Regular Elements of the Complete Semigroups $B_{X}(D)$ of Binary Relations of the Class $\Sigma_{2}(X, 8)$

Nino Tsinaridze, Shota Makharadze
Department of Mathematics, Faculty of Mathematics, Physics and Computer Sciences, Shota Rustaveli Batumi State University, Batumi, Georgia
Email: ninocinaridze@mail.ru, shota 59@mail.ru

Received 10 February 2015; accepted 28 February 2015; published 3 March 2015
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

As we know if D is a complete X-semilattice of unions then semigroup $B_{X}(D)$ possesses a right unit iff D is an $X I$-semilattice of unions. The investigation of those α-idempotent and regular elements of semigroups $B_{X}(D)$ requires an investigation of $X I$-subsemilattices of semilattice D for which $V(D, \alpha)=Q \in \Sigma_{2}(X, 8)$. Because the semilattice Q of the class $\Sigma_{2}(X, 8)$ are not always $X I$-semilattices, there is a need of full description for those idempotent and regular elements when $V(D, \alpha)=Q$. For the case where X is a finite set we derive formulas by calculating the numbers of such regular elements and right units for which $V(D, \alpha)=Q$.

Keywords

Semilattice, Semigroup, Binary Relation

1. Introduction

In this paper we characterize the elements of the class $\Sigma_{2}(X, 8)$. This class is the complete X-semilattice of unions every elements of which are isomorphic to Q. So, we characterize the class for each element which is isomorphic to Q by means of the characteristic family of sets, the characteristic mapping and the generate set of D.

How to cite this paper: Tsinaridze, N. and Makharadze, S. (2015) Regular Elements of the Complete Semigroups $B_{x}(D)$ of Binary Relations of the Class $\Sigma_{2}(X, 8)$. Applied Mathematics, 6, 447-455. http://dx.doi.org/10.4236/am.2015.63042

Let X be an arbitrary nonempty set, recall that the set of all binary relations on X is denoted B_{X}. The binary operation "०" on B_{X} defined by for $\alpha, \beta \in B_{X} \quad(x, z) \in \alpha \circ \beta \Leftrightarrow(x, y) \in \alpha$ and $(y, z) \in \beta$, for some $y \in X$ is associative and hence B_{X} is a semigroup with respect to the operation " \circ ". This semigroup is called the semigroup of all binary relations on the set X. By \varnothing we denote an empty binary relation or empty subset of the set X.

Let D be a X-semilattice of unions, i.e. a nonempty set of subsets of the set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbitrary mapping from X into D. To each such a mapping f there corresponds a binary relation α_{f} on the set X that satisfies the condition $\alpha_{f}=\ J(\{x\} \times f(x))$. The set of all such $\alpha_{f}(f: X \rightarrow D)$ is denoted by $B_{X}(D)$. It is easy to prove that $B_{X}(D)$ is a semigroup with respect to the operation of multiplication of binary relations, which is called a complete semigroup of binary relations defined by a X-semilattice of unions D (see ([1], Item 2.1), ([2], Item 2.1)).

Let $x, y \in X, Y \subseteq X, \alpha \in B_{X}(D), T \in D, \quad \varnothing \neq D^{\prime} \subseteq D$ and $t \in \breve{D}=\bigcup_{Y \in D} Y$. We use the notations:

$$
\begin{aligned}
& y \alpha=\{x \in X \mid y \alpha x\}, \quad Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\}, X^{*}=\{T \mid \varnothing \neq T \subseteq X\}, \\
& l\left(D^{\prime}, T\right)=\cup\left(D^{\prime} \backslash D_{T}^{\prime}\right), \quad Y_{T}^{\alpha}=\{x \in X \mid x \alpha=T\} D_{t}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid t \in Z^{\prime}\right\}, \\
& D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\}, \quad \ddot{D}_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\} .
\end{aligned}
$$

Let $\alpha \in B_{X}(D), Y_{T}^{\alpha}=\{x \in X \mid x \alpha=T\}$ and

$$
V[\alpha]= \begin{cases}V\left(X^{*}, \alpha\right), & \text { if } \varnothing \notin D \\ V\left(X^{*}, \alpha\right), & \text { if } \varnothing \in V\left(X^{*}, \alpha\right) \\ V\left(X^{*}, \alpha\right) \cup\{\varnothing\}, & \text { if } \varnothing \notin V\left(X^{*}, \alpha\right) \text { and } \varnothing \in D\end{cases}
$$

In general, a representation of a binary relation α of the form $\alpha=\bigcup_{T \in V[\alpha]}\left(Y_{T}^{\alpha} \times T\right)$ is called quasinormal.
Note that for a quasinormal representation of a binary relation α, not all sets $Y_{T}^{\alpha} \quad(T \in V[\alpha])$ can be different from an empty set. But for this representation the following conditions are always fulfilled:
a) $Y_{T}^{\alpha} \cap Y_{T^{\prime}}^{\alpha}=\varnothing$, for any $T, T^{\prime} \in D$ and $T \neq T^{\prime}$;
b) $X=\bigcup_{T \in V[\alpha]} Y_{T}^{\alpha} \quad$ (see ([1], Definition 1.11.1), ([2], Definition 1.11.1)).

Let $\varepsilon \in B_{X}(D) . \varepsilon$ is called right unit of the semigroup $B_{X}(D)$. If $\alpha \circ \varepsilon=\alpha$ for any $\alpha \in B_{X}(D)$. An element α taken from the semigroup $B_{X}(D)$ called a regular element of the semigroup $B_{X}(D)$ if in $B_{X}(D)$ there exists an element β such that $\alpha \circ \beta \circ \alpha=\alpha$ (see [1]-[3]).

In [1] [2] they show that β is regular element of $B_{X}(D)$ iff $V[\beta]=V(D, \beta)$ is a complete XI -semilattice of unions.

A complete X-emilattice of unions D is an $X I$-emilattice of unions if it satisfies the following two conditions:
(a) $\wedge\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$;
(b) $Z=\bigcup_{t \in Z} \wedge\left(D, D_{t}\right)$ for any nonempty element Z of D (see ([1], Definition 1.14.2), ([2], Definition
1.14.2) or [4]). Under the symbol $\wedge\left(D, D_{t}\right)$ we mean an exact lower bound of the set D_{t} in the semilattice D.

Let D^{\prime} be an arbitrary nonempty subset of the complete X-semilattice of unions D. A nonempty element T is a nonlimiting element of the set D^{\prime} if $T \backslash l\left(D^{\prime}, T\right) \neq \varnothing$ and a nonempty element T is a limiting element of the set D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\varnothing$ (see ([1], Definition 1.13.1 and Definition 1.13.2), ([2], Definition 1.13.1 and Definition 1.13.2)).

Let $D=\left\{\breve{D}, Z_{1}, Z_{2}, \cdots, Z_{m-1}\right\}$ be some finite X-semilattice of unions and $C(D)=\left\{P_{0}, P_{1}, P_{2}, \cdots, P_{m-1}\right\}$ be
the family of sets of pairwise nonintersecting subsets of the set X. If φ is a mapping of the semilattice D on the family of sets $C(D)$ which satisfies the condition $\varphi(\breve{D})=P_{0}$ and $\varphi\left(Z_{i}\right)=P_{i}$ for any $i=1,2, \cdots, m-1$ and $\hat{D}_{Z}=D \backslash\{T \in D \mid Z \subseteq T\}$, then the following equalities are valid:

$$
\check{D}=P_{0} \cup P_{1} \cup P_{2} \cup \cdots \cup P_{m-1}, \quad Z_{i}=P_{0} \cup \bigcup_{T \in D_{Z_{i}}} \varphi(T)
$$

In the sequel these equalities will be called formal.
It is proved that if the elements of the semilattice D are represented in the form (\bullet), then among the parameters $P_{i}(i=0,1,2, \cdots, m-1)$ there exist such parameters that cannot be empty sets for D. Such sets P_{i} $(0<i \leq m-1)$ are called basis sources, whereas sets $P_{j} \quad(0 \leq j \leq m-1)$ which can be empty sets too are called completeness sources.
It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see ([1], Item 11.4), ([2], Item 11.4) or [5]).

The one-to-one mapping φ between the complete X-semilattices of unions $\phi(Q, Q)$ and $D^{\prime \prime}$ is called a complete isomorphism if the condition

$$
\varphi\left(\cup D_{1}\right)=\bigcup_{T \in D_{1}} \varphi\left(T^{\prime}\right)
$$

Is fulfilled for each nonempty subset D_{1} of the semilattice D^{\prime} (see ([1], definition 6.3.2), ([2], definition 6.3.2) or [6]) and the complete isomorphism φ between the complete semilattices of unions Q and D^{\prime} is a complete α-isomorphism if (b)
(a) $Q=V(D, \alpha)$;
(b) $\varphi(\varnothing)=\varnothing$ for $\varnothing \in V(D, \alpha)$ and $\varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$ (see ([1], Definition 6.3.3), ([2], Definition 6.3.3)).

Lemma 1.1. Let D by a complete X-semilattice of unions. If a binary relation ε of the form $\varepsilon=\bigcup_{t \in D}\left(\{t\} \times \wedge\left(D, D_{t}\right)\right) \cup((X \backslash \breve{D}) \times \breve{D})$ is right unit of the semigroup $B_{X}(D)$, then ε is the greatest right unit of that semigroup (see ([1], Lemma 12.1.2), ([2], Lemma 12.1.2)).

Theorem 1.1. Let $D_{j}=\left\{T_{1}, T_{2}, \cdots, T_{j}\right\}, X$ and Y-be three such sets, that $\varnothing \neq Y \subseteq X$. If f is such mapping of the set X, in the set D_{j}, for which $f(y)=T_{j}$ for some $y \in Y$, then the numbers of all those mappings f of the set X in the set D_{j} is equal to $s=j^{|X| Y \mid} \cdot\left(j^{|Y|}-(j-1)^{|x|}\right)$ (see ([1], Theorem 1.18.2), ([2], Theorem 1.18.2)).

Theorem 1.2. Let D be a finite X-semilattice of unions and $\alpha \circ \sigma \circ \alpha=\alpha$ for some α and σ of the semigroup $B_{X}(D) ; D(\alpha)$ be the set of those elements T of the semilattice $Q=B_{X}(D) \backslash\{\varnothing\}$ which are nonlimiting elements of the set \ddot{Q}_{T}. Then a binary relation α having a quasinormal representation of the form $\alpha=\bigcup_{T \in V(D, \alpha)} Y_{T}^{\alpha} \times T$ is a regular element of the semigroup $B_{X}(D)$ iff the set $V(D, \alpha)$ is a $X I$-semilattice of unions and for α-isomorphism φ of the semilattice $V(D, \alpha)$ on some X-subsemilattice D^{\prime} of the semilattice D the following conditions are fulfilled:
(a) $\varphi(T)=T \sigma$ for any $T \in V(D, \alpha)$;
(b) $\bigcup_{T \in D(\alpha)_{T}} Y_{T}^{\alpha} \supseteq \varphi(T)$ for any $T \in D(\alpha)$;
(c) $Y_{T}^{\alpha} \cap \varphi(T) \neq \varnothing$ for any element T of the set $\ddot{D}(\alpha)_{T}$ (see ([1], Theorem 6.3.3), ([2], Theorem 6.3.3) or [6]).

Theorem 1.3. Let D be a complete X-emilattice of unions. The semigroup $B_{X}(D)$ possesses a right unit iff D is an $X I$-semilattice of unions (see ([1], Theorem 6.1.3), ([2], Theorem 6.1.3) or [7]).

2. Results

Let D is any X-semilattice of unions and $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \subseteq D$, which satisfies the following conditions:

$$
\begin{align*}
& T_{7} \subset T_{5} \subset T_{2} \subset T_{0}, T_{7} \subset T_{4} \subset T_{2} \subset T_{0}, T_{7} \subset T_{4} \subset T_{1} \subset T_{0}, \\
& T_{6} \subset T_{4} \subset T_{2} \subset T_{0}, T_{6} \subset T_{4} \subset T_{1} \subset T_{0}, T_{6} \subset T_{3} \subset T_{1} \subset T_{0}, \\
& T_{7} \cup T_{6}=T_{4}, T_{5} \cup T_{4}=T_{2}, T_{4} \cup T_{3}=T_{1}, T_{2} \cup T_{1}=T_{0}, \\
& T_{1} \backslash T_{2} \neq \varnothing, T_{2} \backslash T_{1} \neq \varnothing, T_{3} \backslash T_{4} \neq \varnothing, T_{4} \backslash T_{3} \neq \varnothing, \tag{1}\\
& T_{3} \backslash T_{5} \neq \varnothing, T_{5} \backslash T_{3} \neq \varnothing, T_{4} \backslash T_{5} \neq \varnothing, T_{5} \backslash T_{4} \neq \varnothing, \\
& T_{6} \backslash T_{7} \neq \varnothing, T_{7} \backslash T_{6} \neq \varnothing .
\end{align*}
$$

The semilattice Q, which satisfying the conditions (1) is shown in Figure 1. By the symbol $\Sigma_{2}(X, 8)$ we denote the set of all X-semilattices of unions whose every element is isomorphic to Q.

Let $C(Q)=\left\{P_{7}, P_{6}, P_{5}, P_{4}, P_{3}, P_{2}, P_{1}, P_{0}\right\}$ is a family sets, where $P_{7}, P_{6}, P_{5}, P_{4}, P_{3}, P_{2}, P_{1}, P_{0}$ are pairwise disjoint subsets of the set X and

$$
\psi=\left(\begin{array}{llllllll}
T_{7} & T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} \\
P_{7} & P_{6} & P_{5} & P_{4} & P_{3} & P_{2} & P_{1} & P_{0}
\end{array}\right)
$$

is a mapping of the semilattice Q into the family sets $C(Q)$. Then for the formal equalities of the semilattice Q we have a form:

$$
\begin{align*}
& T_{0}=P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7}, \\
& T_{1}=P_{0} \cup P_{2} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7}, \\
& T_{2}=P_{0} \cup P_{1} \cup P_{3} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7}, \\
& T_{3}=P_{0} \cup P_{2} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7}, \tag{2}\\
& T_{4}=P_{0} \cup P_{3} \cup P_{5} \cup P_{6} \cup P_{7}, \\
& T_{5}=P_{0} \cup P_{1} \cup P_{3} \cup P_{4} \cup P_{6} \cup P_{7}, \\
& T_{6}=P_{0} \cup P_{5} \cup P_{7}, \\
& T_{7}=P_{0} \cup P_{3} \cup P_{6} .
\end{align*}
$$

here the elements $P_{1}, P_{2}, P_{3}, P_{5}$ are basis sources, the element $P_{0}, P_{4}, P_{6}, P_{7}$ are sources of completenes of the semilattice Q. Therefore $|X| \geq 4$ and $\delta=4$.

Theorem 2.1. Let $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \sum_{2}(X, 8)$. Then Q is $X I$-semilattice, when $T_{5} \cap T_{3}=\varnothing$. Proof. Let $t \in T_{0}, Q_{t}=\{T \in Q \mid t \in T\}$ and $\wedge\left(Q, Q_{t}\right)$ is the exact lower bound of the set Q_{t} in Q. Then of the formal equalities (2) follows, that

$$
Q_{t}=\left\{\begin{array} { l l }
{ Q , } & { \text { if } t \in P _ { 0 } , } \\
{ \{ T _ { 5 } , T _ { 2 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 1 } , } \\
{ \{ T _ { 3 } , T _ { 1 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 2 } , } \\
{ \{ T _ { 7 } , T _ { 5 } , T _ { 4 } , T _ { 2 } , T _ { 1 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 3 } , } \\
{ \{ T _ { 5 } , T _ { 3 } , T _ { 2 } , T _ { 1 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 4 } , } \\
{ \{ T _ { 6 } , T _ { 4 } , T _ { 3 } , T _ { 2 } , T _ { 1 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 5 } , } \\
{ \{ T _ { 7 } , T _ { 5 } , T _ { 4 } , T _ { 3 } , T _ { 2 } , T _ { 1 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 6 } , } \\
{ \{ T _ { 6 } , T _ { 5 } , T _ { 4 } , T _ { 3 } , T _ { 2 } , T _ { 1 } , T _ { 0 } \} , } & { \text { if } t \in P _ { 7 } , }
\end{array} \quad \left\{\begin{array}{ll}
T_{5}, & \text { if } t \in P_{1}, \\
T_{3}, & \text { if } t \in P_{2}, \\
T_{7}, & \text { if } t \in P_{3}, \\
T_{6}, & \text { if } t \in P_{5}, \\
\text { and }
\end{array}\right.\right.
$$

Figure 1. Diagram of Q.

We have $Q^{\wedge}=\left\{\wedge\left(Q, Q_{t}\right) \mid t \in T_{0}\right\}=\left\{T_{7}, T_{6}, T_{5}, T_{3}\right\}$ and $\wedge\left(Q, Q_{t}\right) \notin Q$ if $t \in P_{0} \cup P_{4} \cup P_{6} \cup P_{7}$. So, from the definition $X I$-semilattice follows that Q is not $X I$-semilattice.

If $P_{0}=P_{4}=P_{6}=P_{7}=\varnothing$ (since they are completeness sources), then $\wedge\left(Q, Q_{t}\right) \in Q$ for all $t \in T_{0}$ and $T_{4}=T_{7} \cup T_{6}, T_{1}=T_{7} \cup T_{3}, T_{2}=T_{6} \cup T_{5}$. Of the last conditions and from the Definition XI -semilattice follows that Q is $X I$-semilattice. Of the equality $P_{0}=P_{4}=P_{6}=P_{7}=\varnothing$ follows that

$$
T_{5} \cap T_{3}=\left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4} \cup P_{6} \cup P_{7}\right) \cap\left(P_{0} \cup P_{2} \cup P_{4} \cup P_{5} \cup P_{6} \cup P_{7}\right)=P_{0} \cup P_{4} \cup P_{6} \cup P_{7}=\varnothing
$$

Of the other hand, if $T_{5} \cap T_{3}=\varnothing$ then by formal equalities follows that $P_{0}=P_{4}=P_{6}=P_{7}=\varnothing$. Therefore, semilattice Q is $X I$-semilattice.

The Theorem is proved.
Lemma 2.1. Let $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \sum_{2}(X, 8)$ and $T_{5} \cap T_{3}=\varnothing$. Then following equalities are true:

$$
P_{3}=T_{7}, P_{5}=T_{6}, P_{2}=T_{3} \backslash T_{2}, P_{1}=T_{5} \backslash T_{1}
$$

Proof. The given Lemma immediately follows from the formal equalities (2) of the semilattice Q.
The lemma is proved.
Lemma 2.2. Let $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \sum_{2}(X, 8)$ and $T_{5} \cap T_{3}=\varnothing$. Then the binary relation

$$
\varepsilon=\left(T_{7} \times T_{7}\right) \cup\left(T_{6} \times T_{6}\right) \cup\left(\left(T_{5} \backslash T_{1}\right) \times T_{5}\right) \cup\left(\left(T_{3} \backslash T_{2}\right) \times T_{3}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right)
$$

is the largest right unit of the semigroup $B_{X}(D)$.
Proof. By preposition and from Theorem 2.1 follows that Q is $X I$-semilattice. Of this, from Lemma 1.1, from Lemma 2.1 and from Theorem 1.3 we have that the binary relation

$$
\begin{aligned}
\varepsilon & =\bigcup_{t \in T_{0}}\left(\{t\} \times \wedge\left(Q, Q_{t}\right)\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right)=\left(P_{3} \times T_{7}\right) \cup\left(P_{5} \times T_{6}\right) \cup\left(P_{1} \times T_{5}\right) \cup\left(P_{2} \times T_{3}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right) \\
& =\left(T_{7} \times T_{7}\right) \cup\left(T_{6} \times T_{6}\right) \cup\left(\left(T_{5} \backslash T_{1}\right) \times T_{5}\right) \cup\left(\left(T_{3} \backslash T_{2}\right) \times T_{3}\right) \cup\left(\left(X \backslash T_{0}\right) \times T_{0}\right) .
\end{aligned}
$$

is the largest right unit of the semigroup $B_{X}(D)$.
The lemma is proved.
Lemma 2.3. Let $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \sum_{2}(X, 8)$ and $T_{5} \cap T_{3}=\varnothing$. Binary relation α having quazi-normal representation of the form

$$
\alpha=\left(Y_{7}^{\alpha} \times T_{7}\right) \cup\left(Y_{6}^{\alpha} \times T_{6}\right) \cup\left(Y_{5}^{\alpha} \times T_{5}\right) \cup\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$ and $V(D, \alpha)=Q \in \sum_{2}(X, 8)$ is a regular element of the semigroup $B_{X}(D)$ iff for some complete α isomorphism $\varphi=\left(\begin{array}{llllllll}T_{7} & T_{6} & T_{5} & T_{4} & T_{3} & T_{2} & T_{1} & T_{0} \\ P_{7} & \bar{T}_{6} & \bar{T}_{5} & \bar{T}_{4} & \bar{T}_{3} & \bar{T}_{2} & \overline{T_{1}} & \bar{T}_{0}\end{array}\right)$ of the semilattice Q on some X-subsemilattice $Q^{\prime}=\left\{\bar{T}_{7}, \bar{T}_{6}, \bar{T}_{5}, \bar{T}_{4}, \bar{T}_{3}, \bar{T}_{2}, \bar{T}_{1}, \bar{T}_{0}\right\}$ (see Figure 2) of the semilattice Q satisfies the following conditions:

$$
Y_{7}^{\alpha} \supseteq \bar{T}_{7}, \quad Y_{6}^{\alpha} \supseteq \bar{T}_{6}, \quad Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq \bar{T}_{5}, Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \bar{T}_{3}, \quad Y_{5}^{\alpha} \cap \bar{T}_{5} \neq \varnothing, \quad Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \varnothing
$$

Proof. It is easy to see, that the set $Q(\alpha)=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}\right\}$ is a generating set of the semilattice Q. Then the following equalities are hold:

Figure 2. Diagram of Q'.

$$
\begin{aligned}
& \ddot{Q}(\alpha)_{T_{7}}=\left\{T_{7}\right\}, \ddot{Q}(\alpha)_{T_{6}}=\left\{T_{6}\right\}, \ddot{Q}(\alpha)_{T_{5}}=\left\{T_{7}, T_{5}\right\}, \ddot{Q}(\alpha)_{T_{4}}=\left\{T_{7}, T_{6}, T_{4}\right\}, \\
& \ddot{Q}(\alpha)_{T_{3}}=\left\{T_{6}, T_{3}\right\}, \ddot{Q}(\alpha)_{T_{2}}=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{2}\right\}, \ddot{Q}(\alpha)_{T_{1}}=\left\{T_{7}, T_{6}, T_{4}, T_{3}, T_{1}\right\} .
\end{aligned}
$$

By Statement b) of the Theorem 1.2 follows that the following conditions are true:

$$
\begin{aligned}
& Y_{7}^{\alpha} \supseteq \bar{T}_{7}, Y_{6}^{\alpha} \supseteq \bar{T}_{6}, \quad Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq \bar{T}_{5}, \quad Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \bar{T}_{4}, Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \bar{T}_{3}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha} \supseteq T_{2}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq T_{1} ; \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \bar{T}_{7} \cup \bar{T}_{6} \cup Y_{4}^{\alpha}=\bar{T}_{4} \cup Y_{4}^{\alpha} \supseteq \bar{T}_{4}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha}=\left(Y_{7}^{\alpha} \cup Y_{5}^{\alpha}\right) \cup\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cup Y_{2}^{\alpha} \supseteq \bar{T}_{5} \cup \bar{T}_{4} \cup Y_{2}^{\alpha}=\bar{T}_{2} \cup Y_{2}^{\alpha} \supseteq \bar{T}_{2}, \\
& Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha}=\left(Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha}\right) \cup\left(Y_{6}^{\alpha} \cup Y_{3}^{\alpha}\right) \cup Y_{1}^{\alpha} \supseteq \bar{T}_{4} \cup \bar{T}_{3} \cup Y_{1}^{\alpha}=\bar{T}_{1} \cup Y_{1}^{\alpha} \supseteq \bar{T}_{1},
\end{aligned}
$$

i.e., the inclusions $Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \bar{T}_{4}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha} \supseteq \bar{T}_{2}, Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha} \supseteq \bar{T}_{1}$ are always hold. Further, it is to see, that the following conditions are true:

$$
\begin{aligned}
& l\left(\ddot{Q}_{T_{7}}, T_{7}\right)=\cup\left(\ddot{Q}_{T_{7}} \backslash\left\{T_{7}\right\}\right)=\varnothing, \quad T_{7} \backslash l\left(\ddot{Q}_{T_{7}}, T_{7}\right)=T_{7} \backslash \varnothing \neq \varnothing ; \\
& l\left(\ddot{Q}_{T_{6}}, T_{6}\right)=\cup\left(\ddot{Q}_{T_{6}} \backslash\left\{T_{6}\right\}\right)=\varnothing, \quad T_{6} \backslash l\left(\ddot{Q}_{T_{6}}, T_{6}\right)=T_{6} \backslash \varnothing \neq \varnothing ; \\
& l\left(\ddot{Q}_{T_{5}}, T_{5}\right)=\cup\left(\ddot{Q}_{T_{5}} \backslash\left\{T_{5}\right\}\right)=T_{7}, \quad T_{5} \backslash l\left(\ddot{Q}_{T_{5}}, T_{5}\right)=T_{5} \backslash T_{7} \neq \varnothing ; \\
& l\left(\ddot{Q}_{T_{3}}, T_{3}\right)=\cup\left(\ddot{Q}_{T_{3}} \backslash\left\{T_{3}\right\}\right)=T_{6}, \quad T_{3} \backslash l\left(\ddot{Q}_{T_{3}}, T_{3}\right)=T_{3} \backslash T_{6} \neq \varnothing ; \\
& l\left(\ddot{Q}_{T_{4}}, T_{4}\right)=\cup\left(\ddot{Q}_{T_{4}} \backslash\left\{T_{4}\right\}\right)=T_{4}, \quad T_{4} \backslash l\left(\ddot{Q}_{T_{4}}, T_{4}\right)=T_{4} \backslash T_{4}=\varnothing ; \\
& l\left(\ddot{Q}_{T_{2}}, T_{2}\right)=\cup\left(\ddot{Q}_{T_{2}} \backslash\left\{T_{2}\right\}\right)=T_{2}, \quad T_{2} \backslash l\left(\ddot{Q}_{T_{2}}, T_{2}\right)=T_{2} \backslash T_{2}=\varnothing ; \\
& l\left(\ddot{Q}_{T_{1}}, T_{1}\right)=\cup\left(\ddot{Q}_{T_{1}} \backslash\left\{T_{1}\right\}\right)=T_{1}, \quad T_{1} \backslash l\left(\ddot{Q}_{T_{1}}, T_{1}\right)=T_{1} \backslash T_{1}=\varnothing,
\end{aligned}
$$

i.e., $T_{7}, T_{6}, T_{5}, T_{3}$ are nonlimiting elements of the sets $\ddot{Q}(\alpha)_{T_{7}}, \ddot{Q}(\alpha)_{T_{6}}, \ddot{Q}(\alpha)_{T_{5}}$ and $\ddot{Q}(\alpha)_{T_{3}}$ respectively. By Statement c) of the Theorem 1.2 it follows, that the conditions $Y_{7}^{\alpha} \cap \bar{T}_{7} \neq \varnothing, Y_{6}^{\alpha} \cap \bar{T}_{6} \neq \varnothing$, $Y_{5}^{\alpha} \cap \bar{T}_{5} \neq \varnothing$ and $Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \varnothing$ are hold. Since $Z_{7} \subset Z_{5}, Z_{6} \subset Z_{3}$ we have $Y_{5}^{\alpha} \cap \bar{T}_{5} \neq \varnothing$ and $Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \varnothing$.

Therefore the following conditions are hold:

$$
Y_{7}^{\alpha} \supseteq \bar{T}_{7}, \quad Y_{6}^{\alpha} \supseteq \bar{T}_{6}, \quad Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq \bar{T}_{5}, \quad Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \bar{T}_{3}, \quad Y_{5}^{\alpha} \cap \bar{T}_{5} \neq \varnothing, \quad Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \varnothing
$$

The lemma is proved.
Definition 2.1. Assume that $Q^{\prime} \in \Sigma_{2}(X, 8)$. Denote by the symbol $R\left(Q^{\prime}\right)$ the set of all regular elements α of the semigroup $B_{X}(D)$, for which the semilattices Q^{\prime} and Q are mutually α-isomorphic and $V(D, \alpha)=Q^{\prime}$.
It is easy to see the number q of automorphism of the semilattice Q is equal to 2 .
Theorem 2.2. Let $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \sum_{2}(X, 8), T_{5} \cap T_{3}=\varnothing$ and $\left|\Sigma_{2}(X, 8)\right|=m_{0}$. If X be finite set, and the $X I$-semilattice Q and $Q^{\prime}=\left\{\bar{T}_{7}, \bar{T}_{6}, \bar{T}_{5}, \bar{T}_{4}, \bar{T}_{3}, \bar{T}_{2}, \bar{T}_{1}, \bar{T}_{0}\right\}$ are α-isomorphic, then

$$
\left|R\left(Q^{\prime}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|\bar{T}_{5} \backslash \bar{T}_{1}\right|}-1\right) \cdot\left(2^{\left|\bar{T}_{3} \backslash \bar{T}_{2}\right|}-1\right) \cdot 8^{\left|X \backslash \bar{T}_{0}\right|}
$$

Proof. Assume that $\alpha \in R\left(Q^{\prime}\right)$. Then a quasinormal representation of a regular binary relation α has the form

$$
\alpha=\left(Y_{7}^{\alpha} \times T_{7}\right) \cup\left(Y_{6}^{\alpha} \times T_{6}\right) \cup\left(Y_{5}^{\alpha} \times T_{5}\right) \cup\left(Y_{4}^{\alpha} \times T_{4}\right) \cup\left(Y_{3}^{\alpha} \times T_{3}\right) \cup\left(Y_{2}^{\alpha} \times T_{2}\right) \cup\left(Y_{1}^{\alpha} \times T_{1}\right) \cup\left(Y_{0}^{\alpha} \times T_{0}\right)
$$

where $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{3}^{\alpha} \notin\{\varnothing\}$ and by Lemma 2.3 satisfies the conditions: X

$$
\begin{equation*}
Y_{7}^{\alpha} \supseteq \bar{T}_{7}, \quad Y_{6}^{\alpha} \supseteq \bar{T}_{6}, \quad Y_{7}^{\alpha} \cup Y_{5}^{\alpha} \supseteq \bar{T}_{5}, \quad Y_{6}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \bar{T}_{3}, \quad Y_{5}^{\alpha} \cap \bar{T}_{5} \neq \varnothing, \quad Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \varnothing \tag{3}
\end{equation*}
$$

Let f_{α} is a mapping the set X in the semilattice Q satisfying the conditions $f_{\alpha}(t)=t \alpha$ for all $t \in X$. $f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$ are the restrictions of the mapping f_{α} on the sets $\bar{T}_{7}, \bar{T}_{6}, \bar{T}_{3} \backslash \bar{T}_{2}, \bar{T}_{5} \backslash \bar{T}_{1}, X \backslash \bar{T}_{0}$ respectively. It is clear, that the intersection disjoint elements of the set $\left\{\bar{T}_{7}, \bar{T}_{6}, \bar{T}_{3} \backslash \bar{T}_{2}, \bar{T}_{5} \backslash \bar{T}_{1}, X \backslash \bar{T}_{0}\right\}$ are empty set and $\bar{T}_{7} \cup \bar{T}_{6} \cup\left(\bar{T}_{3} \backslash \bar{T}_{2}\right) \cup\left(\bar{T}_{5} \backslash \bar{T}_{1}\right) \cup\left(X \backslash \bar{T}_{0}\right)=X$.

We are going to find properties of the maps $f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$.

1) $t \in \bar{T}_{7}$. Then by Property (3) we have $t \in \bar{T}_{7} \subseteq Y_{7}^{\alpha}$, i.e., $t \in Y_{7}^{\alpha}$ and $t \alpha=\bar{T}_{7}$ by definition of the set Y_{7}^{α}. Therefore $f_{1 \alpha}(t)=T_{7}$ for all $t \in \bar{T}_{7}$.
2) $t \in \bar{T}_{6}$. Then by Property (3) we have $t \in \bar{T}_{6} \subseteq Y_{6}^{\alpha}$, i.e., $t \in Y_{6}^{\alpha}$ and $t \alpha=\bar{T}_{6}$ by definition of the set Y_{6}^{α}. Therefore $f_{2 \alpha}(t)=T_{6}$ for all $t \in \bar{T}_{6}$.
3) $t \in \bar{T}_{3} \backslash \bar{T}_{2}$. Then by Property (3) we have $t \in \bar{T}_{3} \backslash \bar{T}_{2} \subseteq \bar{T}_{3} \subseteq Y_{6}^{\alpha} \cup Y_{3}^{\alpha}$, i.e., $t \in Y_{6}^{\alpha} \cup Y_{3}^{\alpha}$ and $t \alpha \in\left\{T_{6}, T_{3}\right\}$ by definition of the sets Y_{6}^{α} and Y_{3}^{α}. Therefore $f_{3 \alpha}(t) \in\left\{T_{6}, T_{3}\right\}$ for all $t \in \bar{T}_{3} \backslash \bar{T}_{2}$.

Preposition we have that $Y_{3}^{\alpha} \cap \bar{T}_{3} \neq \varnothing$, i.e. $t_{3} \alpha=T_{3}$ for some $t_{3} \in \bar{T}_{3}$. If $t_{3} \in \bar{T}_{2}$, then $t_{3} \in Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{2}^{\alpha}$. So $t_{3} \alpha=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{2}\right\} \quad$ by definition of the sets $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{4}^{\alpha}, Y_{2}^{\alpha}$. The condition $t_{3} \alpha=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{2}\right\}$ contradict of the equality $t_{3} \alpha=T_{3}$, while $T_{3} \notin\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{2}\right\}$. Therefore, $f_{3 \alpha}\left(t_{3}\right)=T_{3}$ for some $t \in \bar{T}_{3} \backslash \bar{T}_{2}$.
4) $t \in \bar{T}_{5} \backslash \bar{T}_{1}$. Then by Property (3) we have $t \in \bar{T}_{5} \backslash \bar{T}_{1} \subseteq \bar{T}_{5} \subseteq Y_{7}^{\alpha} \cup Y_{5}^{\alpha}$, i.e., $t \in Y_{7}^{\alpha} \cup Y_{5}^{\alpha}$ and $t \alpha \in\left\{T_{7}, T_{5}\right\}$ by definition of the sets Y_{7}^{α} and Y_{5}^{α}. Therefore $f_{4 \alpha}(t) \in\left\{T_{7}, T_{5}\right\}$ for all $t \in \bar{T}_{5} \backslash \bar{T}_{1}$.

Preposition we have that $Y_{5}^{\alpha} \cap \bar{T}_{5} \neq \varnothing$, i.e. $t_{4} \alpha=T_{5}$ for some $t_{4} \in \bar{T}_{5}$. If $t_{4} \in \bar{T}_{1}$, then $t_{4} \in Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{1}^{\alpha}$. So $t_{4} \alpha=\left\{T_{7}, T_{6}, T_{4}, T_{3}, T_{1}\right\} \quad$ by definition of the sets $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{1}^{\alpha}$. The condition $t_{4} \alpha=\left\{T_{7}, T_{6}, T_{4}, T_{3}, T_{1}\right\}$ contradict of the equality, $t_{4} \alpha=T_{5}$, while $T_{5} \notin\left\{T_{7}, T_{6}, T_{4}, T_{3}, T_{1}\right\}$. Therefore, $f_{4 \alpha}\left(t_{4}\right)=T_{5}$ for some $t \in \bar{T}_{5} \backslash \bar{T}_{1}$.
5) $t \in X \backslash \bar{T}_{0}$. Then by definition quasinormal representation binary relation α and by Property (3) we have $t \in X \backslash \bar{T}_{0} \subseteq X=Y_{7}^{\alpha} \cup Y_{6}^{\alpha} \cup Y_{5}^{\alpha} \cup Y_{4}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{1}^{\alpha} \cup Y_{0}^{\alpha}$, i.e. $t \alpha \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \quad$ by definition of the sets $Y_{7}^{\alpha}, Y_{6}^{\alpha}, Y_{5}^{\alpha}, Y_{4}^{\alpha}, Y_{3}^{\alpha}, Y_{2}^{\alpha}, Y_{1}^{\alpha}, Y_{0}^{\alpha}$. Therefore $f_{5 \alpha}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ for all $t \in X \backslash \bar{T}_{0}$.

Therefore for every binary relation $\alpha \in R\left(Q^{\prime}\right)$ exist ordered system ($\left.f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}\right)$. It is obvious that for different binary relations exist different ordered systems.

Let $f_{1}: \bar{T}_{7} \rightarrow\left\{T_{7}\right\}, f_{2}: \bar{T}_{6} \rightarrow\left\{T_{6}\right\}, f_{3}: \bar{T}_{3} \backslash \bar{T}_{2} \rightarrow\left\{T_{6}, T_{3}\right\}, f_{4}: \bar{T}_{5} \backslash \bar{T}_{1} \rightarrow\left\{T_{7}, T_{5}\right\}, \quad f_{5}: X \backslash \bar{T}_{0} \rightarrow Q$
are such mappings, which satisfying the conditions:
6) $f_{1}(t) \in\left\{T_{7}\right\}$ for all $t \in \bar{T}_{7}$;
7) $f_{2}(t) \in\left\{T_{6}\right\}$ for all $t \in \bar{T}_{6}$;
8) $f_{3}(t) \in\left\{T_{6}, T_{3}\right\}$ for all $t \in \bar{T}_{3} \backslash \bar{T}_{2}$ and $f_{3}\left(t_{3}\right)=T_{3}$ for some $t_{3} \in \bar{T}_{3} \backslash \bar{T}_{2}$;
9) $f_{4}(t) \in\left\{T_{7}, T_{5}\right\}$ for all $t \in \bar{T}_{5} \backslash \bar{T}_{1}$ and $f_{4}\left(t_{4}\right)=Z_{4}$ for some $t_{4} \in \bar{T}_{5} \backslash \bar{T}_{1}$;
10) $f_{5}(t) \in\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\}$ for all $t \in X \backslash \bar{T}_{0}$.

Now we define a map f of a set X in the semilattice Q, which satisfies the following condition:

$$
f(t)= \begin{cases}f_{1}(t), & \text { if } t \in \bar{T}_{7}, \\ f_{2}(t), & \text { if } t \in \bar{T}_{6}, \\ f_{3}(t), & \text { if } t \in \bar{T}_{3} \backslash \bar{T}_{2}, \\ f_{4}(t), & \text { if } t \in \bar{T}_{5} \backslash \bar{T}_{1}, \\ f_{5}(t), & \text { if } t \in X \backslash \bar{T}_{0} .\end{cases}
$$

Now let $\beta=\bigcup_{x \in X}(\{x\} \times f(x)), \quad Y_{i}^{\beta}=\left\{t \mid t \beta=T_{i}\right\} \quad(i=1,2, \cdots, 5)$. Then binary relation β is written in the
form

$$
\beta=\left(Y_{7}^{\beta} \times T_{7}\right) \cup\left(Y_{6}^{\beta} \times T_{6}\right) \cup\left(Y_{5}^{\beta} \times T_{5}\right) \cup\left(Y_{4}^{\beta} \times T_{4}\right) \cup\left(Y_{3}^{\beta} \times T_{3}\right) \cup\left(Y_{2}^{\beta} \times T_{2}\right) \cup\left(Y_{1}^{\beta} \times T_{1}\right) \cup\left(Y_{0}^{\beta} \times T_{0}\right)
$$

and satisfying the conditions:

$$
Y_{7}^{\beta} \supseteq \bar{T}_{7}, \quad Y_{6}^{\beta} \supseteq \bar{T}_{6}, Y_{7}^{\beta} \cup Y_{5}^{\beta} \supseteq \bar{T}_{5}, Y_{6}^{\beta} \cup Y_{3}^{\beta} \supseteq \bar{T}_{3}, Y_{5}^{\beta} \cap \bar{T}_{5} \neq \varnothing, \quad Y_{3}^{\beta} \cap \bar{T}_{3} \neq \varnothing
$$

From this and by Lemma 2.3 we have that $\beta \in R\left(Q^{\prime}\right)$.
Therefore for every binary relation $\alpha \in R\left(Q^{\prime}\right)$ and ordered system ($f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$) exist one to one mapping.

By Theorem 1.1 the number of the mappings $f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}$ are respectively:

$$
1,1,2^{\left|\bar{T}_{3} \backslash \bar{T}_{2}\right|}-1,2^{\left|\bar{T}_{5} \backslash \bar{T}_{1}\right|}-1,8^{\left|X \backslash \bar{T}_{0}\right|}
$$

(see ([1], Corollary 1.18.1), ([2], Corollary 1.18.1)).
The number of ordered system $\left(f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, f_{5 \alpha}\right)$ or number regular elements can be calculated by the formula

$$
\left|R\left(Q^{\prime}\right)\right|=2 \cdot m_{0} \cdot\left(2^{\left|\bar{T}_{5} \overline{T_{\bar{T}}}\right|}-1\right) \cdot\left(2^{\left|\bar{T}_{3} \overline{T_{2}}\right|}-1\right) \cdot 8^{\left|X \overline{T_{0}}\right|}
$$

(see ([1], Theorem 6.3.5), ([2], Theorem 6.3.5)).
The theorem is proved.
Corollary 2.1. Let $Q=\left\{T_{7}, T_{6}, T_{5}, T_{4}, T_{3}, T_{2}, T_{1}, T_{0}\right\} \in \sum_{2}(X, 8), T_{5} \cap T_{3}=\varnothing$. If X be a finite set and $E_{X}^{(r)}(Q)$ be the set of all right units of the semigroup $B_{X}(Q)$, then the following formula is true

$$
\left|E_{X}^{(r)}(Q)\right|=\left(2^{\left|T_{5} \backslash T_{1}\right|}-1\right) \cdot\left(2^{\left|T_{3} \backslash T_{2}\right|}-1\right) \cdot 8^{\left|X \backslash T_{0}\right|}
$$

Proof: This corollary immediately follows from Theorem 2.2 and from the ([1], Theorem 6.3.7) or ([2], Theorem 6.3.7).

The corollary is proved.

References

[1] Diasamidze, Ya. and Makharadze, Sh. (2013) Complete Semigroups of Binary Relations. Monograph. Kriter, Turkey, 1-520.
[2] Diasamidze, Ya. and Makharadze, Sh. (2010) Complete Semigroups of Binary Relations. Monograph. M., Sputnik+, 657 p. (In Russian)
[3] Lyapin, E.S. (1960) Semigroups. Fizmatgiz, Moscow. (In Russian)
[4] Diasamidze, Ya., Makharadze, Sh. and Rokva, N. (2008) On XI-Semilattices of Union. Bull. Georg. Nation. Acad. Sci., 2, 16-24.
[5] Diasamidze, Ya.I. (2003) Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, 117, 4271-
4319.
[6] Diasamidze, Ya., Makharadze, Sh. and Diasamidze, Il. (2008) Idempotents and Regular Elements of Complete Semigroups of Binary Relations. Journal of Mathematical Sciences, 153, 481-499.
[7] Diasamidze, Ya. (2009) The Properties of Right Units of Semigroups Belonging to Some Classes of Complete Semigroups of Binary Relations. Proceedings of A. Razmadze Mathematical Institute, 150, 51-70.

