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Abstract 
The rotationally symmetric flow of a micropolar fluid in the presence of an infinite rotating disk 
has been studied numerically. The equations of motion are reduced to a system of ordinary diffe-
rential equations, which in turn are solved numerically using SOR method and Simpson’s (1/3) 
rule. The results are calculated for different values of the parameter s (the ratio of angular veloci-
ties of disc and fluid) and the suction parameter a. Moreover, three different sets of the values of 
non-dimensional material constants related to micropolar behavior of the fluid have been chosen 
arbitrarily. The calculations have been carried out using three different grid sizes to check the ac-
curacy of the results. The research concludes that the micropolar fluids flow resembles with that 
of Newtonian fluids when the material constants become close to zero. The comparison of these 
results is presented for possible values of the parameter s. 
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1. Introduction 
Eringen [1] introduced the theory of micropolar fluids, a sub class of microfluid [2]. The theory fully explains 
the internal characteristics of the substructure particles which are also allowed to undergo rotation and deforma-
tion. Airman et al. [3] concluded that the micropolar fluid serves a better model for animal blood. Guram and 
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Smith [4] considered the flow of a micropolar fluid which is steady relative to a frame of reference rotating with 
small uniform angular velocity when the velocity and spin are two dimensional and depend on the depth whe-
reas pressure is independent of the horizontal coordinates. Anwar and Guram [5] considered the flow of a mi-
cropolar fluid contained between a rotating and a stationary disk. Narayana and Rudraiah [6] discussed the flow 
of a viscous fluid between two disks, one rotating and the other at rest. The same problem in micropolar fluid 
has been studied numerically taking either suction or blowing at the stationary disk by Agrawal Dhanapal [7]. 

The laminar flow due to an infinite rotating disk was first theoretically investigated with an approximate me-
thod by Von Karman [8]. Later on, Cochran [9] presented accurate numerical solutions of the Von Karman’s 
problem. Dolidge [10], Sparrow & Gregg [11] and Benton [12] studied the related problems for different physi-
cal situations. Rogers and Lance [13] presented numerical solution for the flow produced by an infinite rotating 
disk when the fluid at infinity is in a state of solid rotation. Balaram and Luthra [14] obtained numerical solution 
of the steady flow produced by an infinite rotating disk when the second-order fluid at infinity is in a state of 
solid rotation. Sajjad et al. [15] obtained numerical solution for accelerated rotating disk in a viscous fluid. Ram 
and Kumar [16] analyzed three dimensional rotationally symmetric boundary layer flow of field dependent 
viscous fluid saturating porous medium due to the rotation of an infinite disk. Evans [17] studied the effect of 
uniform suction on the rotationally symmetric flow produced by an infinite rotating disc with the fluid at infinity 
is rotating in the same sense as the disc. 

In this research, the numerical solutions of the rotationally symmetric slow of micropolar fluids in the pres-
ence of an infinite rotating disk have been discussed. In order to find the numerical solution of the problem, the 
Navier Stokes equations are reduced to ordinary differential equations by using similarity transformations [17]. 
The finite difference scheme is solved numerically by using SOR Iterative Procedure with Simpson (1/3) Rule 
[18]. The calculations have been carried out using three different grid sizes to check the accuracy of the results. 
The numerical results have been discussed both in tabular and graphically.  

The purpose of using these numerical techniques for numerical solution is that, the finite difference approxi-
mations are found to be discrete techniques wherein the domain of interest is represented by a set of points or 
nodes and information among these points is commonly obtained by using Taylor series expansions while the 
finite element method employs piecewise continuous polynomials to interpolate among nodal points. The finite 
difference techniques are very easy to understand and straight forward for computational analysis.  

2. Mathematical Analysis 
The cylindrical polar coordinates ( ), ,r zϕ  are used, r being the radial distance from the axis, ϕ , the polar an-
gle and z the normal distance from the disk. We assume that the flow is steady and incompressible. The body 
force and body couples are neglected. With these assumptions the equations of motion become: 

0∇⋅ =V                                        (1) 

( ) ( ) ( ) ( )k k pµ ρ− + ∇× ∇× + ∇× −∇ + = ⋅∇V ν V V                        (2) 

( ) ( ) ( ) ( ) ( )2k k jα β γ γ ρ+ + ∇ ∇⋅ − ∇×∇× + ∇× − = ⋅∇ν ν V ν V ν                 (3) 

where ρ  is the density, V  the velocity, ν  the micro-rotation or spin, p the pressure, µ  is dynamic vis-
cosity coefficient, j the micro-inertia, α , β , γ  and k are material constants. 

The following similarity transformations are used: 

( ) ( ) ( ),   ,   u r F v r G w Hζ ζ υ ζ= Ω = Ω = Ω                         (4) 

( ) ( ) ( ) ( ) ( )3 2 1 2 3 2 1 2
1 2 3,   ,   and   2r L v r M v Nν υ ζ υ ζ ζ= − Ω = Ω = Ω  

where zζ
υ
Ω

=  is the dimensionless variable, υ  being kinematics viscosity. The Equations (1) to (3) in di-

mensionless form become: 
2 0F H ′+ =                                       (5) 

2 2 2
1F F G HF s C M′′ ′ ′= − + + +                               (6) 

http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=M.+Balaram&q=M.+Balaram
http://appliedmechanics.asmedigitalcollection.asme.org/solr/searchresults.aspx?author=B.+R.+Luthra&q=B.+R.+Luthra
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1 12 0FG HG G M G C L′ ′′ ′+ − + + =                               (7) 

( )2 2
2 2 32 2 0L C G C L C L LN M′′ ′ ′+ − + − − =                           (8) 

( )2 2 32 2 0M C F C M C NM LM′′ ′ ′+ − − − =                            (9) 

4 5 5 62 2 0N L C L C G C N C NN′′ ′ ′ ′− + + − − =                          (10) 

where primes denote differentiation with respect to ζ . The constants C1, C2, C3, C4, C5 and C6 all are non di-
mensional. 

The boundary conditions are 
0 : 0,  1,  0,  0,  0,  0;

: 0,  ,  0,  0,  0.
F G H L M N

F G s L M N
ζ
ζ
= = = = = = =
→∞ = = = = =

                      (11) 

3. Finite Difference Equations 
In order to obtain the numerical solution of nonlinear ordinary differential Equations (6) to (10), we approximate 
these equations by central difference approximation at a typical point nζ ζ=  of the interval [ )0,∞ , we obtain 

( ) ( ) ( )2 2 2 2 2
1 1 1 1 1 11 2 2 1 0

2 2 2n n n n n n n n n
h h hH F M h h F F H F h G s C M M+ − + −

   − − + + + + + − − − =   
   

    (12) 

( ) ( )2
1 1 1 1 11 2 1 1 0

2 2 2n n n n n n n n
h h hH G h F G H G C L L+ − + −

   − − + + + − − =   
   

               (13) 

( ) ( ) ( )
2

2 2 2
3 1 2 3 3 1 3 2 1 11 2 1 1 0

2 2n n n n n n n n n
h hC hN L C h C L L C hN L C h M C G G+ − + −

 
− − + − + + − + − = 

 
     (14) 

( ) ( ) ( ) ( )2 2
3 1 2 3 3 1 2 1 11 2 1 1 0

2n n n n n n n n
hC hN M C h C h L M C hN M C F F+ − + −− − + − + + + − =        (15) 

( ) ( ) ( ) ( )( )2 2
6 1 5 6 1 5 4 1 11 2 1 1 1 0

2n n n n n n n n
hC hN N C h N C hN N C h G C L L+ − + −− − − + + + − − − =       (16) 

where h denotes a grid size, ( ) ( ),  n n n nF F G Gζ ζ= =  and ( )n nH H ζ= . For computational purposes, we re-
place the interval [ )0,∞  by [ )0, t , where t is sufficiently large. 

4. Computational Procedure 
We now solve numerically the finite difference Equations (12) to (16) by using SOR method subject to the ap-
propriate boundary conditions (11). The first order ordinary differential Equation (5) integrate by Simpson’s (1/3) 
rule subject to the initial condition H a= −  when 0ζ =  where a is the suction parameter. 

The computation has been checked for different of the relaxation parameter between 1 2ω< < . The optimum 
value of the relaxation parameter for the problem under consideration is 1.5. The SOR procedure is terminated 
when the following condition is satisfied: 

1 6max 10n n
i iU U+ −− <  

where n denotes the number of iterations and U stands for each of F, G, L, M and N. The above procedure is re-

peated for higher grid levels 
2
h  and 

4
h .  

5. Discussion on Numerical Results 
Numerical results have been found to observe the effect of parameters s and a on velocity field and microrota-
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tion. In order to check the accuracy of the results for velocity components F, G and H and the microrotation 
components L, M and N, the calculations have been carried out on three different grid sizes namely h = 0.1, 0.05 
and 0.025. The three different sets of the material constants C1, C2, C3, C4, C5 and C6 in the Table 1 below have 
been chosen arbitrarily and calculations have been carried out for each set. 

The velocity derivatives at the surface of the disc are given in Table 2 for micropolar fluids results with the 
results for Newtonian fluids. In Table 3 to Table 5, the numerical results are presented for s = 0.0, −0.1, −0.16 
and a = 0.0, 1.5 for the material constants case I. The radial and transverse velocity components F and G are re-
spectively depicted in Figure 1 and Figure 2 for different values of the suction parameter a when s = 0. The ve-
locity components show a reduction in magnitude with increasing values of a. The boundary layer is clearly in-
dicated near the surface of the disk. 

Figure 3 and Figure 4 present velocity components F and G for various values of suction parameter a when 
s = −0.1. The figure indicates the effect of the outer flow for the first time. Some radial flow reversal is occur-
ring in the outer flow but there is stability for the boundary layer. Thus for increasing s negatively and then the 
radial flow development will cause the boundary layer to leave the disk. 
 
Table 1. Three sets of material constants used in calculations of micropolar fluids. 

Cases C1 C2 C3 C4 C5 C6 

I 0.1 0.3 0.4 0.5 0.7 0.8 

II 0.5 1.5 2.0 3.0 3.5 4.0 

III 0.3 0.5 1.5 2.5 3.0 3.5 

 
Table 2. The comparison of Micropolar fluids and Newtonian fluids for ( )0F ′  and ( )0G′ . 

s 
( )0F ′  ( )0G′  

Micropolar fluids Newtonian fluids [17] Micropolar fluids Newtonian fluids [17] 

0.0 0.51022801 0.51022912 −0.61592027 −0.61591916 

−0.10 0.49130449 0.49130550 −0.60825160 −0.60825056 

−0.15 0.47627299 0.47627301 −0.58762407 −0.58761507 

−0.16 0.47332786 0.47332988 −0.57766843 −0.57766748 

 

 
Figure 1. Graph of F for different values of parameter a = 0, 0.2, 0.5, 1.0 and 1.5 
from top to bottom when s = 0. 
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Figure 2. Graphs of G for different values of parameter a = 0, 0.2, 0.5, 1.0 and 
1.5 from top to bottom when s = 0. 

 

 
Figure 3. Graph of F for different values of parameter a = 0, 0.3, 0.5, 1.0 and 1.5 
from top to bottom when s = −0.1. 

 

 
Figure 4. Graph of G for different values of parameter a = 0, 0.2, 0.5, 0.7, 1.0 and 
1.5 from top to bottom when s = −0.1. 
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Table 3. The numerical results for velocity components F, G and H and the microrotation components L, M and N when s = 
0.0 and a = 0.0. 

h ζ  F G H L M N 

0.05 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.179240 0.475672 −0.264748 −0.132547 −0.005065 0.061811 

2.000 0.116682 0.198637 −0.569258 −0.100132 −0.017006 0.030972 

3.000 0.055710 0.079067 −0.736567 −0.055573 −0.015614 0.009449 

4.000 0.023615 0.030491 −0.811870 −0.027335 −0.010107 0.001537 

5.000 0.009307 0.011294 −0.842782 −0.012569 −0.005525 −0.000480 

6.000 0.003340 0.003853 −0.854550 −0.005392 −0.002665 −0.000683 

7.000 0.000936 0.001029 −0.858460 −0.001912 −0.001024 −0.000438 

8.000 0.000000 0.000000 −0.859246 0.000000 0.000000 0.000000 

0.025 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.179756 0.475490 −0.265459 −0.132669 −0.005076 0.061869 

2.000 0.116687 0.198008 −0.570529 −0.100185 −0.017102 0.030837 

3.000 0.055505 0.078594 −0.737561 −0.055501 −0.015655 0.009322 

4.000 0.023472 0.030247 −0.812501 −0.027248 −0.010100 0.001480 

5.000 0.009235 0.011179 −0.843204 −0.012505 −0.005508 −0.000501 

6.000 0.003306 0.003803 −0.854869 −0.005355 −0.002651 −0.000689 

7.000 0.000925 0.001015 −0.858737 −0.001898 −0.001017 −0.000438 

8.000 0.000000 0.000000 −0.859515 0.000000 0.000000 0.000000 

0.012 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.179545 0.475495 −0.265239 −0.132672 −0.005128 0.061799 

2.000 0.116731 0.198355 −0.570108 −0.100151 −0.017086 0.030901 

3.000 0.055642 0.078881 −0.737367 −0.055528 −0.015651 0.009401 

4.000 0.023554 0.030398 −0.812532 −0.027287 −0.010111 0.001519 

5.000 0.009270 0.011246 −0.843348 −0.012534 −0.005518 −0.000486 

6.000 0.003321 0.003830 −0.855060 −0.005372 −0.002658 −0.000685 

7.000 0.000930 0.001023 −0.858946 −0.001904 −0.001020 −0.000437 

8.000 0.000000 0.000000 −0.859728 0.000000 0.000000 0.000000 
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Table 4. The numerical results for velocity components F, G and H and the microrotation components L, M and N when s = 
−0.01 and a = 0.0.  

h ζ  F G H L M N 

0.05 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.163850 0.477984 −0.248418 −0.136301 −0.006879 0.061170 

2.000 0.091781 0.186209 −0.511450 −0.107574 −0.017863 0.026623 

3.000 0.029148 0.040950 −0.625998 −0.065370 −0.014898 −0.000802 

4.000 0.001462 −0.032056 −0.651904 −0.037765 −0.008380 −0.014413 

5.000 −0.006261 −0.068608 −0.645015 −0.022444 −0.003547 −0.020480 

6.000 −0.006178 −0.086359 −0.631914 −0.014246 −0.000984 −0.022865 

7.000 −0.004098 −0.094583 −0.621554 −0.009695 0.000058 −0.023092 

8.000 −0.002131 −0.098170 −0.615414 −0.006718 0.000315 −0.021139 

9.000 −0.000784 −0.099592 −0.612605 −0.003921 0.000229 −0.015200 

10.000 0.000000 −0.100000 −0.611900 0.000000 0.000000 0.000000 

0.025 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.163982 0.477946 −0.248625 −0.136390 −0.006934 0.061146 

2.000 0.091849 0.186099 −0.511859 −0.107607 −0.017903 0.026584 

3.000 0.029187 0.040848 −0.626508 −0.065366 −0.014914 −0.000831 

4.000 0.001495 −0.032127 −0.652484 −0.037750 −0.008385 −0.014430 

5.000 −0.006233 −0.068650 −0.645656 −0.022430 −0.003549 −0.020489 

6.000 −0.006157 −0.086381 −0.632605 −0.014236 −0.000986 −0.022869 

7.000 −0.004083 −0.094593 −0.622282 −0.009688 0.000056 −0.023094 

8.000 −0.002124 −0.098174 −0.616163 −0.006714 0.000313 −0.021140 

9.000 −0.000781 −0.099593 −0.613365 −0.003919 0.000228 −0.015201 

10.000 0.000000 −0.100000 −0.612663 0.000000 0.000000 0.000000 

0.012 

0.000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 

1.000 0.164012 0.477938 0.248672 0.136410 0.006948 0.061140 

2.000 0.091861 0.186080 −0.511947 −0.107613 −0.017915 0.026576 

3.000 0.029189 0.040832 −0.626607 −0.065365 −0.014920 −0.000836 

4.000 0.001493 −0.032137 −0.652584 −0.037747 −0.008387 −0.014431 

5.000 −0.006235 −0.068656 −0.645753 −0.022427 −0.003549 −0.020488 

6.000 −0.006158 −0.086385 −0.632699 −0.014233 −0.000986 −0.022868 

7.000 −0.004084 −0.094595 −0.622374 −0.009687 0.000056 −0.023093 

8.000 −0.002124 −0.098174 −0.616255 −0.006714 0.000313 −0.021139 

9.000 −0.000781 −0.099593 −0.613456 −0.003919 0.000228 −0.015201 

10.000 0.000000 −0.100000 −0.612754 0.000000 0.000000 0.000000 
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Table 5. The numerical results for velocity components F, G and H and the microrotation components L, M and N when s = 
−0.16 and a = 1.5. 

h ζ  F G H L M N 

0.05 

0.000 0.000000 1.000000 −1.500000 0.000000 0.000000 0.000000 

1.000 −0.002528 0.088033 −1.522923 −0.082486 −0.002232 −0.010100 

2.000 −0.008317 −0.109105 −1.507162 −0.049570 −0.000038 −0.035059 

3.000 −0.003198 −0.150499 −1.495820 −0.029503 0.000588 −0.040513 

4.000 −0.000582 −0.158720 −1.492485 −0.020994 0.000374 −0.040488 

5.000 0.000199 −0.160254 −1.492282 −0.017493 0.000139 −0.039504 

6.000 0.000329 −0.160529 −1.492864 −0.015606 0.000020 −0.038042 

7.000 0.000272 −0.160560 −1.493479 −0.013809 −0.000022 −0.035449 

8.000 0.000170 −0.160498 −1.493923 −0.011234 −0.000028 −0.030365 

9.000 0.000069 −0.160330 −1.494159 −0.007036 −0.000018 −0.020215 

10.000 0.000000 −0.160000 −1.494221 0.000000 0.000000 0.000000 

0.025 

0.000 0.000000 1.000000 −1.500000 0.000000 0.000000 0.000000 

1.000 −0.011205 0.060019 −1.506979 −0.089021 −0.000175 −0.016609 

2.000 −0.005664 −0.144366 −1.484961 −0.057573 0.003504 −0.044292 

3.000 0.006414 −0.180500 −1.487086 −0.035908 0.003608 −0.049458 

4.000 0.009843 −0.179762 −1.504564 −0.025014 0.002249 −0.047525 

5.000 0.008359 −0.173125 −1.523221 −0.019566 0.001041 −0.044332 

6.000 0.005517 −0.167406 −1.537139 −0.016459 0.000315 −0.041014 

7.000 0.002973 −0.163677 −1.545512 −0.014051 −0.000021 −0.037073 

8.000 0.001260 −0.161617 −1.549599 −0.011245 −0.000115 −0.031068 

9.000 0.000352 −0.160591 −1.551095 −0.006991 −0.000082 −0.020325 

10.000 0.000000 −0.160000 −1.551378 0.000000 0.000000 0.000000 

0.012 

0.000 0.000000 1.000000 −1.500000 0.000000 0.000000 0.000000 

1.000 −0.067561 0.195665 −1.454176 −0.078957 −0.009610 0.012609 

2.000 −0.108889 −0.008283 −1.266693 −0.045617 −0.003901 −0.010169 

3.000 −0.108214 −0.076914 −1.045830 −0.025831 0.001519 −0.019670 

4.000 −0.093475 −0.109525 −0.842828 −0.018374 0.004688 −0.024761 

5.000 −0.073748 −0.129694 −0.675170 −0.016381 0.006288 −0.028789 

6.000 −0.053074 −0.143288 −0.548445 −0.016000 0.006704 −0.032064 

7.000 −0.034184 −0.152062 −0.461664 −0.015355 0.006121 −0.033907 

8.000 −0.018827 −0.157114 −0.409328 −0.013376 0.004737 −0.032798 

9.000 −0.007588 −0.159491 −0.383588 −0.008934 0.002729 −0.024962 

10.000 0.000000 −0.160000 −0.376529 0.000000 0.000000 0.000000 
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Figure 5. Graph of F for different values of parameter a = 0, 0.3, 0.5 and 1.5 from top to 
bottom when s = −0.16. 

 

 
Figure 6. Graphs of G for different values of parameter a = 0, 0.2, 0.5 and 1.5 from top to 
bottom when s = −0.16. 

 
Figure 5 and Figure 6 show velocity profiles for F and G for different values of the parameter a when s = 

−0.16. It is noted that this value of s is limiting for which a solution for a = 0 can be found and a large value of 
suction is required to reduce the radial flow traversal as amount of the outflow in the boundary layer is increased. 
Some oscillatory behavior is seen for transverse velocity component. The flow pattern changes quickly. 
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