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Abstract 
The author will show that neither the Schwarzschild metric nor the metric introduced in 1916 by 
Schwarzschild describes the data produced by the time delay experiment by Shapiro et al. The au-
thor will describe the physical metric that will explain the time delay experiment data correctly as 
a solution to Einstein Equation of General Relativity. Other tests of General Relativity, the bending 
of light, the advancement of perihelia, gravitational red shift and gravitational lensing are satisfied 
by both the Schwarzschild metric and author’s physical metric. 
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1. Introduction 
The Schwarzschild metric is the exact solution for the Einstein Equation of General Relativity. However, it will 
be shown that by analyzing the geodesic equation, the time delay experiment data, by Shapiro et al., is not com-
pletely explained by the Schwarzschild metric. The correction required to fit the data suggests a dramatic change 
in the direction of General Relativity and points to a new way of understanding the nature of gravity. The other 
tests of General Relativity, bending of light, advancement of perihelia, gravitational red shift and gravitational 
lensing, are well satisfied by the Schwarzschild metric as well as by author’s physical metric. 

The structure of this article is as follows: First in Section 2, we derive the geodesic equation for the Spheri-
cally Symmetric and Static (SSS) metric. In Sections 3 and 4, we examine and apply the geodesic equation to 
the time delay experiment whereby one can conclude that the Schwarzschild metric does not fit the experiment. 
The author discusses the modification of the metric by a coordinate transformation which yields the physical 
metric that does fit the experiment in Sections 5 and 6. The physical metric dramatically changes the physical 
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significance of gravity. The author expects that future experiments will further substantiate and differentiate the 
significance of the physical metric from that of the Schwarzschild metric. The implication of black holes based 
on the physical metric will be discussed in Section 7. The other tests of General Relativity are discussed in Sec-
tion 8. 

2. Asymptotic Form for the SSS Metric 
The SSS metric is expressed as 

( ) ( ) ( ) ( )2 2 2 2 2 2 2d e d e d e d sin d ,r r rs t r rν λ µ θ θ φ= − − +                      (1) 

for a mass point M. From the fact that the transformation, ( ) 2e rr r µ′ = , leads to the Schwarzschild metric, one 
can deduce the expression for the metric, 

( ) ( ) ( ) 2e 1 e ,r r
sr rν µ−= −                                  (2) 

( ) ( )( ) ( ) ( )( )
2

2 2de e 1 e ,
d

r r r
sr r r

r
λ µ µ− = − 

 
                         (3) 

where 22sr GM c=  is the Schwarzschild radius. An asymptotic expansion for the metric functions can be ob-
tained from Equation (2) and Equation (3), yielding 

( ) ( ) ( ) ( ) ( ) ( )
0 0 0

e , e , and e ,n n nr r r
n s n s n s

n n n
a r r b r r c r rν λ µ

∞ ∞ ∞

= = =

= = =∑ ∑ ∑                 (4) 

where 
0 0 0 1,a b c= = =                                    (5) 

1 1 1a b− = =                                      (6) 
and 

2
2 1 2 1 1 22, 1 2 4 , etc.a c b c c c= = − + −                          (7) 

It is obvious that 1na +  and nb  can be expressed as functions of 1 1, , ,n nc c c−  . 

3. Geodesic Equations and Time Delay Experiment 
The geodesic equations can be obtained from variations of the line integral over an invariant parameter τ ,  

2d d
d

s τ
τ

 
 
 ∫ , and their integrals are given by [1] [2] 

( )d e ,
d

rt ν

τ
−=                                     (8) 

where the integration constant for the t variable is chosen to be 1 by fixing the normalization of the τ  variable. 
With the integration constant for the φ  variable, Jφ , one gets 

( ) ( )2d e sin ,
d

rJ rµ
φ

φ θ
τ

−=                               (9) 

while with the integration constant for the total angular variables, 2Jθ , one gets 

( ) ( )
2

22 2 2 4d sin e .
d

rJ J rµ
θ φ

θ θ
τ

−  = − 
 

                        (10) 

Restricting the plane of motion to d 0,
d
θ
τ
=  π 2,θ =  the radial part of the geodesic integral is given by 
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( ) ( ) ( )( )
2

2 2d e e e
d

r r rr J r Eλ ν µ

τ
− − −  = − − 

 
                         (11) 

where E is a constant of integration for the s variable, 
2d

d
s E
τ

  = 
 

                                   (12) 

and 
2 2 2 .J J Jθ φ= =                                   (13) 

The constant E is 0 for light propagation. 
From Equation (8) and Equation (11) with Equations (5) and (6), it follows that 

( ) ( ) ( ) ( ) ( )2 2d e e e
d

r r r r rt J r
r

ν ν λ µ λ− − − − −= ± −                            (14) 

( ) ( )
( )

1 1 1 1 0

2 2
00

1
2 2

s sb a r c a r rr
r r r rr r

 − −
= ± + + +  +−  

                    (15) 

for light propagation, where 0r  is the impact parameter. Integrating from 0r  to r, one gets the time delay ex-
pression for light propagation, 

( )2 2
0 1 0

0 0

1
ln .

2s

r r r c r r
t r

r r r

  + − + −  ∆ = + +
   +  

                     (16) 

In fact, the observational data of Shapiro et al. [3] fit well with high degree of accuracy with the formula 

2 2
0

0

lns

r r r
t r

r

 + −
 ∆ = +
 
 


                            (17) 

The accuracy of the data is 1 in 1000 in the original data and 1 in 105 in more recent data [4]. This is the result 
also suggested by the PPN (the parametrized post-Newtonian Formalism) [1]. However, this is not a correct re-
sult from General Relativity with the Schwarzschild metric, since the geodesic equation yields Equation (16) 
with 1 0c =  for the Schwarzschild metric. By comparing Equations (16) and (17), we conclude that the correct 
result can be obtained by the condition, 

1 1.c = −                                     (18) 

As a matter of fact, all experimental data fit with the formula of Equation (17). It is worthwhile to mention 
that the time delay experiment has been extended to a binary pulsar [6]. 

We note that the parameter values 

1 11, and 1a b= − =                                (19) 

are coordinate independent and determined from the solution of the Einstein Equation and the physical boundary 
condition. Thus we conclude that Equation (18), along with Equation (16), is the condition for the correct me-
tric. 

4. The Schwarzschild Metric in 1916 
In the so-called Schwarzschild metric, 

( )e 1rµ =                                    (20) 

or 
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0nc =                                       (21) 

This result, Equation (16), with 1 0c = , is calculated explicitly in a text book of general relativity [2]. It does 
not explain time delay experiment of Shapiro et al. [3] correctly, as was mentioned earlier. 

In the original form of 1916 article [5], Schwarzschild proposed the condition 

( )determinant metric functions 1,=                           (22) 

i.e., the same as in vacuum, or 

( ) ( ) ( )2e 1.r r rν λ µ+ + =                                  (23) 

From Equation (2) and Equation (3), one can get 

( )( ) ( )( )
2 22d e e 1.

d
r rr

r
µ µ  = 

 
                             (24) 

For the asymptotic solution, 

( )( ) ( )2d e e 1,
d

r rr
r

µ µ =                                 (25) 

or rewriting this equation as 

( ) ( )( )3 23 2d e 3 ,
d

rr r
r

µ =                                 (26) 

its solution can be expressed as 

( ) ( )2 33 3e 1 ,r rµ ρ= +                                 (27) 

where ρ  is an integration constant. This is the solution which was obtained by Schwarzschild in 1916. It does 
not change the term in the first order of gravity and hence does not fit the time delay data of Shapiro et al. 

5. Physical Condition That Fits the Time Delay Experiment 
What is the physical condition that leads to the condition of Equation (18)? It comes out from the following an-
satz. 

Proposition 1 The speed of light in the angular direction in the SSS metric is the same as that of vacuum. 
In other words, 

( ) ( )e e 1r r
sr rν µ= = −                                 (28) 

in the first order of gravity. This ansatz implies that although gravity deforms the geometry of space-time, speed 
of light perpendicular to the gravity will not be affected. If this ansatz is extended to any order of gravity, then it 
will determine all the metric functions exactly and fix the geometry of the physical metric. Recently, time delay 
experiments were performed for binary pulsars, where an accompanying partner is a compact object such as a 
neutron star [6]. Obviously, one is coming to a regime of higher order effects of gravity. If one finds an observa-
tion of a binary pulsar, where an accompanying partner is a black hole, then one needs information of higher 
order effects of gravity. In the following sections, the author describes and performs such a task. 

6. The Physical Metric in Higher Order 
In order to determine the coefficients in higher order, nc , we assume that the ansatz in the previous section is 
valid in any order of gravity, i.e., 

( ) ( )e e .r rν µ ω= =                                    (29) 

Then one gets for the asymptotic solution, 
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( ) ( ) ( ) ( )2e 1 e e .r r r
sr rν µ µ−= − =                               (30) 

Then one has 

( ) ( )( ) ( )2 1 2e 1 e 1 ,r r
sr r µ µ ω ω= − = −                             (31) 

or 

( ) ( )2 21 .sr r ω ω= −                                    (32) 

Differetiating Equation (32), one gets 

( )( )
( )

( )
2 2 2 12d .

d 1 3 1 3 1
sr r

r
r

ω ωω
ω ω ω

−
= =

− − −
                             (33) 

From Equation (3), the metric function in the radial direction can be calculated 

( ) ( )
22 2

1 2 1 2 1 2 2d de 2
d d 3 1

r r r
r r

λ ωωω ω ω ω ω
ω

−     = = + =     −     
                 (34) 

From Equation (31) or Equation (32), it is clear that one covers the range of 

1 1 3ω> >                                        (35) 

and 

3 3 2.sr r∞ > >                                     (36) 

In order to cover the range of 

3 3 2,sr r <                                       (37) 

one has to use non-asymptotic solution of the Schwarzschild solution. From Appendix, such a solution is given 
in the latter part of this section. 

The asymptotic expansion of the metric functions can be calculated from Equation (32) and Equation (34) as 

( ) ( ) ( ) ( ) ( ) ( )2 3 41 5e e 1
2 8

r r
s s s sr r r r r r r rν µω = = = − − − − −                 (38) 

and 

( ) ( ) ( ) ( ) ( )2 3 49 43 211e 1
4 8 16

r
s s s sr r r r r r r rλ = + + + + +                    (39) 

Successive expansion yields a determination of all the parameters, cn, for the physical metric. These are useful 
for testing observational data in higher order in gravity. Alternatively, the inverse function of Equation (31) or 
Equation (32) may be used. 

From the Appendix, the Schwarzschild solution for non-asymptotic region can be written as 
1

e 1 sDr
r

λ
−

 = + ′ 
                                     (40) 

and 

1e 1 ,sDr
A r

ν  = + ′ 
                                    (41) 

where A and D are constants. Then, the metric functions for the physical metric in the region 
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3 3 2sr r <                                       (42) 

are expressed as 

( ) ( ) ( )( ) ( )21e 1 e er r r
sD r r

A
ν µ µω −= = + =                           (43) 

and 

( ) ( )
2

1 2de ,
d

r r A
r

λ ω ω =  
 

                                (44) 

and hence 

( )1 2 1srD A
r

ω ω  = − 
 

                                  (45) 

or 

( )
2

21sDr
A

r
ω ω  = − 

 
                                  (46) 

Differentiating Equation (45), one gets 

d 12
d 3 1

Ar
r A
ω ωω

ω
−

= −
−

                                   (47) 

and 

( )
22

1 2 1 2 2de 2 .
d 3 1

r r A A
r A

λ ωωω ω ω
ω

  = + =   −   
                       (48) 

Imposing the continuity of the asymptotic expression, Equation (31) and the non-asymptotic expression, Equ-
ation (45) at 

( ) ( ), 3 3 2,1 3sr r ω =                                  (49) 

one gets 

2 3.A D= +                                       (50) 

The most appropriate region in the parameter space is 

3 and 0,A D> >                                    (51) 

since the range of coordinate, r, is covered by the origin and the positivity of the metric functions are main-
tained. 

Figure 1 showes the picture of ( )
00 e rg ν ω= =  as a function of sr r , namely the picture of the gravitational 

potential with the shift of the y axis and a scale factor of 2. 
In the region of Equation (51), the distance r can be reached at zero when ω  reaches ∞ , as 

2 3

.sDr
Ar

ω  =  
 

                                     (52) 

Notice that there is an undecided one parameter which can be fixed for the physics inside the horizon at 

3 3 2.6 .
2 s sr r r= =                                    (53) 
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Figure 1. The metric function, ( )00g r , as a funtion of sr r  in the SSS physical metric. 

7. Time Delay Experiment by a Black Hole 
If a time delay experiment of a binary pulsar is performed by a black hole companion, one needs a higher order 
correction of gravity. From Equation (31) and Equation (33), one gets 

( )
( )

23 22 1d .
d 3 1sr r

ω ωω
ω
−

=
−

                                   (54) 

Then, using Equation (14) and Equation (34) one gets 

( )
( )
( )

2

2 2
0 0

1d d d 1
d dd 1 1

srt t
r r

ω ωω
ω ω ω ω ω

−
= = −

− −
                        (55) 

and hence the time delay is expressed as 

( )
( )

( )( )( )
0

1 2
0 0

02

1 d
,

1
srt

ω

ω

ω ω ω
ω ω ω ω ω ω

ω ω
+ −

−
∆ = − − −

−∫                      (56) 

where 0ω  is the time metric function at the impact parameter 0r , 

( ) ( )0 0 00 0 ,r g rω ω= =                                    (57) 

and 
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0 0 0
31 2 1
4

ω ω ω ω±
 = − ± − 
 

                                (58) 

Outside of the horizon, 

0 1 3,ω ω≥ >                                        (59) 

and the time delay t∆  is peaked logarithmically at 0ω  as is in the case of Shapiro experiment, 

( )2 2 2 2
0 0d ln .r r r r r r− = + −∫                                (60) 

However, when one reaches at the horizon 

0 1 3,ω =                                         (61) 

one gets 

1 3ω− =                                         (62) 

and 

4 3.ω+ =                                        (63) 

Then, the integration of t∆  diverges, since the two zeros inside the squre root coincide. In other words, the 
time delay at the horizon become infinity. This is an important characteristic of the time delay of black hole 
companion of a binary pulsar. 

This divergence property may be related with the characteristic of the physical metric, in which the horizon, 

3 3
,

2
srr =                                      (64) 

is, at the same time, a circular radius. This is because the speed of light in the radial direction vanishes at the ho-
rizon, 

d 0,
d
r
t
=                                       (65) 

while the speed of light in the spherical direction is that in vacuum for the physical metric. 

8. The Other Experimental Tests of General Relativity 
The other tests of General Relativity are shown to be insensitive to the presence of the 1c  term. For the bend-
ing of light, one uses the formula, 

( ) ( ) ( ) ( )2 2 2 2d e e e
d

r r r rr J r
r

µ λ ν µφ − + − −= ± −                                 (66) 

( ) ( )
0 1 1 1

2 2
0 0 0 00

11 .
2 2 2s

r b a r c rr
r r r r r r r rr r r

   
 = ± + − + − +     + +−    

            (67) 

Integrating this from a large distance, one gets the well-known expression for the bending of light [2], 

( )1 1
0 0

2
.s sr r

b a
r r

φ∆ = − =                               (68) 

The integration of the 1c  term in Equation (67) gives a vanishingly small value and therefore this term is in-
sensitive to the value of 1c , as is seen from Equation (68) [7]. 

For the advancement of perihelia, one uses the formula 
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( ) ( ) ( ) ( )2 2 2 2d e e e
d

r r r rr J r E
r

µ λ ν µφ − + − −= ± − −                                     (69) 

1 2
1 1

12

1 1 1 11
21 1 1 1
sr b a r ra c

r a r r r r r
r

r r r r

+ ⋅

+ ⋅ + ⋅

⋅ +

     +
= ± + + − + + + − +               − −  

  

         (70) 

where r±  are the semi major and minor axis of the elliptical orbit. The appearance of 2a  is necessitated by the 
cancellation of the lowest term for the determination of the constants 2J  and 2E J . Integration over the el-
lipse yields the advancement of perihelion, 

2
1 1 1

1

π 21 1 2 .
2

sr ab a c
r r a

φ
+ −

  
∆ = + − + +  

  
                        (71) 

Due to the relationship, Equation (7), 2
1

1

2
0

ac
a

+ = , one obtains [2] 

( )1 1
π 3π1 1 1 12 .
2 2

s sr r
b a

r r r r
φ

+ − + −

   
∆ = + − = +   

   
                    (72) 

It is remarkable that the 1c  term and 2a  term cancel each other and the final result is again independent of 
1c  [7]. In other words, both equations, Equation (68) and Equation (72), which have been supported by obser-

vational data, are insensitive to the value of 1c . The reason for these phenomena is that the bending of light and 
the advancement of perihelia are variations in the angular variables, which are less ambiguous coordinates. On 
the other hand, the time delay experiment, Equation (16), formally depends on the parameter 1c . Notice that 
from Equation (38) in the physical metric, 

1 1 1a c= = −                                   (73) 

and 

2
1 ,
2

a = −                                    (74) 

one can see that the relationship 

2
1

1

2
0

ac
a

+ =                                  (75) 

is automatically satisfied. 
For the gravitational red shift and the gravitational lensing, one uses the first order of gravity in ( )00g r , 

( )00 1 .sg r r r= −                                (76) 

Then, both metrics, the Schwarzschild metric and the physical metric, give the same prediction for the all ex-
periments in this section at the present time. However, if future experiments find the higher order effects, such 
as the gravitational red shift near or inside black holes, then these observations will substantiate the difference 
between the both metrics. In fact, the gravitational shift inside the horizon in the physical metric is shown to be 
gravitationally blue shifted. 

9. Summary and Discussion 
The author has shown that the very accurate data of time delay experiments collected by Shapiro et al. are not 
explained by the Schwarzschild metric. The physical metric proposed by the author gives the correct description 
for the data. This changes the nature of gravity inside the horizon. The size of a black hole becomes 2.60 times 
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bigger than the Schwarzschild radius and the gravity inside the horizon shows a repulsive force. Some of these 
properties will be tested by the observations of the MIT Haystack Observatory. The author has demonstrated 
that the change of the metric shows the direction of general relativity and points to a new way of understanding 
the nature of gravity. 
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Appendix: The Schwarzschild Solution 
Setting 

( )e 1,rµ =                                        (77) 

in Equation (1), and using the Maple program the Einstein Equation reads 

( ) ( )e 1 0,rr r λλ′− − + =                                   (78) 

( ) ( )e 1 0rr r λν ′− + − =                                   (79) 

and 

( ) ( ) ( ) ( ) ( ) ( )22 2 2 0.r r r r r r r r rν λ ν ν ν λ′ ′ ′′ ′ ′ ′− + + − =                    (80) 

From the sum of Equation (78) and Equation (79), one gets 

( ) ( ) 0.r rν λ′ ′+ =                                    (81) 

Using this relation, Equation (80) becomes 

( ) ( ) ( )2 2 0r r r r rλ λ λ′′ ′ ′− + − =                              (82) 

or equivalently 

( ) ( )( )e e 0.r rrλ λ− ′′ =                                    (83) 

On the other hand, Equation (78) can be written as 

( )( )e 1,rr λ− ′ =                                      (84) 

which solution is 

( )e 1 ,r B
r

λ− = +                                      (85) 

and Equation (83) is satisfied, where B is an integration constant. The solution of Equation (81) reads 

( ) 1e 1 .r B
A r

ν  = + 
 

                                   (86) 

The asymptotic solution with the boundary condition is given by 

1, .sA B r= = −                                     (87) 

On the other hand, the non-asymptotic solution is given by 

, Aarbiray.sB Dr=                                   (88) 

where A and D are nondimensional integration constants. 
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