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Abstract 
The steady two-dimensional laminar boundary layer flow and heat transfer of a viscous incom-
pressible electrically conducting fluid over an exponentially stretching surface in the presence of a 
uniform magnetic field with thermal radiation are investigated. The governing boundary layer 
equations are transformed to ordinary differential equations by taking suitable similarity trans-
formation and solved numerically by shooting method. The effects of various parameters such as 
magnetic parameter, radiation parameter, Prandtl number and Eckert number on local skin-fric- 
tion coefficient, local Nusselt number, velocity and temperature distributions are computed and 
represented graphically. 
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1. Introduction 
The study of boundary layer flow and its applications are vital for advancement in the field of technology and 
engineering. The computation and computer coordinated applications of flow over a stretching surface are play-
ing a pivotal role in different realm of industrial products of aerodynamics, polymers and metallurgy, such as 
liquid films in condensation process, artificial fibers, glass fiber, metal spinning, the cooling process of metallic 
plate in a cooling bath and glass, wire drawing, paper production, aerodynamic extrusion of plastic sheets, crys-
tal growing, cable coating and many others, to get end product of desired quality and parameters. Sakiadis [1] 
probably was the first who investigated boundary layer flow on a moving continuous solid surface. Crane [2] 
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extended this concept to a linearly stretching plate whose velocity is linearly proportional to the distance from 
the slit and produced an exact analytical solution for the steady two-dimensional flow problems. Gupta and 
Gupta [3], Carragher and Crane [4], Grubka and Bobba [5], Chen and Char [6], Ali [7], Andersson [8], Ariel et 
al. [9], Ishak et al. [10], Jat and Chaudhary [11] [12], Wang [13] and Nadeem et al. [14] analyzed the effects of 
heat transfer on a stretching surface taking into account different aspects of the problem. 

Boundary layer flow and heat transfer over an exponentially stretching surface have wider applications in 
technology such as in case of annealing and thinning of copper wires. Magyari and Keller [15] obtained analyti-
cal and numerical solutions for boundary layer flow over an exponentially stretching continuous surface with an 
exponential temperature distribution. Many other problems on exponentially stretching surface under different 
physical situations were observed by Elbashbeshy [16], Partha et al. [17], Khan [18], Sanjayanand and Khan [19] 
and El-Aziz [20]. 

At higher operating temperature, the effects of thermal radiation and heat transfer play a pivotal role on the 
fluid flow problem of boundary layer. The application of controlled heat transfer in polymer industries is very 
important to get final product of desired parameters. The modern system of electric power generation, plasma, 
space vehicles, astrophysical flows and cooling of nuclear reactors are governed by applications of thermal radi-
ation and heat transfer of fluid flow. Elbashbeshy [21] determined the effect of radiation on flow of an incom-
pressible fluid along a heated horizontal stretching sheet. Sajid and Hayat [22] extended this concept by investi-
gating the influence of thermal radiation on the boundary layer flow over an exponentially stretching sheet and 
solved the problem analytically. Recently, Bidin and Nazar [23], Jat and Chaudhary [24], Nadeem et al. [25] and 
Mukhopadhyay and Gorla [26] investigated various aspects of such problem either analytically or numerically. 

With reference to above significant studies and in view of importance of MHD applications in various field of 
technologies, the objective of present paper is to investigate the effect of thermal radiation on an electrically 
conducting two-dimensional boundary layer incompressible viscous fluid flow over an exponentially stretching 
surface in the presence of uniform magnetic field by using Rosseland approximation. Numerical results of the 
momentum and energy equations are computed by using shooting method. The promising results of velocity and 
temperature distributions, local skin-friction coefficient and surface heat transfer are discussed for various phys-
ical parameters and simplified their effects for different conditions. 

2. Problem Formulation 
Consider the steady two-dimensional laminar boundary layer flow ( ), ,0u v  of a viscous incompressible electr-
ically conducting radiative fluid over continuous exponentially stretching surface in the presence of an external-
ly applied normal magnetic field of constant strength ( )00, ,0B . The x-axis is taken along the stretching surface 
in the direction of motion and y-axis is taken perpendicular to it. The stretching surface has a uniform tempera-
ture ( ) 2

0ex L
wT x T T∞= +  and a linear velocity ( ) 0ex L

wU x U=  while temperature of flow external to the 
boundary layer is T∞ . The system of governing boundary layer equations (which model Figure 1) are given by: 
 

 
Figure 1. Sketch of the physical problem. 
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where T0 is the reference temperature, L is the reference length, U0 is the reference velocity, µυ
ρ

=  is the coef-  

ficient of kinematic viscosity, µ  is the coefficient of viscosity, ρ  is the fluid density, σ  is the electrical 
conductivity, Cp is the specific heat at constant pressure, T is the temperature, κ  is the thermal conductivity 
and qr is the radiative heat flux. The other symbols have their usual meanings. 

The boundary conditions are: 

( ) ( )0 : , 0;
: 0; .

w wy u U x v T T x
y u T T∞

= = = =

→∞ → →
                             (4) 

By using Rosseland approximation of the radiation for an optically thick boundary layer, the radiative heat 
flux qr is expressed (Bidin and Nazar [23]) as: 

44
3r

Tq
y

σ
κ

∗

∗

∂
= −

∂
                                     (5) 

where σ ∗  is the Stefan-Boltzmann constant and κ∗  is the mean absorption coefficient. The above radiative 
heat flux qr is effective at a point away from boundary layer surface in an intensive absorption flow. Considering 
that the temperature variation within the flow is very small, the T4 may be expressed as a linear function of tem-
perature T. Expanding T4 by Taylor’s series about temperature T∞  and neglecting higher-order terms, hence 

4 3 44 3T T T T∞ ∞≅ −                                     (6) 

Using Equation (5) and (6), equation (3) is reduced to: 
23 2

2

16
3p

TT T T uC u v
x y yy

σ
ρ κ µ

κ

∗
∞

∗

    ∂ ∂ ∂ ∂
+ = + +    ∂ ∂ ∂∂    

                      (7) 

3. Similarity Analysis 
The continuity Equation (1) is identically satisfied if we defined stream function ( ),x yψ  as: 

,    u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

                                   (8) 

For the solution of momentum and energy Equations (2) and (7), introducing the following dimensionless va-
riables: 

( ) ( ), 2 wx y LU fψ υ η=                                 (9) 

2
wU

y
L

η
υ

=                                     (10) 

( )2
0ex LT T T θ η∞= +                                  (11) 

Using Equations (8) to (11), Equations (2) and (7) are reduced to: 
22 0f ff f Mf′′′ ′′ ′ ′+ − − =                                (12) 
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241 Pr Pr PrEc 0
3

K f f fθ θ θ  ′′ ′ ′ ′′+ + − + = 
 

                          (13) 

The boundary conditions are: 
0 : 0,   1;     1

: 0;     0
f f
f

η θ
η θ

′= = = =
′= ∞ = =

                                (14) 

where prime (') denote differentiation with respect to η, 
2
02

w

B L
M

U
σ
ρ

=  is the Magnetic parameter, 
34 TK σ

κ κ

∗
∞

∗=  

is the Radiation parameter, Pr pCµ
κ

=  is the Prandtl number and 
2

2
0

Ec
e
w

x L
p

U
C T

=  is the Eckert number. 

4. Numerical Solution of the Problem 
For numerical solution of the Equations (12) and (13), we use the following power series in terms of small 
magnetic parameter M as: 

( ) ( )
0

i
i

i
f M fη η

∞

=

= ∑                                    (15) 

( ) ( )
0

j
j

j
Mθ η θ η

∞

=

= ∑                                    (16) 

Substituting the values of ( )f η  and ( )θ η  from Equations (15) and (16) and its derivatives in Equations 
(12) and (13), and then equating the coefficients of like powers of M, we get the following set of equations: 

2
0 0 0 02 0f f f f′′′ ′′ ′+ − =                                    (17) 

2
0 0 0 0 0 0

41 Pr Pr PrEc
3

K f f fθ θ θ  ′′ ′ ′ ′′+ + − = − 
 

                           (18) 

1 0 1 0 1 0 1 04f f f f f f f f′′′ ′′ ′ ′ ′′ ′+ − + =                                 (19) 

1 0 1 0 1 1 0 1 0 0 1
41 Pr Pr Pr Pr 2PrEc
3

K f f f f f fθ θ θ θ θ  ′′ ′ ′ ′ ′ ′′ ′′+ + − = − + − 
 

                   (20) 

2
2 0 2 0 2 0 2 1 1 1 14 2f f f f f f f f f f f′′′ ′′ ′ ′ ′′ ′′ ′ ′+ − + = − + +                           (21) 

2
2 0 2 0 2 1 1 1 1 2 0 2 0 0 2 1

41 Pr Pr Pr Pr Pr Pr 2PrEc PrEc
3

K f f f f f f f f fθ θ θ θ θ θ θ  ′′ ′ ′ ′ ′ ′ ′ ′′ ′′ ′′+ + − = − + − + − − 
 

         (22) 

The corresponding boundary conditions are: 

0 00 : 0,   1,   0; 1, 0

: 0; 0; 0,   0
i j j

i i

f f f

f i j

η θ θ

η θ

′ ′= = = = = =

′= ∞ = = ≥ >
                          (23) 

The Equation (17) is same as that obtained by Bidin and Nazar [23] for non-magnetic case and the remaining 
equations from (18) to (22) are ordinary linear differential equations and have been solved numerically by 
Shooting method with boundary condition (23). The velocity and temperature distributions for various values of 
parameters are shown in Figures 2-6 respectively. 

5. Local Skin Friction Coefficient and Local Nusselt Number 
The important physical quantities are the local skin-friction coefficient Cf and the local Nusselt number Nu, 
which are defined as: 
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Figure 2. Velocity distribution against η for various values of M. 

 

 
Figure 3. Temperature distribution against η for various values of M with K = 
0.5, Pr = 1 and Ec = 0.0. 

 

 
Figure 4. Temperature distribution against η for various values of K with M = 
0.04, Pr = 1 and Ec = 0.0. 
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Figure 5. Temperature distribution against η for various values of Pr with M = 
0.04, K = 0.5 and Ec = 0.0. 

 

 
Figure 6. Temperature distribution against η for various values of Ec with M = 
0.04, K = 0.5 and Pr = 1. 
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In the present case which can be expressed in dimensionless form as: 
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( ) ( )
0

Re ReNu 0 0
2

j
j

j
M

L
θ θ

∞

=

 
′ ′= − = −  

 
∑                           (27) 

where 
0

w
y

u
y

τ µ
=

 ∂
=  ∂ 

 is the surface shear stress and Re wU L
υ

=  is the local Reynolds number. The numerical  

values of ( )0f ′′  and ( )0θ ′  are proportional to the local skin-friction coefficient Cf and local Nusselt number 
Nu at the surface respectively and these are presented by Table 1 for various values of the physical parameters. 

6. Results and Discussion 
Figure 2 shows variation of velocity distribution ( )f η′  against η  for various values of the magnetic para-
meter M. This figure shows that the fluid velocity decreases with increasing value of the magnetic parameter M, 
due to the effect of Lorentz force produced by transverse magnetic field causes deceleration of fluid velocity. 

Figures 3-6 show the temperature distributions ( )θ η  against η  for various values of the magnetic para-
meter M, the radiation parameter K, the Prandtl number Pr and the Eckert number Ec. It is observed from these 
figures that the temperature distribution ( )θ η  increases with increasing value of any parameter, such as the 
magnetic parameter M, the radiation parameter K and the Eckert number Ec. However, it decreases with in-
creasing value of the Prandtl number Pr. An increasing Prandtl number Pr, causes decrease in thermal boundary 
layer of fluid flow. 

The values of the local skin-friction coefficient Cf and the local Nusselt number Nu in terms of ( )0f ′′  and 
( )0θ ′  respectively, are presented in the Table 1, for various values of the magnetic parameter M, the radiation 

parameter K and the Prandtl number Pr, with the Eckert number Ec = 0.0. It is significant that the local 
skin-friction coefficient Cf and the local Nusselt number Nu decreases with increasing value of the magnetic pa-
rameter M. Moreover, the local Nusselt number Nu decreases with increasing value of the radiation parameter K, 
whereas the reverse phenomena occurs for the Prandtl number Pr. Further, Table 1 shows that all values of 

( )0f ′′  and ( )0θ ′  are negative, corresponding to various values of physical parameters. A negative sign of 
( )0f ′′  implies the exertion of drag force on the surface and a negative sign of ( )0θ ′  implies heat transfer 

from the surface. 
 

Table 1. Variation of surface shear stress f'' (0) with M and surface heat 
transfer rate θ' (0) with M, K, Pr and Ec = 0.0. 

f'' (0) 

M = 0.00 M = 0.04 M = 0.25 

−1.2821 −1.3135 −1.4642 

θ' (0) 

K
 

Pr
 

Ec = 0.0 

M = 0.00 M = 0.04 M = 0.25 

0.0 

1 −0.9559 −0.9475 −0.9080 

2 −1.4712 −1.4627 −1.4217 

3 −1.8689 −1.8605 −1.8202 

0.5 

1 −0.6860 −0.6786 −0.6455 

2 −1.0737 −1.0652 −1.0246 

3 −1.3805 −1.3720 −1.3309 

1.0 

1 −0.5528 −0.5466 −0.5192 

2 −0.8653 −0.8571 −0.8190 

3 −1.1215 −1.1129 −1.0721 
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7. Conclusion 
The characteristic relationships among various parameters influencing viscous incompressible electrically con-
ducting fluid over an exponentially stretching surface in the presence of a uniform magnetic field with thermal 
radiation have been analyzed and illustrated graphically. The similarity equations are determined and solved 
numerically by shooting method. It is observed that thickness of the velocity boundary layer, the local skin-friction 
coefficient and the local Nusselt number decreases with increasing value of the magnetic parameter. However, 
thickness of the thermal boundary layer increases with increasing value of the magnetic parameter. Further, it is 
observed that thickness of thermal boundary layer increases with increasing value of the radiation parameter or 
the Eckert number, whereas, reverse phenomenon observed for the Prandtl number. Moreover, the local Nusselt 
number decreases with increasing value of the radiation parameter, while reverse behaviour observed for the 
Prandtl number. 
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