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Abstract 
In this paper, the boundary layer stagnation-point slip flow and heat transfer towards a shrink-
ing/stretching cylinder over a permeable surface is considered. The governing equations are first 
transformed into a system of non-dimensional equations via the non-dimensional variables, and 
then into self-similar ordinary differential equations before they are solved numerically using the 
shooting method. Numerical results are obtained for the skin friction coefficient and the local 
Nusselt number as well as the velocity and temperature profiles for some values of the governing 
parameters, namely the velocity slip parameter ( )δ , the thermal slip parameter ( )β , the curva-

ture parameter ( )γ  and the velocity ratio parameter ( )c a . The physical quantities of interest 

are the skin friction coefficient and the local Nusselt number measured by ( )′′ 0f  and ( )′ 0θ− , re-
spectively. The numerical results show that the velocity slip parameter δ  increases the heat 
transfer rate at the surface, while the thermal slip parameter β  decreases it. On the other hand, 
increasing the velocity slip parameter δ  causes the decrease in the flow velocity. Further, it is 
found that the solutions for a shrinking cylinder ( )0c a <  are non-unique with dual solutions, 

which is different from a stretching cylinder ( )0c a >  case. Finally, it is also found that the values 

of ( )′′ 0f  and ( )′ 0θ−  increase as the curvature parameter γ  increases. 
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1. Introduction 
The problem of flow and heat transfer induced by continuous shrinking or stretching surfaces has received con-
siderable attention in recent years because it is an important type of flow occurring in many engineering discip-
lines. The stagnation point flow problems have been extensively studied by several authors. The problem of 
flow due to a shrinking or stretching sheet has been later extended to many flow situations. Crane [1] was the 
first studied the steady boundary layer flow of a viscous fluid due to a linearly stretching surface. Later, Chiam 
[2] extended the works of Crane [1] to stagnation-point flow over a stretching sheet. Wang [3] first investigated 
the stagnation-point flow towards a shrinking sheet for both two-dimensional and axiymmetric cases. He found 
that problem have the dual solutions as well as unique solution for a specific values of the ratio of shrinking. 

The problem of unsteady stagnation-point flow of a viscous and incompressible fluid by considering both the 
stretching and shrinking sheet situations have been investigated by Fan et al. [4]. On the other hand, Bachok et 
al. [5] discussed the effect of melting on boundary layer stagnation-point flow towards a stretching or shrinking 
sheet. Ahmad et al. [6] investigated the behaviour of the steady boundary layer flow and heat transfer of a mi-
cropolar fluid near the stagnation point on a stretching vertical surface with prescribed skin friction. Lok et al. [7] 
studied the steady axisymmetric stagnation point flow of a viscous and incompressible fluid over a shrinking 
circular cylinder with mass transfer (suction). Bhattacharyya et al. [8] analyzed the effects of partial slip on the 
steady boundary layer stagnation-point flow of an incompressible fluid and heat transfer towards a shrinking 
sheet. This investigation explores the conditions of the non-existence, existence, uniqueness and duality of the 
solutions of self-similar equations numerically. They also studied the same case but under the condition of un-
steady-state towards a stretching. Stagnation-point flow and heat transfer over an exponentially shrinking sheet 
was analyzed by Bhattacharyya and Vajravelu [9]. They obtained dual solutions for the velocity and the temper-
ature fields and also they observed that their boundary layers are thinner for the first solution.  

Therefore, the present investigation deals with the effects of partial slip on the boundary layer stagnation- 
point flow and heat transfer towards a shrinking/stretching cylinder over a permeable surface. 

2. Problem Formulation 
Consider the steady stagnation-point flow towards a horizontal linearly stretching/shrinking cylinder with radius 
R  placed in an incompressible viscous fluid of constant temperature wT . Using boundary layer approximation, 
the equations of motion and temperature distribution may be written in usual notations as below 

( ) ( ) 0ru rv
x r
∂ ∂

+ =
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                                       (1) 
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where x  and r  are coordinates measured along the surface of the cylinder and in the radial direction, respec-
tively, with u  and v  being the corresponding velocity components and ( )U x ax=  is the straining velocity 
of the stagnation-point flow. Further, T  is the temperature in the boundary layer, ν  is the kinematic viscosity 
coefficient and α  is the thermal diffusivity. 

The appropriate boundary conditions for the velocity components with partial slip condition at the wall and 
for the temperature are given by 
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where c  and ( )0a >  are the shrinking/stretching rate (of the surface) and the straining rate parameters, re-
spectively, with 0c <  for a shrinking cylinder, 0c >  for a stretching cylinder and L  is the velocity slip 
factor, D  is the thermal slip factor, ( )wv v x=  is the mass transfer velocity with ( ) 0wv x >  for suction and 

( ) 0wv x <  for injection wT  is the surface temperature and T∞  is the free stream temperature, both are as-
sumed to be constant with wT T∞> . 

Next, we introduce the transformation as follows: 

( ) ( ) ( ) ( )1 2 ,    wa xRf T T T Tψ ν η θ η∞ ∞= = + −                             (7) 

where η  is the similarity variable and is defined as ( )
2 2

1 2

2
r R a

R
η ν−
=  and ψ  is the stream function define 

as 1u r rψ−= ∂ ∂  and 1v r xψ−= − ∂ ∂ , which identically satisfies Equation (1). Since this problem have effects  
of suction and injection, we have consider that ( )wv x  in Equation (4) has the following expression, 

( )
1 21

w w
Uv x Rf

r x
ν = −  
 

 

where ( )0wf f=  is a non-dimensional constant determines the transpiration rate, with 0wf >  is the constant 
suction parameter, 0wf <  is the constant injection parameter and 0wf =  for an impermeable surface. Physi-
cally permeable surface (suction/injection) allows fluid to pass through either in or out. Using (7) we obtain the 
following self-similar equations 

( ) 21 2 2 1 0f f ff fγη γ′′′ ′′ ′′ ′+ + + + − = ,                               (8) 

( )1 2 2 Pr 0fγη θ γθ θ′′ ′ ′+ + + =                                    (9) 

subject to the boundary conditions (5) and (6) which become 

( ) ( ) ( )
( ) ( )
( ) ( )

0 0 0 ,

0 1 0 ,

1 0,

,    

,    

f f f c a fw

f

δ

θ βθ

θ

′ ′′= = +

′= +

′ ∞ → ∞ →

                              (10) 

where γ  is the curvature parameter and Pr  is the Prandtl number defined respectively as 
1 2

2 P,  r  
aR
ν νγ

α
 = = 
 

                                  (11) 

and c a  is the velocity ratio parameter, ( )1 2rL a
R

δ ν=  is the velocity slip parameter and ( )1 2rD a
R

β ν=  

is the thermal slip parameter. 
The main physical quantities of interest are the value of ( )0f ′′ , being a measure of the skin friction coeffi-

cient (shear stress at the surface), and ( )0θ ′− , the local Nusselt number (rate of heat transfer at the surface). 
Our main aim is to find how the values of ( )0f ′′  and ( )0θ ′−  vary in terms of the parameters wf , β , δ , 
δ  and c a . The present problem reduces to those considered by Bhattacharyya et al. [8] when 0γ =  (flat 
plate), 0δ ≠  and 0β = . 

3. Results and Discussion 
Equations (8) and (9) with the boundary conditions (10) are solved numerically using the shooting method. Ta-
ble 1 shows the variations of critc a  (critical values of c a ) with parameters δ  and γ  when 0wf = ,  

0β =  (without thermal slip) and Pr 1= . In order to verify the accuracy of the present method, we have com- 
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Table 1. Variations of critc a  with parameters δ  and γ  when 0wf = , 0β =  and Pr 1= .      

δ  γ  Bhattacharyya et al. [8] Present 

0 0 −1.2465 −1.24657 

 0.2  −1.38090 

 0.4  −1.49353 

0.1 0 −1.31067 −1.31067 

 0.2  −1.45598 

 0.4  −1.58171 

 
pared the present results obtained with those of Bhattacharyya et al. [8] for 0γ =  (flat plate), 0δ ≠ . This 
comparison is given in Table 1 and we can see that there is a very good agreement between these results, and 
thus we are confident that the numerical results obtained are accurate. Table 2 presents the numerical values of  

( )0f ′′  with respect to δ , c a  and γ  when 0wf = , 0.2β =  (with thermal slip) and Pr 1= . From this 

table it is observed that with increasing γ , the values of ( )0f ′′  increase for several values of δ . Figure 1 

and Figure 2 show the variations of ( )0f ′′  and ( )0θ ′−  with c a , respectively, for various values of γ  
when 0wf = , 0.1δ = , 0.2β =  and Pr 1= . As the curvature parameter γ  increases, the skin friction coef-

ficient ( )0f ′′  and the local Nusselt number ( )0θ ′−  increase. On the other hand, ( )0θ ′−  increase with the  
increasing c a . It is show that for increasing slip at the sheet, the vorticity generated due to the shrinking. ve-
locity is slightly reduced and hence with the same straining, vorticity remains confined within the boundary 
layer for larger shrinking velocity also and consequently the steady solution is also possible for some large value 
of c a . Figure 3 and Figure 4 represent the variations of ( )0f ′′  and ( )0θ ′−  for various values of δ  
when 0wf = , 0.2γ = , 0.2β =  and Pr 1= . It is shown that the velocity slip parameter δ  decreases the 
shear stress rate but increases the heat transfer rate at the surface. It is seen that the region of non-unique solu-
tions exist for crit 1c a c a≤ ≤ −  and the solution is unique for 1c a > − . The value of ( )0f ′′  is zero when 

1c a =  for all values of γ  and δ  considered and 0c a =  is the Hiemenz flow while 1c a =  is a dege-
nerate inviscid flow where the stretching cylinder matches the conditions at infinity. 

Figure 5 shows the variations of ( )0θ ′−  for various values of β  (thermal slip parameter) for 0wf = , 
0.1δ = , 0.2γ =  and Pr 1= . As c a  increases, the heat transfer rate measured by ( )0θ ′−  increases too, 

while it decreases with the thermal slip parameter, β . It should be pointed out that the effect of thermal slip 
parameter β  on the shear stress is not significant so it is not presented here. Figure 6 and Figure 7 show the 
variations of ( )0f ′′  and ( )0θ ′−  with δ , respectively, for various values of γ  when 0wf = , 0.2β = , 

1.2c a = −  and Pr 1= . The values of ( )0f ′′  and ( )0θ ′−  increase with γ  for the first solution and for the 
second solution the effect is completely the opposite. Further, as δ  increases, ( )0θ ′−  increases too. Figure 8 
shows the variations of ( )0θ ′−  with β  for various values of γ  when 0wf = , 0.1δ = , 1.2c a = −  and 
Pr 1= . The values of ( )0θ ′−  increase with γ  for the first and the second solutions. It is also noted that 

( )0θ ′−  is decreasing as β  increases. 
Figure 9 and Figure 10 represent the variations of ( )0f ′′  and ( )0θ ′−  with wf  for different values of δ  

when 0.2β = , 0.2γ = , 1.2c a = −  and Pr 1= . It is found that the values of ( )0f ′′  and ( )0θ ′−  increase 
with δ  for the first solution and for the second solution the effect is completely the opposite. The behavior are  
similar as wf  increases. Figure 11 and Figure 12 show the velocity profiles ( )f η′  and the temperature pro-

files ( )θ η  for various values of γ  when 0wf = , 1.2c a = − , Pr 1= , 0.1δ =  and 0.2β = . Figure 13 

and Figure 14 represent the velocity profiles ( )f η′  and temperature profiles ( )θ η  for various values of wf  
when 1.2c a = − , Pr 1= , 0.1δ = , 0.2γ =  and 0.2β = . It is shown that all the curves approach the far  
field boundary conditions asymptotically. Further, these figures also support the existence of dual nature of the 
solutions as presented in the earlier figures where the boundary layer thickness for the first solution is smaller 
than that of the second solution. 
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Figure 1. Variations of ( )0f ′′  with c a  for various values of γ  when 0wf = , 0.1δ = , 

0.2β =  and Pr 1= .                                                            
 

 
Figure 2. Variations of ( )0θ′−  with c a  for various values of γ  when 0wf = , 0.1δ = , 

0.2β =  and Pr 1= .                                                              
 

 
Figure 3. Variations of ( )0f ′′  with c a  for various values of δ  when 0wf = , 0.2γ = , 

0.2β =  and Pr 1= .                                                             
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Figure 4. Variations of ( )0θ′−  with c a  for various values of δ  when 0wf = , 0.2γ = , 

0.2β =  and Pr 1= .                                                             
 

 
Figure 5. Variations of ( )0θ′−  with c a  for various values of β  when 0wf = , 0.1δ = , 

0.2γ =  and Pr 1= .                                                              
 

 
Figure 6. Variations of ( )0f ′′  with δ  for various values of γ  when 0wf = , 0.2β = , 

1.2c a = −  and Pr 1= .                                                          
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Figure 7. Variations of ( )0θ′−  with δ  for various values of γ  when 0wf = , 0.2β = , 

1.2c a = −  and Pr 1= .                                                           
 

 
Figure 8. Variations of ( )0θ′−  with β  for various values of γ  when 0wf = , 0.1δ = , 

1.2c a = −  and Pr 1= .                                                          
 

 
Figure 9. Variations of ( )0f ′′  with wf  for different values of δ  when 0.2β = , 

0.2γ = , 1.2c a = −  and Pr 1= .                                                  
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Figure 10. Variations of ( )0θ′−  with wf  for different values of δ  when 0.2β = , 

0.2γ = , 1.2c a = −  and Pr 1= .                                                  
 

 
Figure 11. Velocity profiles ( )f η′  for various values of γ  when 0wf = , 1.2c a = − , 

Pr 1= , 0.1δ =  and 0.2β = .                                                    
  

 
Figure 12. Temperature profiles ( )θ η  for various values of γ  when 0wf = , 1.2c a = − , 

Pr 1= , 0.1δ =  and 0.2β = .                                                     



N. A. A. Mat et al. 
 

 
474 

 
Figure 13. Velocity profiles ( )f η′  for various values of wf  when 1.2c a = − , Pr 1= , 

0.1δ = , 0.2γ =  and 0.2β = .                                                    
 

Table 2. Variations of ( )0f ′′  with respect to δ , c a  and γ  when 0wf = , 0.2β =  and 
Pr 1= . ( ) is the second solution.                                                         

δ  c a  0γ =  0.2γ =  0.4γ =  

0 −1.2 0.932474 1.410611 1.742367 

  (0.233650) (0.001521) (−0.116572) 

 −1.15 1.082232 1.485004 1.791168 

  (0.116702) (−0.040137) (−0.138295) 

 −0.5 1.495670 1.670570 1.830761 

 0 1.232588 1.337874 1.436692 

 0.5 0.713295 0.762907 0.810058 

 2 −1.887307 −1.977842 −2.065444 

0.1 −1.2 1.224941 1.600250 1.878646 

  (0.182621) (0.001374) (−0.109447) 

 −1.15 1.306265 1.638745 1.897256 

  (0.100177) (−0.037795) (−0.134217) 

 −0.5 1.451720 1.595891 1.725654 

 0 1.134281 1.217492 1.294264 

 0.5 0.632869 0.670662 0.705994 

 2 −1.557650 −1.620898 −1.681197 

0.2 −1.2 1.404016 1.694527 1.916706 

  (0.153829) (0.001253) (−0.102528) 

 −1.15 1.442545 1.706290 1.913929 

  (0.088601) (−0.035615) (−0.129281) 

 −0.5 1.387061 1.503930 1.607658 

 0 1.042585 1.108734 1.168950 

 0.5 0.567044 0.596541 0.623772 

 2 −1.331322 −1.378600 −1.423186 
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Figure 14. Temperature profiles ( )θ η  for various values of wf  when 1.2c a = − , Pr 1= , 

0.1δ = , 0.2γ =  and 0.2β = .                                                     

4. Conclusion 
The study of boundary layer stagnation-point slip flow and heat transfer towards a shrinking/stretching cylinder 
over a permeable surface has been investigated numerically using the shooting method. Comparisons of the 
present results with those of Bhattacharyya et al. [8] are in excellent agreement. The velocity slip parameter 
( )δ  increases the heat transfer rate at the surface, while the thermal slip parameter ( )β  decreases it. On the 
other hand, it is found that dual solutions exist for the shrinking cylinder when 0c a < . Finally, as the curva-
ture parameter ( )γ  increases, the values of ( )0f ′′  and ( )0θ ′−  increase too, similar with the effect of suc-
tion/injection parameter ( )wf  for the first solution. 
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