   is onto.  

Let { }0,1, ,r n∈  , then r  can be written 1
1 2k i

iir α −
=

= ∑  in the base 2, where { }0,1iα ∈ . Set 1
k

i iix cα
=

= ∑ ,  

then ( ) 1
1 2k i

iiwt x rα −
=

= =∑ .  
Up an equivalence we have the following result:  
Theorem 4 There exists only one distinct weight 2 1,k k −  -code, moreover such code is Boolean subring of  

( )2 , ,n + ⋅ . 

Proof. Let   be such a code and take code-words 1 2, , , ku u u , each iu  has weight 12i− . These are 
linearly independent and form a basis of  . Next we show that 0s ru u = , s r∀ < . Otherwise, there exists a  
least integer r  such that 0s ru u ≠  for some s r< . Since ( ) ( )s r swt u u wt u≤ , one have 1

1
r

s r i iiu u uα−
=

= ∑ .  
Multiplying by su  yields s r su u u= . Now consider the word r sc u u= + , 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 12 2 2 2r s
r s s r r s swt c wt u wt u wt u u wt u wt u wt u − −= + − = + − = −  On the other hand, if we  

consider 1 1s s rh u u u+ −= + + + , then ( ) 2 1 1
12 2 2r i r s

i swt h − − −
= −

= = −∑ . Thus 1 1s s r r su u u u u+ −+ + + = +  hence  

1 1 0s r ru u u+ −+ + + =  a contradition. This means that 0r su u = , if r s≠ . Since 2
r ru u= , and 1, , ku u  is a  

basis of  , then   is a Boolean ring.  
Now we define a linear mapping ( ):f k→   by ( )i if u c= . Then, ( )1 1

k k
i i i ii if u cα α

= =
=∑ ∑ . If  

1
k

i iix uα
=

= ∑ , then ( )( ) ( )( ) ( ) ( )1
1 1 1 2k k k i

i i i i ii i iwt f x wt f u wt c wt xα α α −
= = =

= = = =∑ ∑ ∑ . This implies that f   

is an isometry between   and ( )k , and by the extension theorem of MacWilliams, see [3] or [4], there  
exists a permutation nσ ∈ , such that ( ) ( )kσ =  .  

Example 5 3k =  and 7n =  ( )32 1 7− =  

By using the software Q-extension, see [5] we show, up to equivallence, that among six equivallence classes  

the unique DW-code 3C  of parametters [ ]27,3,1  is the code of generator matrix 3

0000100
1110010
0001001

G
 
 =  
 
 

. It is clear  

that it is equivallent to the code ( )3  of generator matrix 3

1000000
0110000
0001111

G
 
 ′ =  
 
 

. Just swap the second and third  

rows and then apply the permutation ( )( )( )1,5 2,4 3,7σ = . 
Theorem 6 Let 2 1k n= + , Diophantine equations 1 2 kn t t t= + + +  for which 
(1)  1 2 3 kt t t t< < < <   
(2)  

{ }( )\
i j j

j I i
t tε

∈

≠ ∑ , 1, 2, ,i k∀ =  , { }1, 2, , ,  1jI k ε∀ ⊆ ∀ = ± , 
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have a unique solution which is the k-uplet ( ) ( )2 3 1
1 2, , , 1, 2, 2 , 2 , , 2k

kt t t −=  . 

Proof. ( )2 3 11, 2, 2 , 2 , , 2k−
  is clearly a solution of the Diophantine equation which satisfies the conditions 

(1). Assume that 
{ }( )\

2 2i j
j

j I i
ε

∈

= ∑  for some i  and I , then 2 2 2i j j

i K i K− +∈ ∈

+ =∑ ∑  ( )2 1k< −  where  

{ }{ }\ / 1jK j I i ε+ = ∈ =  and { }{ }\ / 1jK j I i ε− = ∈ = − . We can assume without loss of generality that  

{ } { }2 / 2 /j jj K j K+ −∈ ∈ = ∅ . So by the uniqueness of Development of any integer less than or equal 2 1k −   

in binary basis, the equality 2 2 2i j j

i K i K− +∈ ∈

+ =∑ ∑  leads to a contradiction. So the solution ( )2 3 11, 2, 2 , 2 , , 2k−
   

satisfies the conditions (2). 
Conversely, Let ( )1 2, , , kt t t  a solution of the equation 1 2 kn t t t= + + +  satisfying (1)-(2). We can 

take id , 1, 2, ,i k=   elements of 2
nF  such that ( )i iwt d t=  and 



1

1 1 10 0
t

d
 

=   
 
  , 

21
2 0 01 10 0

tt
d

 
=  
 



   ,  , 
1 2

0 00 00 01 1
k

k
tt t

d
 

=  
 

 

    , id , 1, 2, ,i k=   are linearly independent. The  

condition (2) means that the code of generator matrix 
1

k

d
G

d

 
 =  
 
 

  is a dw-code. On after Theorem 1.3, the  

condition (1) implies that there exists an invertible k  by k  matrix ( ), ,i j i j
A a=  and a permutation matrix  

Pσ  such that kAG P Gσ =  where nSσ ∈  and 

1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

kG

 
 
 
 =
 
 
 
 







            



 

is the generator matrix of the code ( )k . It is clear that G  is of the form: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1, 1 1, 2 1, 2 1, 1, 1,

2, 1 2, 2 2, 2 2, 2, 2,

, 1 , 2 , 2 , , ,

k k k

k k k

k k k k k k k k k

a a a a a a

a a a a a a

a a a a a a

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

 
 
 
 
 
 
 

 

 

       

 

 

where , 0i ja =  or 1, ,i j∀  and 1,2,3, ,j k∀ =   we have ( )
1

,
1
2

i k
i

j j i
i

t a σ

=
−

=

= ∑ . So we have  

( ) ( )
1 1

, ,
1 1 1 1 1

2 1 2 2
j k j k j ki k i k

k i i
j j i j i

j j i i j
t a aσ σ

= = == =
− −

= = = = =

  − = = =   
   

∑ ∑ ∑ ∑ ∑ , and then we have ( ),
1

1
j k

j i
j

a σ

=

=

=∑ , 1, 2, ,i k∀ =   by the  

uniqueness of development of 2 1k −  in binary basis. By (1) we have 

( ) ( ) ( )
1 1 1

1, 2, ,
1 1 1
2 2 2

i k i k i k
i i i

i i k i
i i i

a a aσ σ σ

= = =
− − −

= = =

< < <∑ ∑ ∑ , then we have: ,i j∀ , ( ),
j

ii ja σ δ=  ( Kronecker symbol ) . 

Since ( )
1

,
1
2

i k
i

j j i
i

t a σ

=
−

=

= ∑ , we have 1,2, ,j k∀ =  , 12 j
jt −=  and finally we have 

( ) ( )2 3 1
1 2 3, , , , 1, 2, 2 , 2 , , 2k

kt t t t −=  .  

Remark 7 Without the conditions (1) and (2), Diophantine equations have 1
2 2k
kC −
−

 different solutions. For all 
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3k ≥  note that there is no DW-self-dual code. Indeed, if not, we will have 2 1 2k n k− ≤ = , wich is impossible. 

3. Classification and Automorphism Group of DW-Codes 
3.1. Automorphism Group: The General Case 
We consider, without loss of generality, that a generator matrix of a DW-code has no zero columns. Indeed, if 
this is the case, the zero columns are omitted and we consider the obtained DW-code. This assumption is made 
in the entier paper. We study the automorphism group of DW-codes. We first notice the following: 

Proposition 8 Let ( )1 2, , , ku u u  any basis of an [ ],n k  DW-code. Then 

( ) ( ){ }Aut , 1, ,n i iu u i kσ σ= ∈ = ∀ =   . 

Moreover, if G  any generator matrix of  , then σ  is an automorphism of  , if and only if, σ  is an 
automorphism of the binary matrix G . 

Proof. Clear. 
Proposition 9 The automorphism group of any DW-code is nontrivial of even order.  
Proof. Let G  be a generator matrix of a DW [ ],n k -code  . We may suppose that all columns of G  are  

nonzero. The n  columns of G  are taken among a set of 2 1k −  columns. Suppose that all columns of G  
are distincts, since 2 1kn ≥ − , then the columns of G  are the 2 1kn = −  distinct nonzero vectors of 2

k  and 
  will be the simplex code, which is clearly not DW. This contradiction shows that at least 2 columns of G  
are identical. Now the transposition of these two columns gives an automorphism of  .  

We deduce that the dual code ⊥  of a DW-code has a non-trivial automorphism group and has minimum 
distance 2d ⊥ = . 

We consider the general case 2 1k n< + . The action of automorphism group ( )Aut   on the set  

{ }1 2, , , nc c cΩ =   of columns of a generator matrix G  defined by: ( ) ( )i ic cσσ =  for all σ  in ( )Aut   and  

ic  in Ω , splits all the columns of G  into disjoint orbits. The orbits 1 2, , , fO O O  each formed of a single  
column, they are the columns fixed by the group ( )Aut  . We set 0f =  if no orbit is formed of a single  
column and then it is clear that 0 2 1kf≤ < −  since since ( )Aut   can not be trivial. The ( )1r ≥  other orbits  
are 

1 2
, , ,

rt t tO O O , 2
it

O ≥ , 1, 2, ,i r=  . We set { }i iO c= , 1, 2, ,i f=   if 1f ≥  and  

( ) ( ) ( ){ }1 2, , , i
i

t
t i i iO c c c=  , 1, 2, ,i r=  , therefore, we have precisely 0 2 1kf r≤ ≤ − − . 

Up to equivalence, we can consider that the code   is of generator matrix  

( ) ( ) ( ) ( ) ( ) ( )
 



1

1 21

1
1 2 1 2

1 1 1 1 2, , , , , , , , , , , ,r

fr

t t
r r r f

O OO O Ot t k

d
G c c c c c c c c c

d

  
  = =         

 

      

( )( )i
j j i

d d=  rows of G , such that 1 22 rt t t≤ ≤ ≤ ≤ . 

Since   is a DW-code, then for each 1,2, ,j k=   for each ( )Autσ ∈   we have ( )j jd dσ =   

1, 2, ,j k∀ =  . So 1,2, ,i n∀ =   we have ( )( ) ( )i i
j jd dσ = . We therefore deduce that: 1, 2, ,i r∀ =  , 

( ) ( ) ( )1 2 it
i i ic c c= = = . So each orbit 

it
O  consists of 2it ≥  equal columns. 

The following theorem legitimate the idea of giving a definition to the 3-tuple 
( )( )1 2, , , , , rf k t t t  which we call signature of the DW-code and we denote ( ) ( )( )1 2sign , , , , , rf k t t t=  .  

We give here the full classification of such a code in several cases. 
Theorem 10 If two DW-codes   and ′  are equivalent then they have the same signatures:  
( ) ( )sign sign ′=  . 

Proof. Let   and ′  two equivalent DW-codes of parameters [ ],n k . So nSσ∃ ∈  such as ( )σ ′=  .  
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We have ( ) ( ) 1Aut Autσ σ −′ =  . Let G  be a generator matrix of the code  . Under the action of the  

automorphism group ( )Aut   we can assume that G  is of the form ( )1 1 2, , , , , ,
rt t fG O O O O O=    where 

{ }1 1, ,
i i it s sO c c

− +=  , 
1

j i

i j
j

s t
=

=

= ∑  1, 2, , ri t∀ =   and { }ri s iO c +=  1, 2, ,i f∀ =  . 

So we have { } ( ) ( ){ } ( ) ( ){ }11 1, , Aut Aut
i i i i i

t s s s s
O c c c cσ σ ρσ

σ ρ−− + ′= = ∈ = ∈    and then 

( ) ( ) ( ){ }Aut
i iit tsO c Oρσσ ρ ′ ′= ∈ =  which is an orbit of the column ( )is

cσ  under the action of ( )Aut ′  on  

the generator matrix ( )G Gσ′ =  of the code ′ . similarly we have ( ) ( ) ( ){ }Aut
ri is iO c Oρσσ ρ+ ′ ′= ∈ =   

which is an orbit of the column ( )rs icσ +  under the action of ( )Aut ′  on the generator matrix G′ . Thus G   

and G′  have the same number of ponctual orbits, the same number of non-ponctual orbits and the two orbits  

it
O  and 

it
O′  on the one hand and iO  and iO′  on the other hand have the same number of columns. we  

conclude that the two codes C  and C′  have the same Signature.  

3.2. Classification 
3.2.1. Case 1: 0f =  and k r=  
We have 

( ) ( ) ( ) ( ) ( ) ( )1

1

1
1 2 1 2

1 1 1, , , , , , , , k

k

tt
k k k

O Ot t k

d
G c c c c c c

d

  
  = =        

 

     

Theorem 11 If   is an [ ]2,n k  DW-code without punctual orbits ( )0f =  and if the number of non  

punctual orbits is equal to the dimension of the DW-code ( )r k=  then the code   is equivallent to a DW-  
code of generator matrix 

( )

1

21 2

1 1000 0 0

0 01 1 0 0
, , ,

000000 001 1
k

t

t
k k

t

G G t t t

 
 
 
 = =  
 
 
 
 







  

   





 

 whith 1 22 kt t t≤ < < <  and t1 = d is the minimal distance of  

kC . 
Proof. After a series of permutations and elementary operations on rows of G  we can make the first line of  

the first orbit formed only by ones and all other rows are null 

1

11 1
00 0

00 0

tO










 all other bits of the first row of the  

generator matrix are zero. Otherwise the first line of another orbit 
st

O  will be formed only by 1 s. And a series  

of permutations and elementary row operations can make null all the other rows of this orbit so 
1 st tO O∩ ≠ ∅ .  

This is a contradiction since two orbits are disjoint. We obtain a generator matrix of an equivalent code denoted  

by the same sign 0

11 1 | 00 0
0 |

|
0 |

k
k

G
G

 
 
 =
 
 
 

 



. It is easy to see that 0
kG  is a generator matrix of a DW-code  
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without punctual orbits ( )0 0
kG

f =  and the number of orbits is equal to the dimension of this DW-code  

( )0 1
kG

r k= −  and This allows for reasoning by induction. We obtain a generator matrix of an equivalent code 

( )

1

21 2

1 1000 0 0

0 01 1 0 0
, , ,

000000 001 1
k

t

t
k k

t

G t t t

 
 
 
 =  
 
 
 
 







  

   





 

. 

It is clear that we have ( )1 1wt d t d= = , ( )2 2wt d t= ,  , ( )k kwt d t=  and 1 22 kt t t≤ < < < , ( 1 2t ≥   
since 1 1t =  implies the existence of a punctual orbit ) .  

Remark 12 In this case, up to equivallence, each [ ]2,n k  DW-code admits the system { }1 2, , , kd d d  as  

orthogonal basis: 
1

1 1 10 0
t

d
 

=  
 


  , 
21

2 0 01 10 0
tt

d
 

=  
 



   ,  , 
1 2

2 0 00 00 01 1
ktt t

d
 

=  
 

 

     such as  

( )1 1wt d t d= = , ( )2 2wt d t= , , ( )k kwt d t=  and 1 22 kt t t≤ < < < . 

Example 13 Consider the [ ]215,3,2  DW-code of generator matrix 

100000000000100
011111111000010
000000000111001

 
 
 
 
 

. It is equivallente to the code of generator matrix 
110000000000000
001111000000000
000000111111111

 
 
 
 
 

 

1 2t = , 2 4t = , 3 9t = , 0f = , 3r k= =  
Corollary 14 Let two [ ]2,n k  DW-codes   and ′  without punctual orbits and the number of their orbits  

is equal to their dimension. Then the codes   and ′  are equivallent if and only if ( ) ( )sign sign ′=  .   
The converse of Theorem 11 is true under an additional condition. 
Theorem 15 Let   an [ ]2,n k  code of generator matrix ( )1 2, , ,k kG t t t  ( as in the last remark ) . If: 
(1)  1 22 kt t t≤ < < <  
(2)  { }1,2, ,I k∀ ⊆  , 1, 2, ,i k∀ =  , 1jε∀ = ±  we have 

{ }( )\
i j j

j I i
t tε

∈

≠ ∑  

then   is a DW-code of minimum distance 1d t=  for which 0f =  and r k= . 
Proof. Clear. 
Corollary 16 The number of equivalence classes of [ ]2, ,n k d  DW-codes such as 0f = , k r=  and  

2 1k n< +  equals the number of solutions ( )1 2 3, , , , kt t t t  of the Diophantine equations 1 2 3 kn t t t t= + + + +   
satisfying the following conditions 

(1)  1 2 3 kd t t t t= < < < <   
(2)  

{ }( )\
i j j

j I i
t tε

∈

≠ ∑ , 1, 2, ,i k∀ =  , 1jε∀ = ± , { }1,2, ,I k∀ ⊆  . 

Proof. Let the application that maps each equivalence class represented by the matrix ( )1 2, , ,k kG t t t  to the  

t-tuple ( )1 2, , , kt t t  solution of the Diophantine equation as described in Theorem 11. This application is  
clearly a bijection between the set of equivalence classes and the set of solutions of the Diophantine equation 
satisfying conditions (1) and (2).  

3.2.2. Case 2: 0f ≠  and k r=  
Theorem 17 If   is an [ ]2,n k  DW-code with f  punctual orbits ( )0f ≠  and if the number of non  

punctual orbits is equal to the dimension of the DW-code ( )r k=  then the code C  is equivallent to the  
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DW-code of generator matrix 

1

2

fixedcolumns

1 21 1 0 0 0 0 |
0 0 1 1 0 0 |

0 0 0 0 0 0 |
|

0 0 0 0 0 0 |
0 0 0 0 1 1 |

k

t

f

t

t

c c c

G

 
 
 
 
 
 =
 
 
 
 
 
 

 





    

    

    

    

    

    

 with 1 2 1kf k≤ ≤ − −  and 

kttt ≤≤≤≤ 212 .  
Example 18 Consider the [ ]215,3,4  DW-code 1  of generator matrix 

1

111 0000000 000 10
111 1111111 000 01
111 0000000 111 01

G
 
 =  
 
 

. It is equivallente to the code 2  of generator matrix  



2

111 000 0000000 10
000 111 0000000 11
000 000 1111111 11

F

G

 
 
 =  
  
   

1 3t = , 2 3t = , 3 7t = , 2f = , 3r k= =  

We have ( ) ( )1 2sign sign=   since 1  and 2  are equivallente.  

The converse of this theorem is true under an additional condition. Let   an [ ]2,n k  of generator matrix 

1
1 21 1 |

|
1 1 |

k

f
t

t

c c c 
 
 
 
  
 





 

 

 

 with: 1 2 1kf k≤ ≤ − −  and 1 22 kt t t≤ ≤ ≤ ≤ . 1 2, , , fc c c  are f different  

columns which are also different from all unitary columns ( )T1,0, ,0 , ( )T0,1,0, ,0 ,   , ( )T0, ,0,1 . 

For each { }1,2, ,I k⊆  , denote by ,Iω   the weight of the sum of all the jth rows where { }\j I i∈  of the  
k f×  matrix 

( )

1

2

3 1 2

0 0 0 0
0 0 0 0
0 0 0 0 , , ,

0 0 0 0

f

k

A c c c

ε
ε

ε

ε

 
 
 
 =
 
 
 
 





 

     



 ( )
jjj εεε =1,= ±  

For all 1, 2, ,i k=   denote by iα  the weight of the ith row of the k f×  matrix ( )1 2, , , fc c c . So by  

setting the numbers , , ,I i I iρ ω α= −   we have the following result, let   an [ ],n k  code of generator matrix  
G  as described in theorem 17 we have:  

Theorem 19 If for all { }1,2, ,I k⊆  , for all i I∈  and for all ( )j j
ε= , 1jε = ±  we have  

{ }( )
, ,

\
i j j I i

j I i
t tε ρ

∈

 
≠ +  
 
∑   then the code k  is a DW-code.   

Let kC  an [ ]2,n k  DW-code such as 2 1k n< + , r k=  and 1 2 1kf k≤ ≤ − − . We have ( ) 2 1k
f

k
n f C

− −
=   

different way to the choice of f  fixed columns. For each value of f  and for the fs -th choice of f  fixed  
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columns we denote by ( ), fN f s , 
2 1

1 k
f

f k
s C

− −
≤ ≤  the number of solutions of the Diophantine equations  

1 2 3 kn f t t t t− = + + + +  which satisfy the following conditions 
(1)  1 2 32 kt t t t≤ ≤ ≤ ≤ ≤   

(2)  
{ }( )

, ,
\

i j j I i
j I i

t tε ρ
∈

 
≠ +  
 
∑   1, 2, ,i k∀ =  , { }1,2, ,I k∀ ⊆  , ( )j j

ε∀ = , 1jε = ±  

So we have the following result. 
Theorem 20 
1)  The number of equivalence classes of [ ],n k  DW-codes with 2 1k n< +  and a given f  such that  

1 2 1kf k≤ ≤ − −  and k r=  equals the number 
( )

( )
1

,
f

f

s n f

f
s

N f s
=

=
∑ . 

2)  The number of equivalence classes of [ ]2,n k  DW-codes with 2 1k n< + , 0f ≠  and k r=  equals  

the number 
( )

( )
2 1

1 1
,

k f

f

s n ff k

f
f s

N f s
== − −

= =

 
  
 

∑ ∑ .  

Example 21 By using the result of the last theorem and the Q-extension software, We show that there exist  
Only 4 [ ]211,3  DW-code up to equvallence verifying 3r k= = . Indeed 31 2 1 3 4f≤ ≤ − − =  and we have: 
• For 1f =  the set of possible columns taken in the following order are: 

   

31 2 4

1 1 0 1
1 0 1 1
0 1 1 1

cc c c

 

( ) ( ) ( )1,1 1,3 1,4 1N N N= = = , ( )1,2 0N =  

So the number of DW-codes with 2 1k n< + , 1f =  and k r=  is ( )
4

1
1, 3

i

i
N i

=

=

=∑ . 

• For 2f =  the set of possible columns taken in the following order are: 

[ ] [ ] [ ] [ ] [ ] [ ]
1th 2th 4th 6th3th 5th

1 2 1 3 1 4 2 3 2 4 3 4, , , , , ,
11 10 11 10 11 01
10 11 11 01 01 11
01 01 01 11 11 11

c c c c c c c c c c c c
   



 

( ) ( ) ( ) ( ) ( ) ( )2,1 2, 2 2,3 2,4 2,5 2,6 0N N N N N N= = = = = =  

So there is no DW-codes with 2 1k n< + , 2f =  and k r=  since ( )
6

1
2, 0

i

i
N i

=

=

=∑ . 

• For 3f =  the set of possible columns taken in the following order are: 

[ ] [ ] [ ] [ ]
1th 3th 4th2th

1 2 3 1 2 4 1 3 4 2 3 4

110 111 101 101
101 101 111 011
011 011 011 111

c c c c c c c c c c c c
  

 

( ) ( ) ( ) ( )3,1 3,2 3,3 3,4 0N N N N= = = =  

So there is no DW-codes avec 2 1k n< + , 3f =  and k r=  since ( )
4

1
3, 0

i

i
N i

=

=

=∑ . 
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• For 4f =  the set of possible columns taken in the following order are: 

[ ]
1th

1 2 3 4

1101
1011
0111

c c c c


 

( )4,1 0N = , ( )4, 2 0N = , ( )4,3 1N = , ( )4, 4 0N = . 

So there is one DW-codes such as 2 1k n< + , 3f =  and k r=  since ( )
1

1
4, 1

i

i
N i

=

=

=∑ . 

We deduce that there is only four [ ]211,3  DW-codes, among 98 equivalence classes, satisfying 3r k= =   
since 

( )
( ) ( ) ( ) ( ) ( )

4 4 6 4 1

1 1 1 1 1 1
, 1, 2, 3, 4, 4

i n ff i i i i

f i i i i i
N f i N i N i N i N i

== = = = =

= = = = = =

 
= + + + =  

 
∑ ∑ ∑ ∑ ∑ ∑  

3.2.3. Case 3: 0f =  and k r≠  
We have necessarily k r< . 

Theorem 22 If   is an [ ]2,n k  DW-code without punctual orbits ( )0f =  and if the number of non punc- 
tual orbits is different from the dimension of the DW-code ( )r k≠  then 

k r<  and the code   is equivallent to the DW-code of generator matrix 
1

1

1 1 | * * * *

|
1 1 |

k r

k

t t

t

t

+ 
 
 
 
 
 
  
 

 





   

   

   

 

with 1 22 kt t t≤ ≤ ≤ ≤ .   

Example 23 The [ ]215,3,4  DW-code of generator matrix 
111000000000100
000111111110010
000111100001001

 
 
 
 
 

 is equivallent to the code  

of generator matrix 
11000000000 1111
00111100000 0000
00000011111 1111

 
 
 
 
 

0f = , 3k = , 4r = , 1 2t = , 2 4t = , 3 5t = , 4 4t = .  

In this case two DW-codes with the same signature are not necessarily equivalent as shown in the following 
example: 

Example 24 Let 1  the DW-code of generator matrix 1G  and 2  the DW-code of generator matrix 2G  
such as 1  and 2  are not equivalent and 

1

110000000000001
111111111100000
000000000011110

G
 
 =  
 
 

, 

2

110000000000001
111111111100000
110000000011110

G
 
 =  
 
 

. 
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We have ( ) ( ) ( )( )1 2sign sign 1,3, 2,4,8= =  .  

3.2.4. Case 4: 0f ≠  and k r≠  
We can have two cases k r<  or r k<   

Theorem 25 If   is an [ ]2,n k  DW-code with f  punctual orbits ( )0f ≠  and if the number of non  
punctual orbits is greater than the dimension of the DW-code ( )r k>  then the code   is equivallent to the  

DW-code of generator matrix 

1

1

fixed columns

11 1 * * * *

1 1

k r

k

t t

f
t

t

c c
+ 

 
 
 
 
 
  
 

  





    

    

    

 with 1 22 kt t t≤ ≤ ≤ ≤ .   

Example 26 The [ ]215,3,4  DW-code of generator matrix 
111000000000100
111111111110010
111110000001001

 
 
 
 
 

 is equivallent to the code  

of generator matrix 
1100000 1111111 0
0011000 1111111 1
0000111 0000000 0

 
 
 
 
 

 1 2t = , 2 2t = , 3 3t = , 4 7t = , 1f = , 3k = , 4r =  

Theorem 27 If C  is an [ ]2,n k  DW-code with f  punctual orbits ( )0f ≠  and if the number of non  
punctual orbits is lower than the dimension of the DW-code ( )r k<  then the code C  is equivallent to the 
DW-code of generator matrix   

1

fixed columns

1 21 1

1 1

000 000

000 000

r

f
t

t

c c c
 
 
 
 
 
 
 
 
 
 
 
 







 

 

 

 

   

 

 

with 1 22 rt t t≤ ≤ ≤ ≤ .  

Example 28 The [ ]215,3,4  DW-code of generator matrix 
110000000000100
111111110000010
100000001111001

 
 
 
 
 

 is equivallent to the code  

of generator matrix 
111110000000 100
000001111111 110
000000000000 111

 
 
 
 
 

 1 5t = , 2 7t = , 3f = , 3k = , 2r = .   

Remark 29 Self-orthogonality. 
A code which is equivalent to a self-orthogonal code is also self-orthogonal. The property of self- ortho- 

gonality is then an invariant of the equivalence of codes. We then have the following points: 
• If 0f ≠  or ( 0f =  and r k≠ )then, up to equivalence, a generator matrix of the code is of the form 

[ ]G TD=  where D  is not an empty submatrix. If the code is self-othogonal then T 0GG = . So  
[ ][ ]T 0TD TD =  and then we have: 

• 0f ≠  and r k>  and then [ ] [ ] [ ]( )T
1 2diag 2 , 2 , , 2kDD t t t=   
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•  0f ≠  and r k<  then T 0
0 0
B

DD  
=  
 

 where [ ] [ ] [ ]( )1 2diag 2 , 2 , , 2rB t t t=  . 

•  0f ≠  and r k=  then [ ] [ ] [ ]( )T
1 2diag 2 , 2 , , 2kDD t t t=   

•  finally 0f =  and r k≠  and then [ ] [ ] [ ]( )T
1 2diag 2 , 2 , , 2kDD t t t=    

• If 0f =  and r k=  the code C  is self-orthogonal if and only if [ ]0 mod 2it ≡  for all 1, 2, ,i k=  .  

3.3. Determination of the Automorphism Group 

Theorem 30 The automorphism group of a [ ],n k  DW-code of signature ( )( )1 2, , , , , rf k t t t  is isomorphic to  

the group direct product 1 i

r
ti=∏  . 

Proof. Let G  be a generator matrix of the code  . We can assume that G  is of the form 

( )1 1 2, , , , , ,
rt t fG O O O O O=    where { }1 1, ,

i i it s sO c c
− +=  , 

1

j i

i j
j

s t
=

=

= ∑  1, 2, , ri t∀ =   and { }ri s iO c +=   

1, 2, ,i f∀ =  . 
For 1, ,i r=  , let { }1 1, ,i i iE s s−= +  , let { }

rs i rE s i+ = +  for all 1, 2, ,i f=  . Clearly, the subsets  

1, , nE E  form a partition of { }1,2, , n . Now let ( ) ( ){ } and , ,i n i i jG S E E j i x x x Eσ σ σ= ∈ ⊂ ∀ ≠ = ∀ ∈ . 

Clearly the iG  are subgroups of n  and each is isomorphic to 
it
  and { }iG id=  for all  

1, ,r ri s s f n= + + = . Since forall iGσ ∈ , ( )j jc cσ = , it follows that the iG  are subgroups of ( )Aut  . 

Now we are going to show that ( )Aut   is the inner direct product 1 2 kG G G  
If i j≠ , and iGσ ∈ , jGτ ∈ , then στ τσ= . 
Let 1 1 k Iσ σ σ = , then applying this equality to each iE  yields i Iσ = , i∀ . 
Now let ( )Autσ ∈  . Since ( )i ic cσ = , the iE  are globally invariant under σ . Let iσ  the permutation  

defined by ( ) ( )i x xσ σ= , if ix E∈ , and ( )i x xσ =  elswhere. Then it is clear that 1 2 rσ σ σ σ=  , and this 
finishes the proof.   

Example 31 

• Consider the [ ]215,3,2  DW-code of generator matrix 
100000000000100
011111111000010
000000000111001

 
 
 
 
 

. It is equivallente to the code  

of generator matrix 
110000000000000
001111000000000
000000111111111

 
 
 
 
   

1 2t = , 2 4t = , 3 9t = , 0f = , 3r k= = ,  

( ) 2 4 9Aut S S S= ⋅ ⋅  and ( ) ( ) ( ) ( )Aut 2! 4! 9!C = × ×  

• Consider the [ ]215,3,5  DW-code of generator matrix 
111100000000100
111111111111010
111011100000001

 
 
 
 
 

. It is equivallente to the code  

of generator matrix 



fixed

111000000000 110
000111000000 111
000000111111 101

 
 
 
 
 
   

1 3t = , 2 3t = , 3 6t = , 3f = , 3r k= =  

( ) 2 4 9Aut S S S= ⋅ ⋅  and ( ) ( ) ( ) ( )Aut 2! 4! 9!C = × ×  
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