
Creative Education, 2015, 6, 211-214
Published Online February 2015 in SciRes. http://www.scirp.org/journal/ce
http://dx.doi.org/10.4236/ce.2015.62019

How to cite this paper: Gao, J. T., Chen, W., Guo, L. L., Yin, X. Z., Wang, Z. B., & Zhou, H. B. (2015). The Study on
Case-Driven Methodology to Teach Software Engineering in Graduate Education. Creative Education, 6, 211-214.
http://dx.doi.org/10.4236/ce.2015.62019

The Study on Case-Driven Methodology to
Teach Software Engineering in Graduate
Education
Juntao Gao, Wei Chen, Lingling Guo, Xiaozhe Yin, Zhibao Wang, Hongbo Zhou
School of Computer & Information Technology, Northeast Petroleum University, Daqing, China
Email: gjt@nepu.edu.cn

Received 22 January 2015; accepted 11 February 2015; published 13 February 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper discusses the reform of teaching contents, teaching model, teaching method of software
engineering courses, and assesses the effects of a series of reform measures and programs. It for-
med a case-driven methodology to teach software engineering. The teaching practice undertaken
by Northeast Petroleum University has shown that the methodology provides graduate students
with the opportunities to experience the realistic software engineering problems and environ-
ments, and then effectively raise their interest in learning.

Keywords
Software Engineering, Graduate Education, Case-Driven

1. Introduction
Software engineering teaching plays important roles in computer education of universities. It involves basic
principles, methodologies, techniques and tools used in development of complex software systems. The teaching
effect has important influence on the future work of students engaged in software development. However, it is
not easy for graduate students to understand the knowledge of software engineering. The reason is twofold. First,
most of the methods in software engineering are proposed to solve the problem of developing software system in
large scale and they seem nonsense to the little prototype system developed in experiments. Second, graduate
students have few opportunities to experience realistic case of complex software development. Therefore, they
have no idea of the problem in complex software development.

In order to improve the effect of software engineering teaching, the case-driven methodology to teach soft-
ware engineering is proposed in this paper. Case-driven teaching is a flexible model which exploits the basic

http://www.scirp.org/journal/ce
http://dx.doi.org/10.4236/ce.2015.62019
http://dx.doi.org/10.4236/ce.2015.62019
http://www.scirp.org
mailto:gjt@nepu.edu.cn
http://creativecommons.org/licenses/by/4.0/

J. T. Gao et al.

212

capacity for students to learn from cases and the basic desire of teachers to tell cases that are indicative of their
experiences (Li, 2010; Guo et al., 2010). The case-driven methodology to teach software engineering makes the
students participate in a case that the students found interesting and where the telling of a case would be appre-
ciated. Through participating in some typical cases, the students are demanded to apply principles, methods and
tools to solve realistic problems (Yang & Liu, 2009; Teiniker et al., 2011). The teaching practice undertaken by
Northeast Petroleum University has shown that the methodology can effectively enhance their interest in learn-
ing software engineering.

This paper includes the following contents: the next section introduces the principle to select and design cases.
The third section specifies the process to teach software engineering in graduate education. The fourth section
analyzes the teaching effects. At last, the conclusions are drawn.

2. The Principles of Designing Cases
Integrating theory and practice is emphasized in case-driven teaching, where the students are made to learn
knowledge on their own initiative and trained to cultivate the ability to solve realistic problems. This is consis-
tent to the goal of software engineering teaching. In addition, the quality of the cases has important impact on
the interest of students. Therefore, the following five principles should be conformed during design of teaching
cases.

Diversity Principle
There are widely different types of software systems, the software system development process used by the

software development process and methods are different according to different types of software systems, so the
software engineering teaching cases should not include only a single type system, but cover a variety of types of
software. For example, during the phases of requirement analysis and system design, the cases of developing the
management information system, real-time system, network software development should be included at least.

Interesting Principle
Interesting is critical to make the students to learn knowledge on their own initiative, so it is very important to

select some interesting cases, such as the greedy snake game development, memos tool development, online
teaching management system development, etc.

Complexity Principle
The teaching cases should have certain scale and complexity and need three to five students participates in the

analysis and design. Otherwise, it is hard to let the student understand the effects of the principles, methods of
software engineering.

Variability Principle
It is better to predefine some points of variability in one teaching cases, in order to simulate the realistic de-

velopment processes which make developer have to deal with continuous change of user requirements. In this
way, the students may understand the importance the scalability of software architecture when dealing with
changes of requirements.

Completeness Principle
It is better to make the contents of the case cove the complete lifecycle of software systems, a variety of me-

thods and technologies are integrated, to raise students’ comprehensive ability to solve problems. However, be-
cause of the limit of time, it should not take a very long time to let the students to write programs, one case
should cover at least requirements analysis, architectural design, detailed design, and another case is used to
practice testing.

3. The Teaching Processes
Effective teaching is based on proper teaching processes, which can be divided into steps.

1) Preparation
Before the formal discussion begins, the materials of cases are hand out to each student. It is guarantee that

the students have enough time to learn the cases and retrieve necessary literatures. In this way, the students can
initially form their own opinions and solutions to the problems in the cases. This stage is indispensable in the
whole teaching process. If the students do not fully understand the contents of the cases, the teaching effect is
going to be affected.

J. T. Gao et al.

213

2) Construction of Organization
Construct some groups collaborate to solve the problems. The size of each group should not be too big,

usually within three to five personal advisable. The students are allowed to select their partner freely.
3) Requirements Analysis
In the teacher’s guidance, the group members are inspired to discuss freely, think actively, and make the case

to discuss closely around the key requirements. In the process of the discussion the group members must be ac-
tive to speak, fully showed his opinions to the problems of the cases. Other group member should pay attention
to the opinions. Through comparing their team opinions, try to make comprehensive decisions. The result of this
stage is requirements model and specification. Finally, the requirement specifications are checked among groups
in order to simulate the process of requirements checking.

4) Software Design
According to the requirements specification of their own team, apply the technology of design to draw a

software solution to the requirements, then Select another requirements specification from other team, proceed
to design. The result of this stage is software design model. Finally the requirement specifications are checked
among groups in order to simulate the process of requirements checking.

5) Coding
Because of the limit of course time, it is impossible to implement all of the modules designed in the last stage.

Therefore, some typical modules selected to practice coding.
6) Testing
The purpose of this stage is to simulate the test procedure. First, arbitrarily select the codes from other team.

Then design the test cases, write test script and implement them. The result of this stage is the report of software
testing.

7) Summarization
After the completion of the case, the teacher first make the summarization according to the performance of

each group, analyze some good advice and unique insights and puts forward the deficiencies and problem analy-
sis thorough and comprehensive degree comments, so as to improve the quality of the case discussion, and write
case analysis report. Through the written report, students’ abilities to presentation are raised.

4. Teaching Effects
In order to assess the effect of the case-driven teaching, sixty students from four specialties (computer science
and technology, electronic science and technology, information management, education technology) are divided
into two groups. First group was taught using the methodology described in this paper, the other group was
taught using traditional methodology. The contents of course are the same. The comparison of teaching effects is
depicted as Table 1. The ratio of excellence and good of first group reaches 50%, while the ration of excellence
and good of second group reaches 21%. In addition, the opinions of the first group are more comprehensive than
the second group. In the experiments, the first group is more active and few solutions are similar.

5. Conclusion
The teaching effect of software engineering has important influence on the future work of students engaged in
software developments. It takes a long way to raise the quality of software engineering teaching. The practice of
case-driven methodology to teach software engineering reaches good effect. In order to satisfy the requirements
of technology advance, we are going to continue to explore the new teaching methods and enrich the base of
teaching cases, try to cultivate more and more creative talents.

Table 1. The comparison of teaching effect between two groups.

Ratios First Group Second Group

Excellence 15.16% 5.22%

Good 28.53% 14.11%
Medium 36.56% 53.3%

Pass 16.5% 20.55%
Fail 3.25% 6.82%

J. T. Gao et al.

214

Acknowledgements
This work is sponsored by the Engineering Professional Degree Graduate Education Projects of China (2014-
JY-040).

References
Guo, L. L., Man, Y., & Yu, F. (2010). Exploration and Practice on Case-Driven Research-Based Teaching Model. 2nd In-

ternational Conference on Education Technology and Computer, 1209-1211.
Li, W. (2010). To Explore Case-Driven teaching Mode for Mechanical CG Course. 2nd International Workshop on Educa-

tion Technology and Computer Science, 284-287.
Teiniker, E., Paar, S., & Lind, R. (2011). A Practical Software Engineering Course with Distributed Teams. 14th Interna-

tional Conference on Interactive Collaborative Learning, 195-201. http://dx.doi.org/10.1109/ICL.2011.6059575
Yang, C., & Liu, Y. (2009). Teaching Reform and Practice on the Software Engineering Course. International Conference

on Information Science and Engineering, 3470-3473.

http://dx.doi.org/10.1109/ICL.2011.6059575

http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	The Study on Case-Driven Methodology to Teach Software Engineering in Graduate Education
	Abstract
	Keywords
	1. Introduction
	2. The Principles of Designing Cases
	3. The Teaching Processes
	4. Teaching Effects
	5. Conclusion
	Acknowledgements
	References

