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Abstract 
It’s well known that the solution of equations always uses complicated methods. In this paper the 
first integral method is used to find the actual solution of equations in a simple way, rather than 
the ex-complicated ways. Therefore, the use of first integral method makes the solution more 
available and easy to investigate behavior waves through its solution. First integral method is 
used to find exact solutions to the general formula and the applications of the results to the linear 
and nonlinear equations. 
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1. Introduction 
Partial differential equations arise frequently in the formulation of fundamental laws of nature and in the ma-
thematical analysis of a wide variety of problems in applied mathematics, mathematical physics, and engineer-
ing science. This subject plays a central role in modern mathematical sciences, especially in physics, geometry, 
and analysis. Many problems of physical interest are described by partial differential equations with appropriate 
initial and/or boundary conditions. These problems are usually formulated as initial-value problems, boundary- 
value problems, or initial boundary-value problems, a broad coverage of the essential standard material on linear 
partial differential equations and their applications is required. The study of the solutions of partial differential 
equations (PDEs) has enjoyed an intense period of activity over the last forty years from both theoretical and 
numerical points of view. Many methods obtaining the exact solution of non linear equation, some of the tech-
niques are the bilinear transformation [1], the sine cosine method [2], F-expansion method [3], the first integral 
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method was first proposed by Feng [4] to solving Burger-Korteweg-devries equation and so on, in this paper in-
vestigation a traveling wave solution for non linear partial differential equation, study nonlinear phenomena, in 
solving modified KdV-kp can be based on the theory of commutative algebra, using the first integral method 
technique to solving linear and nonlinear equations. 

2. First Integral Method 
The non-linear partial differential equation form: 

( ), , , , ,x t xx xtw F F F F F 
                                    (1) 

where ( )u x, t  is the solution of (1) we use the transforms: 

( ) ( ), ,f x t f x tζ ζ α β= = −                                   (2) 

we use the wave transforms : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

2 2
2 2 2 2. . , . . , . . , . .

t x t x
β α β α

ζ ζ ζ ζ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

              (3) 

Equation (1) transforms the ordinary differential equations we obtain: 

( ), , , 0p f f f′ ′′ =
                                        (4) 

Anew independent variable:  

( ) ( ) ( ) ( ),x f y fζζ ζ ζ ζ= =                                  (5) 

The system of ordinary differential equations: 

( ) ( )
( ) ( ) ( )( ),

x y

y F x y

ζ ζ

ζ ζ ζ

′ =

′ =
                                    (6) 

By the qualitative theory of differential equation [5], we find the integral of (6) under same condition, then the 
general solution of (6) can be obtained directly. However, in general, it is really difficult for us to realize this 
even for one first integral, because for a given plane autonomous system, find its first integral will apply the Di-
vision theory to option first integral (6), An exact solution of (1) obtained by solving this equation. Now let us 
recall the Division theory. 

Division theorem: 
Suppose that ( ),P x y  and ( ),Q x y  are polynomials of two variables x  and y  in [ ],C x y . And 

( ),P x y  is irreducible in [ ],C x y . If ( ),Q x y  vanishes at all points of ( ),P x y , then there exists a polynomial 

( ),G X Y  in [ ],C x y  such that ( ) ( ) ( ), , ,Q X Y P X Y G X Y= . 

3. The First Integral Method General Formula 
We discuss the problem by using the first integral method, consider the general formula: 

( ) ( ) ( ) ( ) ( ) ( )2 3 4 5 0u su k lu mu nu fu ruξ ξ ξ ξ ξ ξ′′ ′− − − − − − − =                  (7) 

where , , , , , ,s k l m n f r  are real constant. Using (7) in (6) we get the system. 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )2 3 4 5

,X Y

Y sY k lX mX nX fX rX
ξ

ξ

ξ ξ

ξ ξ ξ ξ ξ ξ

=

= + + + + + +
                  (8) 

Now Appling Division theorem, suppose that ( )X ζ  and ( )Y ζ  are nontrivial solution of (8): 

( ) ( )
0

, 0
M

i
i

i
q X Y a X Y

=

= =∑                                     (9) 
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Is an irreducible polynomial in the complex domain [ ],C X Y  such that: 

( ) ( ) ( )( ) ( )
0

, 0
M

i
i

i
q X Y a X Yζ ζ ζ ζ

=

= =   ∑                               (10) 

( ) ( )0,1,2, ,ia X i m= 
 are polynomial and ( ) 0ma X ≠ , Equation (16) called first integral method, there 

exist a polynomial ( ) ( )g X X h X Y+  in the complex domain [ ],C x y  such that: 

( ) ( )( ) ( )
0

d d d d d
d d d d d

M
i

i
i

q q X q Y g X X h X Y a X Y
X Yζ ζ ζ =

= ⋅ + ⋅ = + ∑                       (11) 

which can be written as: 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 2 3 4 5

0 0

M M M
i i i

i i i
i i i o

a X Y ia X Y k lX mX nX fX rX g X h X Y a X Y• + −

= = =

+ + + + + + = +∑ ∑ ∑   (12) 

by comparing with the coefficient of ( )1, , ,1,0iY i M M= + 
 on both sides of (12), we get: 

( ) ( )M Ma h X a X• =                                      (13a) 

( ) ( ) ( ) ( )1 1M M Ma g X a X h X a X•
− −= +                            (13b) 

( ) ( )( ) ( ) ( )2 3 4 5
0 2 02a X a X k lX mX nX fX rX g X a X• = − + + + + + =             (13x) 

( )( ) ( ) ( )2 3 4 5
1 0a X k lX mX nX fX rX g X a X+ + + + + =                  (13y) 

from (12a), we deduce that ( )ma X  is a constant and ( ) 0h X = , we take ( ) 1ma X = , and balancing the de-
grees of ( ) ( ) ( )1 0, andg X a X a X , we find the deg g(X). 

Now we take these cases: 
Case 1: 
Suppose that M = 1, in (12), then the (13) becomes: 

( ) ( ) ( )1 1a X h X a X• =                                     (14a) 

( ) ( ) ( ) ( ) ( ) ( )0 1 1 0a X sa X g X a X h X a X• + = +                         (14b) 

( )( ) ( ) ( )2 3 4 5
1 0a X k lX mX nX fX rX g X a X+ + + + + =                    (14c) 

since ( ) ( )0,1ia X i =  are polynomial, then from (14a) we deduce that ( )1a X  is constant and ( ) 0h X =  for 

simplicity, take ( )1 1a X = . Balancing the degrees of ( )g X  and ( )0a X . We conclude that ( )( )deg 2g X = , 

suppose that ( ) 2
2 1 0g X A X A X A= + + , then we find ( )0a X . 

( ) ( )
2 3

1 2
0 0 0 2 3

A X A Xa X B A s X= + − + +                             (15) 

where 0B  is arbitrary integration constant. Substituting ( ) ( ) ( )0 1, anda X a X g X  in (14c), and setting all the 
coefficients of powers X to be zero, we obtain a system of nonlinear algebraic equations and by solving it, we 
obtain: 

2
2 21
2 1 2 2 0 2 0 1 1 0 0 0

1 5 4 3, , , , , 0, 0
3 6 3 2 2

Ar A f A A n A A sA m A A sA l A sA k B= = = + − = − = − = =       (16) 

using (16) in (10), we obtain: 

( )3 2
2 1 02 3 6

6
A X A X A s X

Y
− − − −

=                             (17) 

combining (17) with (8), and fine the exact solution (8). 
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Case 2: 
Suppose that M = 2, in (12), then the (13) became: 

( ) ( ) ( )2 2a X h X a X• =                                    (18a) 

( ) ( ) ( ) ( ) ( ) ( )1 2 2 12a X a X s g X a X h X a X• + = +                      (18b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5
0 1 2 1 02a X a X s a k lX mX nX fX rX g X a X h X a X• + + + + + + + = +        (18c) 

( )( ) ( ) ( )2 3 4 5
1 0a X k lX mX nX fX rX g X a X+ + + + + =                   (18d) 

since ( )( )2 0,1, 2a X i =  are polynomial, then from (14a) we deduce that ( )2a X  is constant and ( ) 0h X =  

for simplicity, take ( )2 1a X = . Balancing the degrees of ( ) ( )1,g X a X  and ( )0a X . We conclude that 

( )( )deg 2g X = , suppose that ( ) 2
2 1 0g X A X A X A= + + , then we find ( ) ( )1 0anda X a X : 

( ) ( )
2 3

1 2
1 0 0 2

2 3
A X A Xa X B A s X= + − + +                            (19) 

( ) [ ] 2 2 2 31
0 1 0 0 1 0 0 0 2 0 0 1

2 2
4 5 61 2

0 2 2 1 2

51 1 32 3 2 2 2
2 3 2 2

1 4 1 5 12 2 2 2
4 3 2 5 6 6 3

A sa X B A B k X A B A A s s l X A B A A m X

A AA A A s n X A A f X r X

  = + − + + − + − + + − −    
    + + + − + − + −        

  (20) 

where 0 1,B B  are arbitrary integration constants. Substituting ( ) ( ) ( )0 1 anda X a X g X⋅  in (18d), and setting 
all the coefficients of powers X to be zero, we obtain a system of nonlinear algebraic equations and by solving it, 
we obtain: 

2 2 2
0 0 0 1 0 2 1 2 1 2 2

1 1 0
9 4 7 5

0, , , , , , 0, 0
4 2 16 8 5 16 12
A sA A A A A A sA A A Ak l m sA n f r B B

+
= = − = − = + = = = =      (21) 

using (20) in (9),we obtain two equal roots for Y: 
note that: 

( ) ( ) ( )3 22
2 1 01

0

2 3 6
, then ,

4 12
A X A X A s Xa X

a X Y
− − − −

= =                           (22) 

combining (21) with (8), and fine the exact solution (8). 
Case 3: 
Suppose that M = 3, in (12), then the (13) became: 

( ) ( ) ( )3 3a X h X a X• =                                     (23a) 

( ) ( ) ( ) ( ) ( ) ( )2 3 3 23a X sa X g X a X h X a X• + = +                          (23b) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5
1 2 3 2 12 3a X sa X a k lX mX nX fX rX g X a X h X a X• + + + + + + + = +          (23c) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4 5
0 1 2 1 02a X sa X a k lX mX nX fX rX g X a X h X a X• + + + + + + + = +          (23d) 

( )( ) ( ) ( )2 3 4 5
1 0a X k lX mX nX fX rX g X a X+ + + + + =                       (23e) 

since ( )( )2 0,1, 2a X i =  are polynomial, then from (14a) we deduce that ( )2a X  is constant and ( ) 0h X =  

for simplicity, take ( )2 1a X = . Balancing the degrees of ( ) ( )1,g X a X  and ( )0a X . We conclude that 

( )( )deg 2g X = , suppose that ( ) 2
2 1 0g X A X A X A= + + , then we find ( ) ( ) ( )2 1 0, anda X a X a X : 

( ) ( )
2 3

1 2
2 0 0 3

2 3
A X A Xa X B A s X= + − + +                                (24) 
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( )

( )

2 6 5 2 42
1 2 1 2 0 2 1

3 2 2 2
0 1 1 0 0

1 1 1 5 1 4 13 3 3
6 3 5 6 4 3 2 3

1 3 13 3 6 5 3
3 2 2

sAa X r A X A A f X A A A n X

A A s A m X A s sA l X

    = − + + − + + + −         
   + − + − + + − −    

           (25) 

( )
3

9 2 82
0 1 2 1 2 2

2 2 7
0 2 1 2 2 1 0

2 3 6
1 2 2 0 1 2 1 1 0

2 2 2
0 2 2 2 0 1 2 1

0

1 1 1 2 4
9 18 6 8 9 15

1 7 7 5 1 1
7 18 24 12 10 2
1 1 2 1 1 1 4
6 2 3 2 8 4 5
1 5 1 1 7 1
5 6 2 8 6 2

1
4

Aa X B A r X A A fA X

A A A A nA fA rA X

A A mA A A A A nA A f X

A A A A A A lA mA

nA

   = + − + −     
 + + − − +  
 + − + + − +  
+ + + − −

+ + ( )
2

50 2 2
1

2
40 1 0 11 2

1

2 2
2 2 30 0

0 0

25 41
9 4

6 12

13 41 2 2
4 3 3 3 2

111 5 9 3 3
3 2 2 2 2

sA A s A n A s X

A A A AsA lAlA ms X

s A AlslA sA s X


+ + − 


 

+ − − + + − + 
 
 −

+ + − + + − 
 

                 (26) 

where 0 1,B B  are arbitrary integration constants. 
Substituting ( ) ( ) ( )0 1 anda X a X g X⋅  in (18d), and setting all the coefficients of powers X to be zero, we 

obtain a system of nonlinear algebraic equations and by solving it, we obtain: 
2

20 0 1 1
0

2 2
0 2 1 2 1 2 2

1 0

9 8
0, 3 4 , ,

4 16 3
4 5

, , , 0, 0
12 3 16 12

A A A sAk l A s s m

A A A A s A A An f r B B

= = + − = +

+
= + = = = =

                     (27) 

using (20) in (9), we obtain three equal roots for Y: 
note that: 

( ) ( ) ( )2 3
2 2

1 0, ( ) ,
3 27

a X a X
a X a X= =  

then 

( )3 2
2 1 02 3 6

,
18

A X A X A s X
Y

− − − −
=                               (28) 

combining (21) with (8), and fine the exact solution (8). 
Case n: 
Suppose M = n, we get: 

( )3 2
2 1 02 3 6

6
A X A X A s X

Y
n

− − − −
=                               (29) 

Theorem 3.1: 
The exact solution of the general formula in (7) are given by combining of (17), (21), (27) … (29), with (8) 

and integration respect with ξ . 

4. Application 
We can apply Theorem 3.1 to studying some nonlinear differential equations, as solitary wave equation. 
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Example 4.1: 
The linear ODES: 

0u u′′ − =                                           (30) 
which is the same form of Equation (7), where: 

1, 0, 0l m n f r s= = = = = =  

0 1 2

0 1 2

1, 0, 0,
1, 0, 0,

A A A
A A A

= = =

= − = =
                                   (31) 

0Y A x= −                                          (32) 

integration respect to ξ : 

1 exu A=                                           (33) 

2 e xu B −=                                          (34) 

so the (31) + (32) is the solution: 

e ex xu A B −= +  
Example 4.2: 
Consider the Boussines equation given by: 

( )23 ,tt xx xxxxxx
u u u u a x b= + + ≤ ≤                                (35) 

using ( )u f x ct= −  into (34) gives: 

( ) ( )2 2 41 3c f f f′′′′− = +                                   (36) 

where integrating twice yields: 

( )2 21 3f c f f′′ = − −                                     (37) 

which is the same form of (7), where: 

( )2 1 , 3, 0, 0l c m n f r s= − = − = = = =  

2 2
0 1 22

21, , 0
1

A c A A
c

−
= − = =

−
                               (38) 

( )2 2

2

1

1

X c X
Y

c

− −
=

−
                                     (39) 

integration respect to ξ  then: 

( ) ( )[ ]
2

21, 1 2 tanh 1
2

cu x t c x ct−  = + − −  
                           (40) 

Example 4.3: 
Consider the Gardner equation given by: 

( )22 3 0, , 0t x x xxxu auu bu u u a b+ − + = 
                            (41) 

using the wave variable x ctξ = −  and integrating the result will convert the (41) to the ODE: 
3 2f bf af cf′′ = − +                                      (42) 

which is the same form of (7) where: 
, , , 0, 0l c m a n b f r s= = − = = = =  
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0 1 2, 2 , 0A c A b A= = =  and 
22

9
ac
b

=                             (43) 

so: 
22 2
3

bX cXY − −
=                                    (44) 

integrating respect to ξ  then: 

( ) [ ]1 2 3 2, tanh 1
2 2

c cu x t x ct
b b
  −

= − −      
                          (45) 

Example 4.4: 
Consider the nonlinear Schrödinger equation: 

( ) ( )2 2 2 0t xx
x x

iu u u u i u u is u uβ α+ + + + =                         (46) 

suppose that (46) has solution form: 

( ) ( )( ) ( ), e ,i wtu x t x ctφ η α η η−= = −                              (47) 

substituting (47) in (46), then (46) become: 

( ) ( ) ( ) ( )( ) ( )
2

3 51 3 2 2 0
4 2 16
c cw r s sαα η α η β α η α α α η

     ′′ + + + − + + + − =     
    

          (48) 

which is the same form of (48), where: 

( )( )
2 1, , 3 2 2 , 0, 0

4 2 16
c cl w n r r s s m fαβ α α

     = − + = − − = − + + − = =     
    

 

2 1 0
33 , 0,

4 3
nA r A A

r
= = =                                    (49) 

3
0 23

9
A X A X

Y
− −

=                                        (50) 

integrating respect to ξ  then: 

( )
( )0 0

0

2
3

2

3
,

e
A

A
u x t

A
ζ ζ+

±
=

− +

                                  (51) 

Example 4.5: 
The Cahn-Allen equation: we study nonlinear parabolic PDF given by: 

3
t xxu u u u= − +                                        (52) 

using the wave variable x ctξ = −  and integrating the result will convert the (52) to the ODE: 
3cu u u u′ ′′− = − +                                      (53) 

which is the same form of (48), where: 
0, 1, 1,k f m n l s c= = = = = − = −                                (54) 

0 1
1 , 2, 3A A c
c

= − = ± = ±                                 (55) 

21 2
2 3

Y X X= ±                                    (56) 

integrating respect to ξ  then: 
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( )
( )0

1

2
3,

3e
2 2

u x t
ζ ζ− +

=
−

                                  (57) 

( )
( )0

2

2
3,

3e
2 2

u x t
ζ ζ− +

=
+

                                  (58) 

( )
( )0

3

2
3,

3e
2 2

u x t
ζ ζ+

=
−

                                  (59) 

( )
( )0

4

2
3,

3e
2 2

u x t
ζ ζ+

=
+

                                  (60) 

our result can be compared to Wawaz’s result [2]. 

5. Conclusion 
The first integral method a general formula, is successful for solving a lot of nonlinear equation, and establishing 
travelling wave solutions, which is based on the ring theory of commutative algebra, and used to solve compli-
cated and tedious algebra calculation. We can also apply them to some other nonlinear partial differential equa-
tions. 
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