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Abstract 

As we know if D  is a complete X -semilattice of unions then semigroup ( )XB D  possesses a 
right unit iff D  is an XI -semilattice of unions. The investigation of those α -idempotent and 
regular elements of semigroups ( )XB D  requires an investigation of XI -subsemilattices of se-

milattice D  for which ( ) ( )2, ,8V D Q Xα = ∈Σ . Because the semilattice Q  of the class ( )2 ,8XΣ  
are not always XI -semilattices, there is a need of full description for those idempotent and regu-
lar elements when ( ),V D Qα = . For the case where X  is a finite set we derive formulas by cal-

culating the numbers of such regular elements and right units for which ( ),V D Qα = . 
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1. Introduction 
In this paper we characterize the elements of the class ( )2 ,8XΣ . This class is the complete X -semilattice of 
unions every elements of which are isomorphic to Q . So, we characterize the class for each element which is 
isomorphic to Q  by means of the characteristic family of sets, the characteristic mapping and the generate set 
of D . 
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Let X  be an arbitrary nonempty set, recall that the set of all binary relations on X  is denoted XB . The 
binary operation " "  on XB  defined by for ,  XBα β ∈  ( ) ( ), ,x z x yα β α∈ ⇔ ∈  and ( ),y z β∈ , for 
some y X∈  is associative and hence XB  is a semigroup with respect to the operation " " . This semigroup is 
called the semigroup of all binary relations on the set X . By ∅  we denote an empty binary relation or empty 
subset of the set X . 

Let D  be a X -semilattice of unions, i.e. a nonempty set of subsets of the set X  that is closed with re-
spect to the set-theoretic operations of unification of elements from D , f  be an arbitrary mapping from X  
into D . To each such a mapping f  there corresponds a binary relation fα  on the set X  that satisfies the 
condition { } ( )( )f

x X
x f xα

∈

= ×


. The set of all such fα  ( ):f X D→  is denoted by ( )XB D . It is easy to 
prove that ( )XB D  is a semigroup with respect to the operation of multiplication of binary relations, which is 
called a complete semigroup of binary relations defined by a X -semilattice of unions D  (see ([1], Item 2.1), 
([2], Item 2.1)). 

Let ,  x y X∈ , Y X⊆ , ( )XB Dα ∈ , T D∈ , D D′∅ ≠ ⊆  and 
Y D

t D Y
∈

∈ =




. We use the notations: 

{ } ( ) { } { }

( ) ( ) { } { }
{ } { }

,   ,   , ,   ,

, \ ,   ,

 ,   .

y Y

T T t

T T

y x X y x Y y V D Y Y D X T T X

l D T D D Y x X x T D Z D t Z

D Z D T Z D Z D Z T

α

α α α α α α

α

∗

∈

= ∈ = = ∈ = ∅ ≠ ⊆

′ ′ ′ ′ ′ ′ ′= ∪ = ∈ = = ∈ ∈

′ ′ ′ ′ ′ ′ ′ ′= ∈ ⊆ = ∈ ⊆



 

Let ( )XB Dα ∈ , { }TY x X x Tα α= ∈ =  and  

[ ]
( )
( ) ( )
( ) { } ( )

, , if  ;

, , if  , ;

, , if  ,  and .

V X D

V V X V X

V X V X D

α

α α α

α α

∗

∗ ∗

∗ ∗

 ∅∉

= ∅∈


∪ ∅ ∅∉ ∅∈

 

In general, a representation of a binary relation α  of the form ( )
[ ]

T
T V

Y Tα

α
α

∈

= ×


 is called quasinormal. 

Note that for a quasinormal representation of a binary relation α , not all sets TYα  [ ]( )T V α∈  can be dif-
ferent from an empty set. But for this representation the following conditions are always fulfilled: 

a) T TY Yα α
′∩ = ∅ , for any ,  T T D′∈  and T T ′≠ ; 

b) 
[ ]

T
T V

X Yα

α∈

=


 (see ([1], Definition 1.11.1), ([2], Definition 1.11.1)). 

Let ( )XB Dε ∈ . ε  is called right unit of the semigroup ( )XB D . If α ε α=  for any ( )XB Dα ∈ . An 
element α  taken from the semigroup ( )XB D  called a regular element of the semigroup ( )XB D  if in 

( )XB D  there exists an element β  such that α β α α=   (see [1]-[3]). 
In [1] [2] they show that β  is regular element of ( )XB D  iff [ ] ( ),V V Dβ β=  is a complete XI -semilat- 

tice of unions. 
A complete X -emilattice of unions D  is an XI -emilattice of unions if it satisfies the following two con-

ditions: 
(a) ( ), tD D D∧ ∈  for any t D∈



; 

(b) ( ), t
t Z

Z D D
∈

= ∧


 for any nonempty element Z  of D  (see ([1], Definition 1.14.2), ([2], Definition 

1.14.2) or [4]). Under the symbol ( ), tD D∧  we mean an exact lower bound of the set tD  in the semilattice 
D . 

Let D′  be an arbitrary nonempty subset of the complete X -semilattice of unions D . A nonempty element 
T  is a nonlimiting element of the set D′  if  ( )\ ,T l D T′ ≠ ∅  and a nonempty element T  is a limiting ele-
ment of the set D′  if ( )\ ,T l D T′ = ∅  (see ([1], Definition 1.13.1 and Definition 1.13.2), ([2], Definition 
1.13.1 and Definition 1.13.2)). 

Let { }1 2 1, , , , mD D Z Z Z −=


  be some finite X -semilattice of unions and ( ) { }0 1 2 1, , , , mC D P P P P −=   be 
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the family of sets of pairwise nonintersecting subsets of the set X . If ϕ  is a mapping of the semilattice D  

on the family of sets ( )C D  which satisfies the condition ( ) 0D Pϕ =


 and ( )i iZ Pϕ =  for any 1,2, , 1i m= −  

and { }ˆ \ZD D T D Z T= ∈ ⊆ , then the following equalities are valid:  

( )0 1 2 1 0
ˆ

,     
Zi

m i
T D

D P P P P Z P Tϕ−
∈

= ∪ ∪ ∪ ∪ = ∪






                      ( )•  

In the sequel these equalities will be called formal. 
It is proved that if the elements of the semilattice D  are represented in the form ( )• , then among the para- 

meters iP  ( )0,1,2, , 1i m= −  there exist such parameters that cannot be empty sets for D . Such sets iP  

( )0 1i m< ≤ −  are called basis sources, whereas sets jP  ( )0 1j m≤ ≤ −  which can be empty sets too are called 
completeness sources. 

It is proved that under the mapping ϕ  the number of covering elements of the pre-image of a basis source is 
always equal to one, while under the mapping ϕ  the number of covering elements of the pre-image of a com-
pleteness source either does not exist or is always greater than one (see ([1], Item 11.4), ([2], Item 11.4) or [5]). 

The one-to-one mapping ϕ  between the complete X -semilattices of unions ( ),Q Qφ  and D′′  is called a 
complete isomorphism if the condition 

( ) ( )
1

1
T D

D Tϕ ϕ
∈

′∪ =


 

Is fulfilled for each nonempty subset 1D  of the semilattice D′  (see ([1], definition 6.3.2), ([2], definition 
6.3.2) or [6]) and the complete isomorphism ϕ  between the complete semilattices of unions Q  and D′  is a 
complete α -isomorphism if (b) 

(a) ( ),Q V D α= ; 
(b) ( )ϕ ∅ = ∅  for ( ),V D α∅∈  and ( )T Tϕ α =  for all ( ),T V D α∈  (see ([1], Definition 6.3.3), ([2], 

Definition 6.3.3)). 
Lemma 1.1. Let D  by a complete X -semilattice of unions. If a binary relation ε  of the form 

{ } ( )( ) ( )( ), \t
t D

t D D X D Dε
∈

= ×∧ ∪ ×


 



 is right unit of the semigroup ( )XB D , then ε  is the greatest right 

unit of that semigroup (see ([1], Lemma 12.1.2), ([2], Lemma 12.1.2)). 
Theorem 1.1. Let { }1 2, , ,j jD T T T=  , X  and Y —be three such sets, that Y X∅ ≠ ⊆ . If f  is such 

mapping of the set X , in the set jD , for which ( ) jf y T=  for some y Y∈ , then the numbers of all those  

mappings f  of the set X  in the set jD  is equal to ( )( )\ 1 YX Y Ys j j j= ⋅ − −  (see ([1], Theorem 1.18.2), 

([2], Theorem 1.18.2)). 
Theorem 1.2. Let D  be a finite X -semilattice of unions and α σ α α=   for some α  and σ  of the 

semigroup ( )XB D ; ( )D α  be the set of those elements T  of the semilattice ( ) { }\XQ B D= ∅  which are 
nonlimiting elements of the set TQ . Then a binary relation α  having a quasinormal representation of the form  

( ),
T

T V D
Y Tα

α
α

∈

= ×


 is a regular element of the semigroup ( )XB D  iff the set ( ),V D α  is a XI -semilattice of 

unions and for α -isomorphism ϕ  of the semilattice ( ),V D α  on some X -subsemilattice D′ of the semilat- 
tice D  the following conditions are fulfilled: 

(a) ( )T Tϕ σ=  for any ( ),T V D α∈ ; 

(b) ( )
( )T

T
T D

Y Tα

α
ϕ

∈

⊇




 for any ( )T D α∈ ; 

(c) ( )TY Tα ϕ∩ ≠ ∅  for any element T of the set ( )TD α  (see ([1], Theorem 6.3.3), ([2], Theorem 6.3.3) or 
[6]). 

Theorem 1.3. Let D  be a complete X -emilattice of unions. The semigroup ( )XB D  possesses a right 
unit iff D  is an XI -semilattice of unions (see ([1], Theorem 6.1.3), ([2], Theorem 6.1.3) or [7]). 
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2. Results 
Let D  is any X -semilattice of unions and { }7 6 5 4 3 2 1 0, , , , , , ,Q T T T T T T T T D= ⊆ , which satisfies the following con- 
ditions: 

7 5 2 0 7 4 2 0 7 4 1 0

6 4 2 0 6 4 1 0 6 3 1 0

7 6 4 5 4 2 4 3 1 2 1 0

1 2 2 1 3 4 4 3

3 5 5 3 4 5 5 4

,   ,   ,
,   ,   ,

,   ,   ,   ,  
\ ,   \ ,   \ ,   \ ,    
\ ,   \ ,   \ ,   \

T T T T T T T T T T T T
T T T T T T T T T T T T
T T T T T T T T T T T T
T T T T T T T T
T T T T T T T T

⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂

∪ = ∪ = ∪ = ∪ =

≠ ∅ ≠ ∅ ≠ ∅ ≠ ∅

≠ ∅ ≠ ∅ ≠ ∅ ≠

6 7 7 6

,  
\ ,   \ . T T T T

∅

≠ ∅ ≠ ∅

                       (1) 

The semilattice Q , which satisfying the conditions (1) is shown in Figure 1. By the symbol ( )2 ,8XΣ  we 
denote the set of all X -semilattices of unions whose every element is isomorphic to Q . 

Let ( ) { }7 6 5 4 3 2 1 0, , , , , , ,C Q P P P P P P P P=  is a family sets, where 7 6 5 4 3 2 1 0,  ,  ,  ,  ,  ,  ,  P P P P P P P P  are pairwise dis- 
joint subsets of the set X  and 

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

T T T T T T T T
P P P P P P P P

ψ
 

=  
 

 

is a mapping of the semilattice Q  into the family sets ( )C Q . Then for the formal equalities of the semilattice 
Q  we have a form: 

 

0 0 1 2 3 4 5 6 7

1 0 2 3 4 5 6 7

2 0 1 3 4 5 6 7

3 0 2 4 5 6 7

4 0 3 5 6 7

5 0 1 3 4 6 7

6 0 5 7

7 0 3 6

,
,
,

,
,

,
,
.

T P P P P P P P P
T P P P P P P P
T P P P P P P P
T P P P P P P
T P P P P P
T P P P P P P
T P P P
T P P P

= ∪ ∪ ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪

= ∪ ∪ ∪ ∪ ∪

= ∪ ∪

= ∪ ∪

                              (2) 

here the elements 1 2 3 5,  ,  ,  P P P P  are basis sources, the element 0 4 6 7,  ,  ,  P P P P  are sources of completenes of 
the semilattice Q . Therefore 4X ≥  and 4δ = . 

Theorem 2.1. Let { } ( )7 6 5 4 3 2 1 0 2, , , , , , , ,8Q T T T T T T T T X= ∈∑ . Then Q  is XI -semilattice, when 5 3T T∩ =∅ . 

Proof. Let 0t T∈ , { }tQ T Q t T= ∈ ∈  and ( ), tQ Q∧  is the exact lower bound of the set tQ  in Q . Then of 

the formal equalities ( )2  follows, that 

{ }
{ }
{ }
{ }
{ }
{ }
{ }

0

5 2 0 1

3 1 0 2

7 5 4 2 1 0 3

5 3 2 1 0 4

6 4 3 2 1 0 5

7 5 4 3 2 1 0 6

6 5 4 3 2 1 0 7

, if  ,
, , , if  ,
, , , if  ,
, , , , , , if  ,
, , , , , if  ,
, , , , , , if  ,
, , , , , , , if  ,
, , , , , , , if  ,

t

Q t P
T T T t P
T T T t P
T T T T T T t P

Q
T T T T T t P
T T T T T T t P
T T T T T T T t P
T T T T T T T t P

∈
 ∈
 ∈


∈=  ∈
 ∈


∈
∈

( )

5 1

3 2

7 3

6 5

, if  ,
, if  ,

    ,
, if  ,
, if  ,

t

T t P
T t P

Q Q
T t P
T t P

∈
 ∈∧ =  ∈
 ∈
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Figure 1. Diagram of Q . 

 
We have ( ) }{ { }0 7 6 5 3, , , ,tQ Q Q t T T T T T∧ = ∧ ∈ =  and ( ), tQ Q Q∧ ∉  if 0 4 6 7t P P P P∈ ∪ ∪ ∪ . So, from the 

definition XI -semilattice follows that Q  is not XI -semilattice. 
If 0 4 6 7P P P P= = = = ∅  (since they are completeness sources), then ( ), tQ Q Q∧ ∈  for all 0t T∈  and 

4 7 6T T T= ∪ , 1 7 3T T T= ∪ , 2 6 5T T T= ∪ . Of the last conditions and from the Definition XI -semilattice follows 
that Q  is XI -semilattice. Of the equality 0 4 6 7P P P P= = = = ∅  follows that  

( ) ( )5 3 0 1 3 4 6 7 0 2 4 5 6 7 0 4 6 7T T P P P P P P P P P P P P P P P P∩ = ∪ ∪ ∪ ∪ ∪ ∩ ∪ ∪ ∪ ∪ ∪ = ∪ ∪ ∪ =∅  

Of the other hand, if 5 3T T∩ =∅  then by formal equalities follows that 0 4 6 7P P P P= = = = ∅ . Therefore, 
semilattice Q  is XI -semilattice.  

The Theorem is proved. 
Lemma 2.1. Let { } ( )7 6 5 4 3 2 1 0 2, , , , , , , ,8Q T T T T T T T T X= ∈∑  and 5 3T T∩ =∅ . Then following equalities are 

true: 

3 7 5 6 2 3 2 1 5 1,   ,   \ ,   \P T P T P T T P T T= = = =  

Proof. The given Lemma immediately follows from the formal equalities (2) of the semilattice Q . 
The lemma is proved. 
Lemma 2.2. Let { } ( )7 6 5 4 3 2 1 0 2, , , , , , , ,8Q T T T T T T T T X= ∈∑  and 5 3T T∩ =∅ . Then the binary relation 

( ) ( ) ( )( ) ( )( ) ( )( )7 7 6 6 5 1 5 3 2 3 0 0\ \ \T T T T T T T T T T X T Tε = × ∪ × ∪ × ∪ × ∪ ×  

is the largest right unit of the semigroup ( )XB D . 
Proof. By preposition and from Theorem 2.1 follows that Q  is XI -semilattice. Of this, from Lemma 1.1, 

from Lemma 2.1 and from Theorem 1.3 we have that the binary relation 

{ } ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )
0

0 0 3 7 5 6 1 5 2 3 0 0

7 7 6 6 5 1 5 3 2 3 0 0

, \ \

  \ \ \ .

t
t T

t Q Q X T T P T P T P T P T X T T

T T T T T T T T T T X T T

ε
∈

= ×∧ ∪ × = × ∪ × ∪ × ∪ × ∪ ×

= × ∪ × ∪ × ∪ × ∪ ×



 

is the largest right unit of the semigroup ( )XB D . 
The lemma is proved. 
Lemma 2.3. Let { } ( )7 6 5 4 3 2 1 0 2, , , , , , , ,8Q T T T T T T T T X= ∈∑

 
and 5 3T T∩ =∅ . Binary relation α  having 

quazi-normal representation of the form  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y T Y T Y T Y Tα α α α α α α αα = × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ ×  

where { }7 6 5 3,  ,  ,  Y Y Y Yα α α α ∉ ∅  and ( ) ( )2, ,8V D Q Xα = ∈∑  is a regular element of the semigroup ( )XB D  

iff for some complete α  isomorphism 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

T T T T T T T T
P T T T T T T T

ϕ
 

=  
 

 of the semilattice Q  on some 

X -subsemilattice { }7 6 5 4 3 2 1 0, , , , , , ,Q T T T T T T T T′ =  (see Figure 2) of the semilattice Q  satisfies the following 
conditions: 

7 7 6 6 7 5 5 6 3 3 5 5 3 3,   ,   ,   ,   ,   Y T Y T Y Y T Y Y T Y T Y Tα α α α α α α α⊇ ⊇ ∪ ⊇ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅  
Proof. It is easy to see, that the set ( ) { }7 6 5 4 3 2 1, , , , , ,Q T T T T T T Tα =  is a generating set of the semilattice Q . 

Then the following equalities are hold: 
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Figure 2. Diagram of Q’. 

 

( ) { } ( ) { } ( ) { } ( ) { }
( ) { } ( ) { } ( ) { }

7 6 5 4

3 2 1

7 6 7 5 7 6 4

6 3 7 6 5 4 2 7 6 4 3 1

,   ,   , ,   , , ,

, ,   , , , , ,   , , , , .
T T T T

T T T

Q T Q T Q T T Q T T T

Q T T Q T T T T T Q T T T T T

α α α α

α α α

= = = =

= = =

   

  

 

By Statement b) of the Theorem 1.2 follows that the following conditions are true: 

( ) ( )

7 7 6 6 7 5 5 7 6 4 4 6 3 3

7 6 5 4 2 2 7 6 4 3 1 1

7 6 4 7 6 4 4 4 4

7 6 5 4 2 7 5 7 6 4 2 5 4 2 2 2

,   ,   ,    ,   ,

,   ;

,

Y T Y T Y Y T Y Y Y T Y Y T

Y Y Y Y Y T Y Y Y Y Y T

Y Y Y T T Y T Y T

Y Y Y Y Y Y Y Y Y Y Y T T Y T Y

α α α α α α α α α

α α α α α α α α α α

α α α α α

α α α α α α α α α α α α α

⊇ ⊇ ∪ ⊇ ∪ ∪ ⊇ ∪ ⊇

∪ ∪ ∪ ∪ ⊇ ∪ ∪ ∪ ∪ ⊇

∪ ∪ ⊇ ∪ ∪ = ∪ ⊇

∪ ∪ ∪ ∪ = ∪ ∪ ∪ ∪ ∪ ⊇ ∪ ∪ = ∪

( ) ( )
2

7 6 4 3 1 7 6 4 6 3 1 4 3 1 1 1 1

,

,

T

Y Y Y Y Y Y Y Y Y Y Y T T Y T Y Tα α α α α α α α α α α α α

⊇

∪ ∪ ∪ ∪ = ∪ ∪ ∪ ∪ ∪ ⊇ ∪ ∪ = ∪ ⊇

 

i.e., the inclusions 7 6 4 4 7 6 5 4 2 2 7 6 4 3 1 1,  ,  Y Y Y T Y Y Y Y Y T Y Y Y Y Y Tα α α α α α α α α α α α α∪ ∪ ⊇ ∪ ∪ ∪ ∪ ⊇ ∪ ∪ ∪ ∪ ⊇  are 
always hold. Further, it is to see, that the following conditions are true: 

( ) { }( ) ( )
( ) { }( ) ( )
( ) { }( ) ( )
( ) { }( ) ( )
( ) { }( )

7 7 7

6 6 6

5 5 5

3 3 3

4 4

7 7 7 7 7

6 6 6 6 6

5 5 7 5 5 5 7

3 3 6 3 3 3 6

4 4

, \ ,   \ , \ ;

, \ ,   \ , \ ;

, \ ,   \ , \ ;

, \ ,   \ , \ ;

, \

T T T

T T T

T T T

T T T

T T

l Q T Q T T l Q T T

l Q T Q T T l Q T T

l Q T Q T T T l Q T T T

l Q T Q T T T l Q T T T

l Q T Q T

= ∪ = ∅ = ∅ ≠ ∅

= ∪ = ∅ = ∅ ≠ ∅

= ∪ = = ≠ ∅

= ∪ = = ≠ ∅

= ∪ =

  

  

  

  

  ( )
( ) { }( ) ( )
( ) { }( ) ( )

4

2 2 2

1 1 1

4 4 4 4 4

2 2 2 2 2 2 2

1 1 1 1 1 1 1

,   \ , \ ;

, \ ,   \ , \ ;

, \ ,   \ , \ ,

T

T T T

T T T

T T l Q T T T

l Q T Q T T T l Q T T T

l Q T Q T T T l Q T T T

= = ∅

= ∪ = = = ∅

= ∪ = = = ∅



  

  

 

i.e., 7 6 5 3,  ,  ,  T T T T  are nonlimiting elements of the sets ( )
7TQ α , ( )

6TQ α , ( )
5TQ α  and ( )

3TQ α  respec-

tively. By Statement c) of the Theorem 1.2 it follows, that the conditions 7 7Y Tα ∩ ≠ ∅ , 6 6Y Tα ∩ ≠ ∅ , 

5 5Y Tα ∩ ≠ ∅  and 3 3Y Tα ∩ ≠ ∅ are hold. Since 7 5Z Z⊂ , 6 3Z Z⊂  we have 5 5Y Tα ∩ ≠ ∅  and 3 3Y Tα ∩ ≠ ∅ . 
Therefore the following conditions are hold: 

7 7 6 6 7 5 5 6 3 3 5 5 3 3,   ,   ,   ,   ,   Y T Y T Y Y T Y Y T Y T Y Tα α α α α α α α⊇ ⊇ ∪ ⊇ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅  

The lemma is proved. 
Definition 2.1. Assume that ( )2 ,8Q X′∈Σ . Denote by the symbol ( )R Q′  the set of all regular elements 

α  of the semigroup ( )XB D , for which the semilattices Q′  and Q  are mutually α -isomorphic and 

( ),V D Qα ′= . 
It is easy to see the number q  of automorphism of the semilattice Q  is equal to 2. 
Theorem 2.2. Let { } ( )7 6 5 4 3 2 1 0 2, , , , , , , ,8Q T T T T T T T T X= ∈∑ , 5 3T T∩ =∅  and ( )2 0,8X mΣ = . If X  be 

finite set, and the XI -semilattice Q  and { }7 6 5 4 3 2 1 0, , , , , , ,Q T T T T T T T T′ =  are α -isomorphic, then 
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( ) ( ) ( )5 1 3 2 0\ \ \
02 2 1 2 1 8T T T T X TR Q m′ = ⋅ ⋅ − ⋅ − ⋅  

Proof. Assume that ( )R Qα ′∈ . Then a quasinormal representation of a regular binary relation α  has the 
form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y T Y T Y T Y Tα α α α α α α αα = × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ ×  

where { }7 6 5 3,  ,  ,  Y Y Y Yα α α α ∉ ∅  and by Lemma 2.3 satisfies the conditions: X 

7 7 6 6 7 5 5 6 3 3 5 5 3 3,   ,   ,   ,   ,   Y T Y T Y Y T Y Y T Y T Y Tα α α α α α α α⊇ ⊇ ∪ ⊇ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅              (3) 

Let fα  is a mapping the set X in the semilattice Q  satisfying the conditions ( )f t tα α=  for all t X∈ . 

1f α , 2f α , 3f α , 4f α , 5f α  are the restrictions of the mapping fα  on the sets 7 6 3 2 5 1 0,  ,  \ ,  \ ,  \T T T T T T X T  

respectively. It is clear, that the intersection disjoint elements of the set { }7 6 3 2 5 1 0, , \ , \ , \T T T T T T X T  are empty 

set and ( ) ( ) ( )7 6 3 2 5 1 0\ \ \T T T T T T X T X∪ ∪ ∪ ∪ = . 

We are going to find properties of the maps 1f α , 2f α , 3f α , 4f α , 5f α . 
1) 7t T∈ . Then by Property (3) we have 7 7t T Yα∈ ⊆ , i.e., 7t Yα∈  and 7t Tα =  by definition of the set 7Yα . 

Therefore ( )1 7f t Tα =  for all 7t T∈ . 

2) 6t T∈ . Then by Property (3) we have 6 6t T Yα∈ ⊆ , i.e., 6t Yα∈  and 6t Tα =  by definition of the set 6Yα . 

Therefore ( )2 6f t Tα =  for all 6t T∈ . 

3) 3 2\t T T∈ . Then by Property (3) we have 3 2 3 6 3\t T T T Y Yα α∈ ⊆ ⊆ ∪ , i.e., 6 3t Y Yα α∈ ∪  and { }6 3,t T Tα ∈  

by definition of the sets 6Yα  and 3Yα . Therefore ( ) { }3 6 3,f t T Tα ∈  for all 3 2\t T T∈ . 

Preposition we have that 3 3Y Tα ∩ ≠ ∅ , i.e. 3 3t Tα =  for some 3 3t T∈ . If 3 2t T∈ , then  

3 7 6 5 4 2t Y Y Y Y Yα α α α α∈ ∪ ∪ ∪ ∪ . So { }3 7 6 5 4 2, , , ,t T T T T Tα =  by definition of the sets 7 6 5 4 2,  ,  ,  ,  Y Y Y Y Yα α α α α . The 

condition { }3 7 6 5 4 2, , , ,t T T T T Tα =  contradict of the equality 3 3t Tα = , while { }3 7 6 5 4 2, , , ,T T T T T T∉ . Therefore, 

( )3 3 3f t Tα =  for some 3 2\t T T∈ . 

4) 5 1\t T T∈ . Then by Property (3) we have 5 1 5 7 5\t T T T Y Yα α∈ ⊆ ⊆ ∪ , i.e., 7 5t Y Yα α∈ ∪  and { }7 5,t T Tα ∈  

by definition of the sets 7Yα  and 5Yα . Therefore ( ) { }4 7 5,f t T Tα ∈  for all 5 1\t T T∈ . 

Preposition we have that 5 5Y Tα ∩ ≠ ∅ , i.e. 4 5t Tα =  for some 4 5t T∈ . If 4 1t T∈ , then 

4 7 6 4 3 1t Y Y Y Y Yα α α α α∈ ∪ ∪ ∪ ∪ . So { }4 7 6 4 3 1, , , ,t T T T T Tα =  by definition of the sets 7 6 4 3 1,  ,  ,  ,  Y Y Y Y Yα α α α α . The 

condition { }4 7 6 4 3 1, , , ,t T T T T Tα =  contradict of the equality, 4 5t Tα = , while { }5 7 6 4 3 1, , , ,T T T T T T∉ . Therefore, 

( )4 4 5f t Tα =  for some 5 1\t T T∈ . 

5) 0\t X T∈ . Then by definition quasinormal representation binary relation α  and by Property (3) we have 

0 7 6 5 4 3 2 1 0\t X T X Y Y Y Y Y Y Y Yα α α α α α α α∈ ⊆ = ∪ ∪ ∪ ∪ ∪ ∪ ∪ , i.e. { }7 6 5 4 3 2 1 0, , , , , , ,t T T T T T T T Tα ∈  by definition 

of the sets 7 6 5 4 3 2 1 0,  ,  ,  ,  ,  ,  ,  Y Y Y Y Y Y Y Yα α α α α α α α . Therefore ( ) { }5 7 6 5 4 3 2 1 0, , , , , , ,f t T T T T T T T Tα ∈  for all 0\t X T∈ . 
Therefore for every binary relation ( )R Qα ′∈  exist ordered system ( )1 2 3 4 5, , , ,f f f f fα α α α α . It is obvious 

that for different binary relations exist different ordered systems. 
Let { }1 7 7:f T T→ , { }2 6 6:f T T→ , { }3 3 2 6 3: \ ,f T T T T→ , { }4 5 1 7 5: \ ,f T T T T→ , 5 0: \f X T Q→  
are such mappings, which satisfying the conditions: 
)6 ( ) { }1 7f t T∈  for all 7t T∈ ; 

)7 ( ) { }2 6f t T∈  for all 6t T∈ ; 
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)8 ( ) { }3 6 3,f t T T∈  for all 3 2\t T T∈  and ( )3 3 3f t T=  for some 3 3 2\t T T∈ ; 

)9 ( ) { }4 7 5,f t T T∈  for all 5 1\t T T∈  and ( )4 4 4f t Z=  for some 4 5 1\t T T∈ ; 

)10 ( ) { }5 7 6 5 4 3 2 1 0, , , , , , ,f t T T T T T T T T∈  for all 0\t X T∈ . 
Now we define a map f  of a set X  in the semilattice Q , which satisfies the following condition: 

( )

( )
( )
( )
( )
( )

1 7

2 6

3 3 2

4 5 1

5 0

, if  ,
, if  ,
, if  \ ,
, if  \ ,
, if  \ .

f t t T
f t t T

f t f t t T T
f t t T T
f t t X T

 ∈
 ∈= ∈
 ∈

∈

 

Now let { } ( )( )
x X

x f xβ
∈

= ×


, { }i iY t t Tβ β= =  ( )1,2, ,5i =  . Then binary relation β  is written in the 
form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0Y T Y T Y T Y T Y T Y T Y T Y Tβ β β β β β β ββ = × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ × ∪ ×  

and satisfying the conditions: 

7 7 6 6 7 5 5 6 3 3 5 5 3 3,   ,   ,   ,   ,   Y T Y T Y Y T Y Y T Y T Y Tβ β β β β β β β⊇ ⊇ ∪ ⊇ ∪ ⊇ ∩ ≠ ∅ ∩ ≠ ∅  

From this and by Lemma 2.3 we have that ( )R Qβ ′∈ . 
Therefore for every binary relation ( )R Qα ′∈  and ordered system ( )1 2 3 4 5, , , ,f f f f fα α α α α  exist one to one 

mapping. 
By Theorem 1.1 the number of the mappings 1 2 3 4 5,  ,  ,  ,  f f f f fα α α α α  are respectively: 

3 2 5 1 0\ \ \1,  1,  2 1,  2 1,  8T T T T X T− −   

(see ([1], Corollary 1.18.1), ([2], Corollary 1.18.1)). 
The number of ordered system ( )1 2 3 4 5, , , ,f f f f fα α α α α  or number regular elements can be calculated by the 

formula 

( ) ( ) ( )5 1 3 2 0\ \ \
02 2 1 2 1 8T T T T X TR Q m′ = ⋅ ⋅ − ⋅ − ⋅  

(see ([1], Theorem 6.3.5), ([2], Theorem 6.3.5)). 
The theorem is proved. 
Corollary 2.1. Let { } ( )7 6 5 4 3 2 1 0 2, , , , , , , ,8Q T T T T T T T T X= ∈∑ , 5 3T T∩ =∅ . If X  be a finite set and
( ) ( )r
XE Q  be the set of all right units of the semigroup ( )XB Q , then the following formula is true 

( ) ( ) ( ) ( )5 1 3 2 0\ \ \2 1 2 1 8T T T T X Tr
XE Q = − ⋅ − ⋅  

Proof: This corollary immediately follows from Theorem 2.2 and from the ([1], Theorem 6.3.7) or ([2], 
Theorem 6.3.7). 

The corollary is proved. 
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