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Abstract 
In the paper, impulsive synchronization of two hyperchaotic Lü systems with different initial con-
ditions is studied. The sufficient conditions on feedback strength and impulsive distances are es-
tablished from two different angles to guarantee the synchronization. The relevant theoretical 
proofs are presented. Numerical simulations show the effectiveness of the methods. 
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1. Introduction 
In 1990, Pecora and Corroll proposed the conception of chaotic synchronization and they presented a chaos 
synchronization method through investigating synchronization of Newcomb circuit [1] [2]. Since chaos control 
and synchronization have great potential applications in many areas such as information science, medicine, bi-
ology and Engineering, they have received a great deal of attention. Numerous researches have been done theo-
retically and experimentally [3]-[6]. Many approaches have been proposed for chaos synchronization, including 
feedback method, adaptive synchronization, impulsive synchronization and fuzzy synchronization method [7]- 
[12]. Because of transmitting signals in discrete times, impulsive synchronization demands less energy. Besides, 
it has faster synchronous speed than other methods. It is more practical in practical applications. Recently, many 
efforts have been devoted to impulsive synchronization. Ren et al. proposed impulsive synchronization of cou- 
pled chaotic systems via adaptive-feedback approach [13]. Chen et al. proposed a synchronization method of a 
class of chaotic systems using small impulsive signal [14]. Xi et al. presented adaptive impulsive synchroniza-
tion for a class of fractional-order chaotic and hyperchaotic systems [15]. Xu et al. studied a new chaotic system 
without linear term and its impulsive synchronization [16]. In the paper, impulsive synchronization of hyper-
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chaotic Lü system is studied. Based on the boundedness and the largest Lyapunov exponent, two different suffi-
cient conditions are established to guarantee the synchronization. These two methods are analyzed and com-
pared. Numerical simulations show the effectiveness of these methods. 

2. Impulsive Synchronization Theory 
Suppose a n -dimensional chaotic system as 

( ),F t=X X                                            (1) 

choose system (1) as drive system, response system is as follows 

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )0

,

, 1, 2,3,

0

i

i i i i i

F t t t

t t t t t t i

t

+ − +

+

 = ≠
 = − = − =  = =


=

Y Y

Y Y Y Y Y BE

Y Y



                     (2) 

B  is a matrix which stands for a linear combination of −Y X , let ( )1 2diag , , , nb b b=B  ; The error vector 
is = −E Y X ; it  is the discrete time at which the impulse is transmitted. According to system (1) and system 
(2), we can get the error system 

( ) ( ) ( )
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Suppose the impulsive distance η  is invariable, 1i it tη += − , if we can obtain ( )lim 0
t

t
→∞

=E  under some- 

conditions, system (1) and system (2) can be synchronized by impulses. Next we will take hyperchaotic Lü sys-
tem as example for detailed description. 

3. Implement of Impulsive Synchronization 
3.1. Description of Hyperchaotic Lü System 
Hyperchaotic Lü system [17] is described as 

( )x a y x w
y xz cy
z xy bz
w xz dw

 = − +


= − +


= −
 = +









                                       (4) 

in this paper choose 36a = , 3b = , 20c =  and 1d =  so that system (4) exhibits a hyperchaotic behavior 
[17], Figure 1 shows the projections of hyperchaotic Lü system’s attractor. 

 

     
(a)                                  (b)                                    (c) 

Figure 1. The projections of hyperchaotic Lü system’s attractor.                                                 
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Choose hyperchaotic Lü system 

( )1 2 1 4
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as drive system. System (5) can be described as 

( )ϕ=X AX + X                                      (6) 

where ( ) 1 3
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The response system is described as 
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where 
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The error system is 
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where ( ) ( ) ( ) 1 3 1 3 3 1 1 3

1 2 1 2 2 1 1 2

1 3 1 3 3 1 1 3
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Next the sufficient conditions on feedback strength and impulsive distances will be established from two dif-
ferent angles to guarantee the synchronization. 

3.2. Based on the Boundedness of Chaotic System 

Theorem 1 Suppose ( )1 2 3max , ,M y y y≥ , β  is the largest eigenvalue of ( ) ( )T+ +I B I B   

( )( )diag 1,1,1,1=I , λ  is the largest eigenvalue of ( )T0.5 +A A , the constant 1ε > , η  is impulsive dis-

tance, if choose suitable β  and η  such that 

( ) ( )ln 2 3 0Mεβ λ η+ + ≤ ,                                (9) 

then system (6) and system (7) can be synchronized. 
Proof: Choose Lyapunov function as 

T0.5V = E E .                                    (10) 

Calculate the derivative of Equation (10), yield 
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When ( ]1,i it t t−∈ ( )1,2,3,i =  , we have 

( )( ) ( )( ) ( )( )12 3
1 e iM t t

iV t V t λ −+ −+
−≤E E .                           (12) 

When it t= , system (8) is a discrete system, according to Equation (8), we get 
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Let 1i = , according to Equation (12), when ( ]0 1,t t t∈ , 
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When 1t t= , we obtain 
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From Equation (13) and Equation (15), 
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According to Equation (12), when ( ]1 2,t t t∈ , 
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In the same way, when ( ]1,i it t t−∈ ( )1,2,3,i =  , 
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From Equation (9), yield 
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Substitute Equation (20) into Equation (18), we can obtain when ( ]1,i it t t−∈ ( )1, 2,3,i =  , 
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Since ( ]1,i it t t−∈ , 1it t η−− ≤ ．From the assumption given in Theorem 1, we have ( )( )lim 0
i

V t
→∞

=E , Thus 

obtain ( )lim 0
t

t
→∞

=E , i.e. system (6) and system (7) will be synchronized when Equation (9) is satisfied. 

From Figure 1, we can choose 50M = . We calculate the eigenvalues of ( )T0.5 +A A , obtain 25.287λ = .  

Suppose Equation (9) can be satisfied, then ( )ln 0εβ < , i.e., 0 1εβ< < . It is obvious that 0 1β< <  and β  
is near zero. Choose ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B  and 5ε = , we obtain 0.0149η ≤  by solving Equation 
(9). That is to say, when ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B , 0.0149η ≤  (sec.), System (6) and system (7) can be 
synchronized. 
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In this numerical simulation, let ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B , impulsive distance ( )0.01 sec.η = . A time 
step of size 0.0001(sec.) is employed and fourth-order Runge-Kutta method is used to solve Equation (6) and  
Equation (7). The initial states of the drive system (6) and the response system (7) are taken as ( ) ( )0 10,5,8,15= −X  
and ( ) ( )0 8, 12, 20,30= − −Y . The error system (8) has the initial state ( ) ( )0 18, 17, 28,15= − −E . Figure 2 

shows the history of ( )1e t , ( )2e t , ( )3e t , ( )4e t  in the error system (8). From Figure 2, we can see that 

( )1e t , ( )2e t , ( )3e t , ( )4e t  are steady near zero at last, i.e., system (6) and system (7) can be synchronized 

when ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B  and ( )0.01 sec.η = . 

3.3. Based on the Largest Lyapunov Exponent of Chaotic System 
Theorem 1 provides sufficient condition for the synchronization of system (6) and system (7), but Equation (9) 
is not necessary condition. Through simulations we find that the above condition is too rigorous. In fact the 
qualified impulsive distance can be much larger than η  solved from Equation (9). Next we will present a new 
condition based on the largest Lyapunov exponent, which is much looser than Equation (9). 

 

   
(a)                                                     (b) 

   
(c)                                                     (d) 

Figure 2. (Based on boundedness) Synchronization error system (8) states: ( )1e t , ( )2e t , ( )3e t , ( )4e t .          
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Suppose the initial distance between system (6) and system (7) is ( )0E , the largest Lyapunov exponent of  

system(6) is 1λ . Without control, the largest distance between system (6) and system (7) will not go beyond  

( ) 10
tλ

E


 after a short time t  (considering the average case). Generally speaking, the longest predicted  

time of the chaotic system is 11 λ  [18]. Based on the above theory, we can obtain the following conclusions. 
Theorem 2 Suppose β  is the largest eigenvalue of ( ) ( )T+ +I B I B  ( )( )diag 1,1, ,1,1=I  , 1λ  is the 

largest Lyapunov exponent of system (6), the constant 1ε > , η  is impulsive distance. Let 1η λ< , if choose 
suitable β  and η  such that 

1ln 2 0εβ λη+ ≤ ,                                   (22) 

System (6) and system (7) can be synchronized 
Proof: Suppose 

( ) ( ) ( )TV t t t= E E ,                                 (23) 

then 

( ) ( ) ( ) ( )T
0 0 0 0V t V t t t+= = E E ,                             (24) 

hence 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
TT 2

1 1 1 0 0 0e e eV t t t t t V tλ η λ η λ η   = ≤ =   E E E E ,                  (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
T T 2

1 1 1 1 1 1 0eV t t t t t V t V tλ ηβ β β+ = + + ≤ = ≤  I B E I B E E E .         (26) 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
2T T 2

2 2 2 2 2 2 0eV t t t t t V t V tλ ηβ β β+ = + + ≤ = ≤  I B E I B E E E .      (28) 

In the same way, we have 

( ) ( ) ( ) ( )12
0e 1,2,3,

i

iV t V t iλ ηβ+ ≤ =  ,                           (29) 

According to the condition of Theorem 2: 1ln 2 0εβ λη+ ≤ , we have 
12e 1 1λ ηβ ε≤ < ,                                   (30) 

According to Equation (29) and Equation (30), we obtain ( )lim 0ii
V t+

→∞
= , then ( )lim 0

t
t

→∞
=E , i.e. system (6) 

and system (7) can be synchronized if the condition of Theorem 2 is satisfied. 
Here, we still choose 36a = , 3b = , 20c = , 1d =  so that system (5) exhibits hyperchaotic behavior [17]. 

For this system, the largest Lyapunov exponent 1 1.065λ = . Suppose system (5) is described as system (6), 
choose system (6) as drive system, system (7) is the relevant response system, system (8) is the error system, we  
have [ ]T

1 2 3 4, , ,x x x x=X , [ ]T
1 2 3 4, , ,y y y y=Y , [ ] [ ]T T

1 2 3 4 1 1 2 2 3 3 4 4, , , , , ,e e e e y x y x y x y x= = − − − −E . Choose 

( )diag 1.1, 1.1, 1.1, 1.1= − − − −B , 5ε = , substitute them into Equation (22), we obtain 1.406η ≤ . Considering  

11 0.939η λ< = , we have the following results: when ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B , 0.939η < , system (6) 
and system (7) can achieve impulsive synchronization. 

In this numerical simulation, let ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B , impulsive distance ( )0.3 sec.η = . A time 
step of size 0.0001(sec.) is employed and fourth-order Runge-Kutta method is used to solve Equation (6) and  
Equation (7). The initial states of the drive system (6) and the response system (7) are taken as ( ) ( )0 10,5,8,15= −X  
and ( ) ( )0 8, 12, 20,30= − −Y . The error system (8) has the initial state ( ) ( )0 18, 17, 28,15= − −E . Figure 3  
shows the history of ( )1e t , ( )2e t , ( )3e t , ( )4e t  in the error system (8). From Figure 3, we can see that  

( )1e t , ( )2e t , ( )3e t , ( )4e t  are steady near zero at last, i.e., system (6) and system (7) can be synchronized 

when ( )diag 1.1, 1.1, 1.1, 1.1= − − − −B  and ( )0.3 sec.η = . 
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(a)                                                     (b) 

   
(c)                                                     (d) 

Figure 3. (Based on the largest Lyapunov exponent) Synchronization error system (8) states: ( )1e t , ( )2e t , 

( )3e t , ( )4e t .                                                                                 

3.4. Comparison of Two Methods 
If system (6) and system (7) achieve synchronization, system (8) will be steady at zero. Suppose ( )diag , , ,k k k k=B , 
η  stands for impulsive distance, Figure 4 shows the boundaries of the stable region for Theorem 1, Figure 5 
shows the boundaries of the stable region for Theorem 2. (Taking 1,3,5ε =  as examples, the region below the 
boundary is stable, not considering 11η λ<  in Figure 5). 

From Figure 4 and Figure 5, we can see that the requirement of impulsive distance in Theorem 1 is more ri-
gorous than Theorem 2. Comparing the methods of Theorem 1 and Theorem 2, the former is based on the 
boundedness of chaotic system, it considers the extreme case all the time, while the latter is based on the largest 
Lyapunov exponent of chaotic system, it represents the average case. Therefore, the sufficient condition in 
Theorem 1 is a very small part of the condition in Theorem 2. Of course, in view of the requirements of syn-
chronous time and quality, it is not suitable to choose very large impulsive distance in practical applications. 

4. Conclusion 
In the paper, impulsive synchronization of hyperchaotic Lü systems is studied. We use two methods to achieve  
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Figure 4. The boundaries of the stable region for Theorem 1.   

 

 
Figure 5. The boundaries of the stable region for Theorem 2.   

 
the sufficient conditions for synchronization and relevant analysis and comparison are presented. Mohammad et 
al. adopted the first method to study impulsive synchronization of hyperchaotic Chen systems [19]. The second 
method has not been reported before. Obviously it is more compatible than the first one. Numerical simulations 
show the effectiveness of the methods. 
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