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Abstract 
A weight is placed on the top of a rectangular rigid ideal table with four legs, each leg is placed at 
each vertex of the rectangular table. It is assumed that the legs do not bend when the weight is 
added. The reactions are computed by assuming the table is supported on a beam, introducing two 
new beam parameters and minimizing a deflection function of the new parameters. A physical ex-
periment is performed in the lab and the reactions on each leg are provided. The experimental 
results match the theoretical ones obtained by the proposed model. Geometrical interpretations 
of the results are given. 
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1. Introduction 
Euler [1] set a problem in St. Petersburg Academy of Sciences in 1773 in his dissertation De pressione ponderis 
in planum cui incumbit. The problem consisted of placing a weight on the surface of a rectangular table 
supported on four legs and determining the four reaction forces of the legs. Euler claimed that the solution to 
this problem “is not only much harder but also doubtful and misleading”. He said that the imperfections of the 
feet might force the body to rest on only three legs and the pressure on the fourth one may be null. In Section 3, 
we observe that the problem arises because the system of equations given by the mechanics of static equilibrium 
is a linear system of equations that consists of three equations and four unknowns, being these four unknowns 
precisely the reaction forces at the legs of the table. This linear system of equations is called an indeterminate 
system. 
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Euler then changed the problem: the support is no longer on a rigid plane but on a soil. Euler argued that to 
understand the problem on a rigid body, one must pose the problem on a soft body, and that once this problem 
has been understood there, the solution from one body to another can be carried out by a mathematical calculus 
argument (a limit argument), “in the case of a soft ground where four feet penetrate, one must assume that the 
pressures brought about by the feet are proportional to those movements”. This is the principle where Euler 
based his arguments. He stressed that even though here a soft ground is considered, this phenomena is in- 
dependent of the ground because the movements, that were hypothetically introduced, “happen with the support 
of our imagination”. 

After Euler posed and discussed the problem, many people have studied it in depth, each contributing at some 
extent towards a richer interpretation of the problem. These people [2] include Jean Baptiste Lerond d’Alambert 
in 1780 who dedicated to the support problems part of a memoir entitled Sur quelques questions de Méchanique, 
Abbot Charles Bossut in 1788 who gives an interpretation of a triangular table in terms of two levers, Paolo 
Delanges of Brescia in 1790 who three times in 1790, 1798 and 1811 made a proposal for an experimental 
investigation, Pietro Paoli in 1792 who checked the validity of the computations done by others regarding the 
problem, Anton Maria Lorogna in 1794 who attempted to formulate a “reasonable” principle that can not be 
obtained from the principle of mechanics, Mariano Fontana [3] in 1798 who provides a formula to obtain the 
reactions on a parallelogramic table by imagining that the weight is transmitted to the sides of the parallelogram, 
later Fontana writes “I started to meditate more carefully about this problem and I have found that, the solution 
to the problem is not determined only by the principles of mechanics”. We will refer to Fontana later in this 
paper. 

Other people that also worked on this problem (see [2]) were Guiseppe Venturoli in 1806, Gabrio Piola in 
1824, Barsotti in 1842 and Ottaviano Fabrizio Mossotti in 1858; Malfatti in 1805 published three memoirs, in 
one of them he stresses that if the object is placed at the center of a regular polygon, all the reactions at each of 
the vertices of the polygon will be equal and hence they can not be “assigned arbitrarily”, hence in this case 
there is no statics indetermination. It was finally Navier [4] in his Résumé des leçons données à l’Ecole royale 
des ponts et chaussées in 1825 who recognized that the indeterminate system will no longer be indeterminate if 
one takes into account the “elasticity of the reacting bodies”. Even though the solution to the problem of the 
rectangular table appears for the first time in Castigliano’s thesis in 1873, Augustin Cournot in 1828 is the one 
who describes an extrema point in the pressure involved in the problem, he talks about a minimum for the 
pressure exerted in the body. A derivation of the solution can be appreciated in Du Bois 1902 [5], he considers 
that each foot of the table is hence a spring obeying Hooks’ Law and the work expressed in terms of the 
potential energy is computed. Using The Principle of Least Work, a fourth equation is obtained by obtaining the 
derivative of the total potential energy and setting it to zero. Therefore we now have a system of four in- 
dependent equations and four unknowns which can be solved in this case providing a unique solution. 

There is a list of people who contributed to the solution of the problem during the 1830-1873 period, the list 
includes Moseley, Pagani and Menabrea, Massotti and Dorna among others. For a more detailed history of the 
problem you can read [2]. 

The paper by Benvenuto [2] contains not only more details about the history of the problem itself but also 
gives a geometrical interpretation of the triangular table solution (as the one we have in this paper), it provides a 
short discussion and a geometrical interpretation of a solution given by Fontana to the general parallelogramic 
case (hence the rectangular case is included) which we will address in Section 5. 

Recently, three NASA engineers Surya N. Patnaik, Dale A. Hopkins and Gary R. Halford published a paper 
in 2004 [6] where they discussed the problem and introduce a compatibility condition (a fourth equation) that 
they obtained based on the deformation displacements of the legs, these deformations are written in terms of the 
angles at which the table tilts. When this compatibility condition is expressed in terms of the forces, it is then 
concluded that the sum of the reactions of two opposite corners of the table matches the sum of the reactions of 
the other two opposite corners. After all, the solution to the new system of four equations with four unknowns 
that Patnaik, Hopkins and Halford obtained agrees with the one described in Du Bois [5]. 

One of our main hypotheses (and here we differ from the results obtained by all the previous people) is that 
the legs of the table are completely rigid, i.e. they do not deflect or deform. The way we approach the problem is 
by considering the fact that the reactions on the legs are known and given in terms of two parameters. These 
parameters are obtained by first assuming that the four legs are replaced by a beam with end points at opposite 
edges of the table, then changing roles with the other two sides of the table. One important and natural assump- 
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tion is a consistency condition on the forces in terms of these two parameters. We finally give a condition (and 
here is where our main contribution comes in) on the deflection of the table (not of the legs). This process allows 
us to minimize such deflections obtaining the values of the parameters we started with initially, providing 
therefore one more equation which, together with the three that one has by considering mechanical assumptions, 
one is able to find a solution for the table of rigid legs. In a forthcoming paper, we will generalize these results 
to the quadrilateral table and we are also considering increasing the number of legs on a future paper. 

Regarding the structure of the paper, in Section 2, we discuss the Beam and the Triangular case, in each case 
we solve the system and we provide a geometrical interpretation that matches the ones given in Benvenuto [2]. 
In Section 3, we carefully analyze and discuss the indeterminate case of a rectangular table. Right after, in 
Section 4, we establish the main hypotheses under which we will solve the rectangular table case. It is precisely 
in Section 5 where we give conditions that will help us to solve the problem. 

Finally, in Section 6 we provide some lab results that are consistent with the theoretical values obtained by the 
proposed theoretical model. A discussion on how these lab values are obtained is contained in this section too. 

2. Beam and Triangular Tables 
In this section we will discuss the beam (one dimensional table) and the triangular table case.  

2.1. Beam Case 
A load W  of magnitude W  is placed at a point (at a distance x from one of the end points) on the beam of 
length a. The load is placed perpendicular to the beam. Two reaction forces AR  and BR  at the end points of 
the beam occur in the opposite directions of the load W . Figure 1 illustrates the beam and the forces. 

Here we are interested in finding the magnitudes AR  and BR  of the reaction forces AR  and BR  on each 
leg of the beam. We assume that the beam and the legs are rigid. This problem can be easily solved using 
torques. The equilibrium equation system  

0A BR R W+ − =  

0Ba R x W⋅ − ⋅ =  

has the following solution 

A
a xR W

a
−

= ⋅  

.B
xR W
a

= ⋅  

2.2. Geometric Interpretation 
Given a leg of the beam, the point where the load is placed divides the beam into two segments, one adjacent to 
the given leg and one opposite to it, in each case, the solution takes the form 

Opposite Segment Length
Total Beam LengthXR W= ⋅  

 

 
Figure 1. The beam case consists of a two legs table and a load W located at distance x 
from one of the legs.                                                           
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2.3. Triangular Table 
Consider a triangular table of sides 1 2 3, ,a a a  and legs at vertices 1 2 3, ,V V V  of the table. A load W  of 
magnitude W  is placed at a point on the table’s surface and perpendicular to it. The point determines three 
heights 1 2,y y  and 3y  with respect the sides 1 2,a a  and 3a  respectively as in Figure 2 (we only draw 1y  
and 1h  for simplicity). 

Here we have a rigid surface and we are assuming that the legs do not bend. For 1, 2,3i =  denote by iR  the 
magnitude of the force iR . If we calculate the resultant torque on the body about an axis through 2V  and 3V  
and we also calculate the resultant torque on the body about an axis through 1V  and 3V  we obtain the equi- 
librium equation system 

1 2 3

1 1 1

2 2 2

0
0
0.

R R R W
h R y W
h R y W

+ + − =

⋅ − ⋅ =
⋅ − ⋅ =

                                     (2.1) 

When we solve the system we find that 

1
1

1

2
2

2

3 1 2

yR W
h
yR W
h

R W R R

= ⋅

= ⋅

= − −

                                      (2.2) 

By adding the three small areas of the triangles 1 2 1 3, ,V V P V V P  and 2 3V V P  in Figure 3, we obtain that 

3 31 1 1 1 2 2 .
2 2 2 2

a ya h a y a y
= + +  We note that the area of the triangle 1 2 3V V V  is 3 31 1 2 2 .

2 2 2
a ha h a h

= =  Using these 

identities and the previous equation, we obtain that 

3 3 3 3 31 1 1 1 2 2 1 1 1 2 2 2

1 2 3

31 1 1 1 1 2 1 1

1 2 3

2 2 2 2 2 2 2

.
2 2 2

a y a h ya h a y a y a h y a h y
h h h
ya h y a h y a h

h h h

= + + = ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅
 

 

 
Figure 2. In this triangular table, the point where the load W is placed, determines 
height y1 with respect to the vertex V1.                                     
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Figure 3. The point P divides the triangle in three triangles by drawing lines from 
P to each vertex.                                                       

 
Hence 

31 2

1 2 3

1 .
yy y

h h h
= + +                                       (2.3) 

From Equation (2.3) and Equation (2.2) we can also conclude that 3
3

3

.
y

R W
h

= ⋅  

2.4. Geometric Interpretation 
On the table’s surface, let’s draw three lines from the point where the load is located to the three corners of 
the table. We obtain three smaller triangles (shaded differently on the figure) inside the big triangle as in 
Figure 3. 

Among these three triangles, the triangle 2 3PV V  is not adjacent to the vertex 1,V  we call this triangle the 
opposite triangle to 1V . 

We observe that 
( )
( )

1 1 2 31

1 1 1 1 2 3

2 Area of Triangle
.

2 Area of Triangle
y a PV Vy

h h a V V V
⋅

= =
⋅

 

From the solution to the triangular case given by Equation (2.2) and the previous observation, we can 
establish a formula to obtain the magnitude of the reaction forces at any single leg in the triangular table 
according to 

Opposite Area .
Total AreaXR W= ⋅  

3. Rectangular Table, Indeterminate Case 
Consider a rectangular table of sides B and H and legs at each of its vertices 1 2 3, ,V V V  and 4V . A load W  of 
magnitude W  is placed at a point on the table’s surface and perpendicular to it. The point has distances to the 
sides x and y respectively as in Figure 4. 

Here once more we have a rigid surface and we are assuming that the legs do not bend. For 1, , 4i =   
denote by iR  the magnitude of the force iR . If we calculate the resultant torque on the body about an axis 
through 1V  and 2V  and we also calculate the resultant torque on the body about an axis through 1V  and 4V  
we obtain the equilibrium equation system 

1 2 3 4

3 4

2 3

0
0

0.

R R R R W
H R H R y W
B R B R x W

+ + + − =

⋅ + ⋅ − ⋅ =

⋅ + ⋅ − ⋅ =
                                  (3.4) 
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Figure 4. Rectangular table and load W on the table placed at a point with distances x 
and y to the sides of the table.                                               

 
This is all the mechanics says about the system. Systems of three equations and four unknowns might have no 

solutions or have an infinite number of solutions according to the consistency of the system and the existence of 
non-trivial solutions to the homogeneous system. It is the case that this system is consistent and the homo- 
geneous system has non-trivial solutions, hence it has an infinite amount of solutions. We call these type of 
systems indeterminate systems. 

Patnaik and Hopkins [6] discussed the problem under different hypotheses. They assume that the legs deform 
and take in consideration the modulus of elasticity and the cross-sectional areal of the legs. By using the 
principle of least work, they arrive at a fourth equation which they refer to it as compatibility condition: 

1 3 2 4R R R R+ = +                                     (3.5) 
Adding this equation to the system 3.4 we obtain solutions where sometimes the reactions magnitudes are 

negative according to where the load is placed (a negative magnitude of a reaction means that the reaction force 
is pointing in the same direction as W ). 

We should note that the problem we are approaching here is different. We will define the problem in the next 
section. 

4. Main Hypotheses 
We are considering a rectangular table whose legs bent, shrink or deflect a sufficiently small amount that we are 
neglecting it, therefore in our case, the legs of this rectangular table deflect zero, i.e., they do not deflect at all. 
We are also assuming that the table’s surface is rigid, uniform and homogeneous enough to disregard any 
conditions about the material, hence we are also assuming that our table is an ideal rigid table. Let’s assume for 
the moment that the table weights 0 (at the end of the problem, to obtain the final reactions magnitudes at each 
leg, we could add 1/4 of the table weight to each reaction by symmetry). 

The fact that in our case the legs do not deflect is the main difference with the work of Patnaik and Hopkins 
[6]. Whereas in the results of Patnaik and Hopkins, the reactions on some legs might point downwards because 
their flexible-legs table tilts, in our case, that does not happen, all the reactions point upwards. 

Main Hypothesis 4.1. The rectangular table consists of a rigid flat surface and rigid legs, hence neither the 
legs nor the surface deform or deflect. An ideal object of weight W  is placed at a point P  on the surface of 
the table causing a force to point downwards and perpendicular to the table’s surface. 

5. Solving the Rectangular Table Case 
Consider a view from the top of the rectangular table described on Section 3. We are labeling the vertices with 
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1 2 3 4, , ,V V V V , starting with the bottom left corner and going around counter clockwise. These vertices are 
precisely where the reactions, perpendicular to the table’s surface, occur. Assume then that the reaction iR  of 
magnitude iR  occur at the vertex iV . For simplicity, we can assume that the vertices are in the cartesian plane  
and they have the following coordinates, ( )1 0,0 ,V =  ( )2 ,0 ,V B=  ( )3 , ,V B H=  and ( )4 0, .V H=  Let il  be 

the segment from iV  to 1iV +  for 1, 2,3i =  and let 4l  be the segment from 4V  to 1V . Let ( ),P b h=  be  
the point where the load W  is placed as in Figure 5. 

Since the legs are rigid, the table does not tilt, hence each magnitude iR  of the reaction iR  is non-negative 
(a negative magnitude would mean that the reaction points downwards). 

We can imagine for a second that legs 3 and 4 disappear and that we want to equilibrate the table by placing 
an extra leg, leg 34 at a point 3P  on the segment 3l  in such a way that our new triangular table supported on 
leg 1, leg 2 and leg 34 is still in equilibrium and leg 34 has a reaction of magnitude equal to 3 4 .R R+  Where do 
we place such new leg 34? There is certainly a geometrical interval on the segment 3l  determined by leg 1, leg 
2 and the point P where this new leg can be placed with those conditions. This geometrical interval is in fact 
found by drawing a straight line passing through 1V  and P and another one passing through 2V  and P. We 
extend these lines until they intersect also the prolonged segment 3l . Such interval must be within the segment 

3l  and between these two intersection points. The reasoning behind this is that the point P must be inside the 
triangle determined by 1 2,V V  and 3P . This interval can be appreciated in Figure 5. 

Let’s place such a leg at the point 3P  on the segment 3l  within the above interval, and let’s call t the  
number between 0 and 1 such that ( ) ( )( )3 3 4 3 1 , .P V t V V B t H= + ⋅ − = −  In other words, 3P  is the vector 3V  

plus t times the vector that goes from 3V  to 4V . Let's call ( )34 tR  the reaction corresponding to the leg 34, 

and ( )34R t  its magnitude, of course these are functions of the parameter t. Figure 6 exemplifies this situation. 
From Figure 6, we can assume that the table we are dealing with is a triangular table, therefore the solved 

case applies (Figure 7). 
If we calculate the resultant torque on the body about the x-axis as well as calculating the torque about the 

y-axis, we can also obtain an equilibrium equation system (equivalent to System 2.1) for this triangular table 
 

 
Figure 5. In this view from the top of the rectangular table described before, a load W is placed on the table. 
On segment l3 is drawn an interval where leg 34 will be placed.                                        
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Figure 6. In this view from the top of the rectangular table described before, reaction force 
R34(t) on segment l3 replaces forces R3 and R4 for some t in the interval [0; 1].                

 

 
Figure 7. Triangular table supported at V1; V2 and P3 = P3(t) has reaction forces R34(t); R1(t) 
and R3(t).                                                                      

 

( ) ( ) ( )
( ) ( ) ( )
( )

1 2 34

2 34

34

0

0

0

R t R t R t W

B R t B Bt R t b W

H R t h W

+ + − =

⋅ + − ⋅ − ⋅ =

⋅ − ⋅ =

                               (5.6) 

We can easily solve for ( ) ( )1 2,R t R t  and ( )34 .R t  Notice that all the magnitudes will be functions of the 
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coordinates of 3 ,P  namely:  

( ) ( )

( ) ( )

( )

1

2

34

H ht B Hb
R t W

HB
ht h B Hb

R t W
HB

hR t W
H

− −
= ⋅

− +
= ⋅

= ⋅

 

If we now remove leg 34 and place back the leg 3 and leg 4, ( )3R t  and ( )4R t  can be computed using the 
case of the one dimensional beam as  

( )

( )

3

4

h htR t W
H

htR t W
H

−
= ⋅

= ⋅
 

To summarize, the solution to the rectangular case that depends on the parameter t, is given by 

( ) ( )

( ) ( )

( )

( )

1

2

3

4

H ht B Hb
R t W

HB
ht h B Hb

R t W
HB

h htR t W
H

htR t W
H

− −
= ⋅

− +
= ⋅

−
= ⋅

= ⋅

                                 (5.7) 

The solution { }1 2 3 4, , ,R R R R  to the rectangular case that we are looking for (and that does not depend on any 
parameter) satisfies the following conditions: 

Condition 5.1. 

1 2 3 4, , , 0.R R R R ≥  

The reactions 3R  and 4R  can be replaced by a reaction 34R  of magnitude 3 4R R+  at some point 3P  
on the segment 3.l   

The procedure that follows consists of finding such point 3P  by establishing some physical conditions on the 
net torque. 

Similar to the description above, the reactions 1R  and 2R  can be replaced by a reaction 12R  of magnitude 
1 2R R+  at some point 1P  on the segment 1l  within a geometrical interval. We might also say that the point  

1P  depends on a parameter r, where ( )1 1 2 1 ;P V r V V= + ⋅ −  however, if we think that the reaction 12R  substi-  
tutes the reactions 1 2,R R  and the reaction 34R  substitutes the reactions 3R  and 4R , then the reactions 

12 34,R R  are substituting 1 2 3, ,R R R  and 4R , and moreover, the table is still in equilibrium (we are assuming 
that the table weights zero), hence we do have a new condition. 

Condition 5.2. The points 3 1,P P  and P are collinear! (as if the whole table were supported on a bar only).  
Under this condition, the point 1P  does not depend on r anymore, the point 3P  determines the point 1P , 

and hence 1P  depends on t, in fact, we have 

( )
1 ,0 .

Hb B ht h
P

H h
+ − 

=  
− 

 

When we do the same analysis as before, but this time using leg 3, leg 4 and leg 12 (at the point 1P ), we 

obtain the same values ( ) ( ) ( )1 2 3, ,R t R t R t  and ( )4 ,R t  as in the system 5.7. 
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Similarly, we can now think that the reactions 4R  and 1R  can be replaced by a reaction 41R  of magnitude 

4 1R R+  at some point ( )4P u  on the segment 4 ,l  (within some interval) where  

( ) ( )( )4 4 1 4 0, 1P V u V V H u= + ⋅ − = −  as in Figure 8. 

Performing the same analysis as before, we calculate the resultant torque on the body about the axis 
determined by 1V  and 2V  as well as calculating the torque about the axis determined by 2V  and 3.V  We 
obtain the equilibrium system  

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

2 3 41

3 41

41

0

0

0,

R u R u R u W

H R u H Hu R u h W

B R u B b W

+ + − =

⋅ + − ⋅ − ⋅ =

⋅ − − ⋅ =

                           (5.8) 

Proceeding as before, we arrive at the solution to the system 5.8 

( ) ( )

( ) ( ) ( )

( ) ( )( )

( ) ( )( )

1

2

3

4

1

1
.

u B b
R u W

B
B H h Hu B b

R u W
HB

hB H u B b
R u W

HB
u B b

R u W
B

−
= ⋅

− − −
= ⋅

− − −
= ⋅

− −
= ⋅

                              (5.9) 

Analogously to Condition 5.2, the point 4P  determines a point 2P  on the segment 2l  collinear with P and 
4P . In fact (Figure 9) 

( )( )
2

1
, .
Bh H B b u

P B
b

− − − 
=  
 

 

 

 
Figure 8. In this view from the top of the rectangular table described before, reaction force R41(u) on 
segment l4 replaces forces R4 and R1 for some u in the interval [0; 1].                              
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Figure 9. Points P3; P and P1 are collinear as well as points P4; P and P2.      

 
When doing the same analysis, such point also determines the same values ( ) ( ) ( )1 2 3, ,R u R u R u  and 

( )4 .R u  
These conditions of collinearity, do not provide any extra information, it only allows us reduce to two para- 

meters ( ),t u  instead of four. 
A natural assumption is that the solution given by considering the point ( )3P t  will also match the solutions 

given by considering the point ( )4 ,P u  in other words. 
Condition 5.3. The solutions to the system 5.9 agree with the solutions to system 5.7, in other words, the 

system is self-consistent. 
This brings us to the equation 

( ) ( )1 .Ht B b u
hB

= ⋅ − ⋅ −                                        (5.10) 

This does not solve the problem; however, whichever the solution is, there are parameters t and u such that the 
solution can be expressed as in the system 5.7 or 5.9, and those parameters should be related by Equation (5.10). 

Since we are considering a rigid surface, we are expecting that the surface strains only a little bit, we really 
want the surface to strain the least to be in equilibrium, it is then a natural requirement to ask that the  
table strains the least in two directions. Let’s consider only the line that goes from 3P  to 1.P  Recall that 

( )34 ,hR t W
H

= ⋅  ( )12
H hR t W

H
−

= ⋅  and that 

( ) ( )( ) ( )
3 1, , 1 , , ,0 .

Hb B ht h
P b h P B t H P

H h
+ − 

= = − =  
− 

 

A way of measuring the deflection of the surface along this line is by considering the sum of the magnitudes 
of the torques at the points 3P  and 1,P  with respect to the point P, this is  

( ) ( ) ( ) ( )3 34 1 12distance , distance ,P P R t P P R t⋅ + ⋅  

In our case, since 3 ,P P  and 1P  are collinear, we can use similar triangles to obtain that this previous quan- 
tity is  

( ) ( )2 2 2 2 22 2 1 2 2t t B bt b B H Hh h b h

H

− + + − + − + + ⋅
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Since we are asking this quantity to be minimum, we need to minimize this as a function of t. The previous 
expression is minimum when the inside of the square root is minimum, hence to minimize the previous ex- 
pression, we set to zero the derivative of 

( ) ( )2 2 2 2 22 1 2 2t t B bt b B H Hh h b− + + − + − + +  

with respect to t, which gives ( ) 22 1 2 0,t B Bb− + =  hence 

,B bt
B
−

=  

therefore the point 3P  is located at ( )3 , .P b H=  Plugging these values in Solution 5.7, we obtain 

( )( )

( )

( )

1

2

3

4 .

B b H h
R W

HB
b H h

R W
HB

hbR W
HB
B b h

R W
HB

− −
= ⋅

−
= ⋅

= ⋅

−
= ⋅

                                 (5.11) 

If we now consider the other line that goes from 4P  to 2 ,P  we can also measure the deflection of the 
surface along this line by considering the sum of the magnitudes of the torques at the points 4P  and 2 ,P  with 
respect to the point P, this is  

( ) ( ) ( ) ( )4 41 2 23distance , distance ,P P R u P P R u⋅ + ⋅  

Once more, using collinearity and similar triangles, this quantity becomes  

( ) ( ) ( )2 2 2 22 2 1 2B b u u H hu h H h b

B

− − + + − + +
 

By a similar argument, minimizing the previous expression is equivalent to minimize the expression inside 
the square root as a function of u. Therefore, we need to set to zero the derivative of  

( ) ( )2 2 2 22 1 2u u H hu h H h b− + + − + +  

which gives ( ) 22 1 2 0,u H Hh− + =  hence  

.H hu
H
−

=  

Notice that this value of u agrees with the one obtained by substituting B bt
B
−

=  in Equation (5.10). 

Therefore the point 4P  is located at  
( )4 0, ,P H h= −  

which also provides, according to System 5.7, the solutions 

( )( )

( )

( )

1

2

3

4 .

B b H h
R W

HB
b H h

R W
HB

hbR W
HB
B b h

R W
HB

− −
= ⋅

−
= ⋅

= ⋅

−
= ⋅

                                  (5.12) 
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In a forthcoming paper, we will generalize these results. 

Geometric Interpretation 
We notice that the solutions achieved here are self consistent, the points 1 3, ,P P P  are collinear as well as the 
points 2 4, , ,P P P  the net-torque quantities are minimum. We also have that the lines joining the collinear points 
determined four rectangles. 

From Figure 10, it can be easily seen, by drawing the corresponding lines, that the points 3P  and 4P  lie 
within the geometrical interval discussed at the beginning of the previous section. 

To each vertex of the table, among the four areas of those rectangles, one area is where the vertex is located, 
two areas are adjacent to the vertex and one area is opposite to the vertex. The formula obtained in Solution 5.11 
or in 5.12 to compute the magnitudes of the reactions at any single leg in the rectangular table is given by  

Opposite Area
Total AreaXR W= ⋅  

as proposed by Fontana [3] (when the parallelogram becomes a rectangle); however, Fontana imagined that this 
formula had to be true without any hypothesis and never justified such formula. We, in this paper, stated the 
conditions under which this formula is true. 

6. Experimental Results 
6.1. Summary of Experimental Results 
To test the predictions of the Equation (5.11) above, load weights of mass 0.200 kg up to 3.50 kg were sus- 
pended from a rectangular aluminum plate. Reaction forces were measured by digital scales affixed to the cor- 
ners of the plate. A detailed procedure is described below. The resulting experimental reaction forces agree well 
with the theory, as seen in Figure 11. The experimental values versus the theoretical ones are fit by a straight 
line and the resulting fitting parameters are consistent with agreement. The slope is consistent with one (best fit 
slope of 1.02 0.03± ) and y-intercept is consistent zero (best fit 0.62 1.0− ± ) to within the one sigma un- 
certainties of the slope and intercept parameters. 

In Figure 11, the solid line is a best fit line to the data and is consistent with agreement between theory and 
experiment: The slope is consistent with one (best fit slope of 1.02 0.03± ) and y-intercept is consistent zero 
(best fit 0.62 1.0− ± ) to within the one sigma uncertainties of the slope and intercept parameters. Each experi- 

 

 
Figure 10. The point P where the load W is placed divides the rectangle into four 
rectangles. In this gure, rectangle P1PP2V2 is opposite to vertex V4.               
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Figure 11. Experimental versus theoretical fractions of the load weight found 
at each reaction force.                                               

 
mental fraction reaction force is the slope of a linear fit such as those in Figure 12 (reaction forces versus load 
weights). The y-error bars on the data are uncertainties from the resulting linear fits, such as in Figure 12. The 
x-error bars are from calculations of the uncertainties of the positions of the load weights, limited by the ap- 
paratus. 

Each reaction force in Figure 11 is derived from a series of data of the measurement of reaction force versus 
load weight. In Figure 12, the four reaction forces are plotted versus load weight for one of the three locations 
(called Location 2, details below). The slope of each linear fit is included in Table 1. To form the fraction sup- 
ported by one reaction force, the slope corresponding to that force is divided by the sum of the four slopes. 

In Figure 12, total plate size is (34.35, 22.9) cm. Data are summarized in Table 1. 
On Table 1, the slopes and y-intercepts are from the linear regression fits of the experimental reaction forces 

versus load weight, plotted in Figure 12. The fractions of the load weight supported by each leg (the nR ’s) are 
listed as f(exp) and f(theory). The experimental values are the slopes divided by the sum of slopes. Sum of 
slopes is 34.96 oz/kg which is close to the true value of 35.274 oz/kg, and the difference is just outside the 0.25 
oz/kg one sigma uncertainty of the sum of the uncertainties of the slopes. The sum of the y-intercepts is zero to 
two significant figures. 

On Table 2, the three locations load weights were placed are labeled 2, 3, and 6. Experimental fractions of 
support of the load weight (labeled f(exp) in this table) are computed as in Table 1: by dividing the slope of the 
individual reaction force versus load weight graph by the sum of the slopes. Theory is computed by Equation 
(5.12). The uncertainty is solely from the uncertainty in the experimental slope. Although the agreement is quite 
good between experiment and theory, there is additional uncertainty beyond only that of the linear regression fits. 
Possible sources are discussed below. 

On Table 3, all values have a measurement uncertainty of 0.1 cm, but the nuts affixing the machine screws to 
the plate have diameters of 0.8 cm, thus this latter uncertainty is employed to produce the x-error bars on Figure 
12. 

6.2. Estimation of Uncertainties 
The slopes and y-intercept values in the data Table 1 and Table 2 have uncertainties which arise from the linear 
regression fitting (performed with Originlabs Origin software). Individual reaction force measurements have  



J. Garcia et al. 
 

 
613 

 
Figure 12. Reaction forces for the load weight placed at (20.7, 12.6) cm.      

 
Table 1. The table of reaction forces for weight at location two, given by (20.7, 12.6) cm in the (34.35, 22.9) cm plate.        

Force y-int (oz) slope (oz) f(exp) f(theory) unc 

Units: oz kg/oz - - - 

1R  0.30 6.62 18.9 17.9 0.51 

3R  -0.29 9.15 26.2 27.1 0.29 

2R  0.28 11.98 34.3 33.2 0.20 

4R  -0.29 7.213 20.6 21.9 0.23 

 
Table 2. Summary of all three experiments.                                                                     

Loc Support f(exp) f(theory) unc(exp) unc(theory) 

2 1R  18.9 17.9 0.51 0.87 

2 3R  26.2 27.1 0.29 1.2 

2 2R  34.3 33.2 0.20 1.2 

2 4R  20.6 21.9 0.23 0.94 

6 2R  6.8 9.1 0.69 0.60 

6 3R  23.2 21.1 0.82 0.97 

6 1R  46.8 48.7 0.80 1.5 

6 4R  23.3 21.0 0.68 1.3 

3 2R  10.9 10.2 0.48 1.2 

3 3R  56.3 56.7 0.53 1.5 

3 1R  28.5 28.0 0.62 1.1 

3 4R  4.2 5.1 0.53 0.60 
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Table 3. Coordinates of the three load weights (Loc 2, 6 and 3) and the four corner supports (Labeled AD) in rectangular 
form.                                                                                                  

Label x (cm) y (cm) 

Loc 2 20.7 12.6 

Loc 6 10.4 6.9 

Loc 3 23.0 3.5 

1R  0 0 

3R  34.35 0 

2R  34.3 22.9 

4R  0 22.9 

 
uncertainties of 10 grams due to the limitations of the accuracy of the scales (this corresponds, roughly, to the 
size of the symbols in Figure 12). The masses used as load weights are accurate to under 1% which is negligible 
compared to other sources. 

In calculating the theoretical rigid plate reaction forces, from Equation (5.11), above, the dominant source of 
uncertainty is the location of the load weights. These are constrained by the size of the nuts, which are 8.0 ± 0.2 
mm across (from corner to corner, the longest distance across the hexagonal nut) thus the uncertainty of the load 
weight position is taken to be ±4 mm, which produces the horizontal error bars in Figure 12. The other meas- 
urements dealing with the dimensions of the plate are, somewhat arbitrarily, assigned zero uncertainty. If the 
uncertainty due to the nuts (same size as above) at the corners of the plate are included, significantly larger error 
bars are produced. 

6.3. Procedure 
The goal of the procedure is to measure the distribution of weight from a single load weight onto supports places 
at the four corners of the table. To do so, it is important that the table remain level during measurements. Several 
methods were investigated to reach optimal conditions the most successful of which are detailed below (Figure 
13). 

Four PASCO SE-9372 laboratory jacks are places close to, but outside, where the four corners of the rec- 
tangular plate will lie. Height of each jack is set to near the middle of the range of travel, allowing future up or 
down adjustment. At approximately equal height, a right angle clamp is affixed to each ring stand. Steel cross- 
bars are connected to pairs of ring stands. A carpenter’s level is used to check for levelness. With meter stick, 
ensure the crossbars are roughly parallel and separated by the width of the plate. 

The longer side of the rectangle is here termed the length; the shorter side the width. The longer sides should 
be directly under the crossbars. PE scales are clamped to crossbars. Scales are connected to the plate via steel 
machine hooks with threads which screw into the plate. To avoid stripping the threads, washers are placed below 
the plate and tightened. The threaded screws give a second method (after the lab jacks) to level the plate. At this 
point, level the plate adjusting only the screws. Ensure the hooks below the PE scales are vertical. To detect any 
deviation from levelness, one or more carpenter’s levels can be left on the plate. The four PE scales are tarred at 
this point. 

Now the load weight can be suspended from the plate and the reaction forces can be measured by the four 
scales. However, if the load weight is not placed near the center of the plate, large load weights cause the plate 
to rotate out of level. For these larger load weights, re-level the plate using the lab jacks, then remove load 
weight. Plate will rotate somewhat out of level. Tare scales. Add load weight (which will rotate the plate back 
very close to level) and record reaction force readings. 

6.4. Materials 
Plates are fabricated from 6061 aluminum with a thickness of 3.18 mm with threaded holes for the load weights 
and measuring reaction forces of inner diameter 2.69 mm, outer diameter of 3.51 mm. Steel washers connecting  
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Figure 13. One of the PE scales supporting the rectangular plate 
and a dark hanging weight below. The black threaded eye bolt has 
black washers clamping it to the plate both above and below the 
plate. However, these can be loosened and the threaded bolt can be 
adjusted slightly to help level the plate, initially. Later re-leveling 
of the plate for large masses is done via lab jacks (not pictured) 
which support the ring stands which in turn support the horizontal 
crossbars (seen near the top of the gure).                        

 
screws to plate have a width from corner to corner of 8.0 mm and a width from flat side to parallel flat side of 
7.0 mm and a height of about 2.5 mm. 

Weights and scales are affixed to the plate via steel machine screws, clamped to plate via washers. Scales are 
West-Boao Science & Technology Co., Ltd. brand ETWT001 portable electronic scales, with maximum load of 
50 kg and accuracy to 10 grams. 

7. Conclusion 
Through this paper the well known beam case was provided, the triangular table case was also provided and the 
geometrical interpretations of the reaction forces at any given leg were given. The indeterminate case of the 
rectangular table, also well known, was discussed. The hypotheses to our problem in Section 4 clarified the 
situation of the problem we wanted to solve. By employing the method of introducing two parameters and 
supporting the table on ideal beams and minimizing a quantity that somehow measures the deflection of the table 
surface, we were able to solve the problem in Section 5. The main difference of our method and the one 
provided by Patnaik, Hopkins and Halford [6] is that we have different hypotheses. The results from Patnaik, 
Hopkins and Halford [6] and our result do not contradict each other, we just approach the same problem but 
with different conditions. The method that we provide here will be generalized in a forthcoming paper by the 
same authors. A physical experiment was performed and described in Section 6. In the same section, laboratory 
results were obtained and these results are consistent with the theoretical values obtained by our proposed 
theoretical model. Although the solution provided here has not been analyzed before, its novelty might con- 
tribute to some applications on the mechanics and engineering of solid structures. 
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