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Abstract

In this paper we give a full description of idempotent elements of the semigroup Bx (D), which are
defined by semilattices of the class Z1 (X, 10). For the case where X is a finite set we derive formu-
las by means of which we can calculate the numbers of idempotent elements of the respective se-
migroup.
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1. Introduction

Let X be an arbitrary nonempty set, D be an X-semilattice of unions, i.e. such a nonempty set of subsets of the
set X that is closed with respect to the set-theoretic operations of unification of elements from D, f be an arbi-
trary mapping of the set X in the set D. To each such a mapping f we put into correspondence a binary relation
a, onthe set X that satisfies the condition
@ = (01 f ()

The set of all such «, (f:X — D) is denoted by B, (D). It is easy to prove that B, (D) is a semi-
group with respect to the operation of multiplication of binary relations, which is called a complete semigroup of
binary relations defined by an X-semilattice of unions D.
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RecaII that we denote by & an empty binary relation or empty subset of the set X. The condition
(x,y) € a will be written in the form xay. Further let x, ye X, Y <X, a€B, (D), TeD, @#D'cD,
D=uD and teD.Then by symbols we denoted the following sets:

ya={xeX|yax}, Ya={J  va, 2" ={Y|y =X}, X" =2"\{a},
V(D,a)={Ya|Y eD}, D; ={T'eD|T T}, D ={T'eD|T' T},
D/={z'eD|tez'}, I(D',T)=u(D'\Dj).

By symbol A(D, D’) is denoted an exact lower bound of the set D' in the semilattice D.

Definition 1. We say that the complete X-semilattice of unions D is an Xl-semilattice of unions if it satisfies
the following two conditions:

a) A(D,D,)eD forany teD;

b) Z=J,,A(D,D,) forany nonempty element Z of the semilattice D.

Definition 2. We say that a nonempty element T is a nonlimiting element of the set D' if T \I(D',T) =0
and a nonempty element T is a limiting element of the set D' if T \I (D’,T ) =0.

Definition 3. Let «eB, (D), TeV (X*,a) A {y € X|ya =T} . A representation of a binary relation
a oftheform a=|J, (e a)(YT“ xT) is called quasinormal,

Note that, if « _UTev * a)(YT” ><T) is a quasinormal representation of the binary relation « , then the fol-
lowing conditions are trug:

1) X= UTev(x*,a)YTa;

2) YEAYe =@ for T, T'eV(X",a) and T=T".

Let zn(x : m) denote the class of all complete X-semilattices of unions where every element is isomorphic
to a fixed semilattice D.

The following Theorems are well know (see [1] and [3]).

Theorem 4. Let X be a finite set; 6 and q be respectively the number of basic sources and the number of all
automorphisms of the semilattice D. If |[X|=n>¢& and [Z,(X,m)|=s, then

L1 o[ ()T ekl el (8 ((p-o))-T
S_E'p; le (i-1)1-(p—i+1)!
where C¥ —__J°  (see Theorem 11.5.1[1]).

(k1)- (J —k)!
Theorem 5. Let D be a complete X-semilattice of unions. The semigroup B, (D) possesses right unit iff D
is an XlI-semilattice of unions (see Theorem 6.1.3 [1]).
Theorem 6. Let X be a finite set and D(a) be the set of all those elements T of the semilattice
Q=V(D,a)\{&} which are nonlimiting elements of the set Q; . A binary relation « having a quasinormal

representation o = UTE\/ )(YT" ><T) is an idempotent element of this semigroup iff

a) V(D,a) iscomplete Xl-semilattice of unions;
b) U, 5( )YT“, oT forany TeD(a);
€ o T

c) Y NnT =& forany nonlimiting element of the set D(oz)T (see Theorem 6.3.9 [1]).

Theorem 7. Let D, Z(D), EQ) (D') and | denote respectively the complete X-semilattice of unions, the set
of all XI-subsemilatices of the semilattice D, the set of all right units of the semigroup B, (D) and the set of
all idempotents of the semigroup B, (D) . Then for the sets EQ) (D') and | the following statements are true:

Dif @<D and =, D)={D'ex(D)@eD'| then

a) EV ( N EV )( Sz@ for any elements D’ and D" of the set T, (D) that satisfy the condition
D i D” .

b) 1= UD'EZ@(D)E§<r) (D)

c) the equality || | = Zo/ez@(o)

EY) (D’)‘ is fulfilled for the finite set X.

)
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2)if DD, then

a) E@(D’)m E&”(D”)z@ for any elements D' and D" of the set (D) that satisfy the condition
D'=D";

b) IZUD’EZ(D)E§<r)(D,)

c) the equality |||:ZD,EZ(D) EQ)(D')‘ is fulfilled for the finite set X (see Theorem 6.2.3 [1]).

Corollary 1. Let Y ={y;,y,,--,y,} and D, :{TI,TZ,---,TJ-} be some sets, where k>1 and j>1. Then
the number s(k, j) of all possible mappings of the seE Y into any such subset Dj oftheset D; that T; € D]
can be calculated by the formula s(k, j)=j—(j-1)" (see Corollary 1.18.1 [1]).

2.1dempotent Elements of the Semigroups B, (D) Defined by Semilattices of the
Class X,(X,10)

Let X and Zl(X,lo) be respectively an arbitrary nonempty set and a class X-semilattices of unions, where
each element is isomorphic to some X-semilattice of unions D :{29,28,27,26,25,Z4,Z3,ZZ,ZI, D} that satis-
fies the conditions:
Z,c2,c2,cD,Z,cZ,cZ cD,
ch26czlc5, zgczeczch),
Z,c2,c2,cD,Z,cZ,cZ,cD,
Z,c2,c2,cD, 2\, #3, Z,\Z, #2,
Z\Z, 2D, Z\NZ, #D, Z,\Z, # D,
Z N2, #D, Z\2,#D, Z\Z, # D,
I \Zy#D, I \Z, #D, Z,\Z, # D,
ZNZ,#D, L\Lyg#D, Z\Z, # D,
ZN\Z %D, Z\ 2, # D, Z\Z, 2D, (1)
ZNZ #D, Z\Zy# D, Z\Z, # D,
ZNZ,#D, L \Lg# D, Z\Z; # D,
ZNZy# D, ZN\Zyg D, Z\Z, # D,
2,02,=2,02,=2,02,=2,UZ,
=2,020,=2,V2,=2,02,=2,U1Z,
=2, 0l,=2,07,=2,02,=2,UZ,
=Z,02,=2,0Z,=2,UZ,=D,
2,02, =2,02s=2,07,=1,,
2, V2, =2, 02,=2,0U7;=1,.
An X-semilattice that satisfies conditions (1) is shown in Figure 1.
Let C(D)={R,P,P,P,P,R, PP, P PR} beafamily of sets, where Po, Py, Py, P3, P4, Ps, Pg, P7, Pg, Po

Figure 1. Diagram of D.
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are pairwise disjoint subsets of the set X and ¢

:(D Z, 2, Z, Z, Z, Z, Z, Z, ZQJ be & map-
(D

R R PP PRPRRPERR

ping of the semilattice D onto the family sets C . Then for the formal equalities of the semilattice D we

have a form:

D=PRURUPRUPR,UP,URUPFUP, UPR UR,
2, =PRUPR,UR,UPR,UR UF,UP, UR, UF,,
Z, =R UPRUP,UP,UR, UF, UP, UR, UF,
Z,=RLURUP,UR,UR, UF,UP, UR, UFR,
2, =R, UR,UR,UR, UPF, UP, UR, UR,, 2
Z. =R UP,UPR,UP, UP, UP, UPR, UR,,
Z, =P UP,UR,UP, UR UR,,
Z, =P, URUP,UP,UR,UR, UR, UR,,
Z;=RURUP,UP,UR, URUP, UR,
Z, =P,
Here the elements Py, P, P3, P4, Ps, Ps, P7, Pg are basis sources, the elements Py, Pg, Py are sources of com-

pleteness of the semilattice D. Therefore |X|2 7 and 6=7 (see[2]).
Lemmal. Let Dex,(X,10), [Z,(X,10)|=s and |X|>&>7.If X isafinite set, then
S 2%((—1)><4n +7x5"—21x6" +35x7" —35x8" +21x9" +11”) .

Proof. In this case we have: m = 10, ¢ = 7. Notice that an X-semilattice given in Figure 1 has eight automor-
phims. By Theorem 1.1 it follows that

1 afe () e e ) ((p-Ty) i
8 ;[Zl{ (i-1)!-(p—i+1)! B
where Cf:m and that

1

S =§((—1)><4n +7x5" —21x6" +35x7" —35x8" +21x9" +11”) .
Example 8. Let n=7,8,9,10 Then:
B, (D) =10, 10°, 10°, 10°°.

Lemma 2. Let D ezl(X,lO). Then the following sets are all proper subsemilattices of the semilattice
D ={2,.2,,2,.24,25,2,,25,2,,2,,D} -

D AZo} 2o} {22} (26} {24}, {2} {2} {22}, (2, {D)

(see diagram 1 of the Figure 2);
2) (26,25}, {2024}, {2024}, {2025}, (20,20}, {20,25), {Z0.2,), (26,21}, {Z5,D), {Z,.24},
{25,D}, {Z,,2,}, {Z,,D}, {Z..Z,}, {Z6.2,}, {262}, {Z5,D}, {Z5.2,}, {Z:,D}, {Z..Z,},

(2.0}, {2,0}, (2,0}, {2.0]
(see diagram 2 of the Figure 2);

3) {Z4.Z4.2}, {20,250}, {20,2,.24}, {20,2,,0}, (Z6.24,2}, {26.24.2,}, {Z6.24,24},
{25,25,D}, {24.25,2,}, {25,250}, {Z5,2,,2,}, {Z,,2,,D}, {2,,2,,D}, {Z,,2,,D},

()
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{25,2,,B}, {2,.2,,D}, {2,,2,,D}, {Z,.2,,D}, {Z,.2,,D}. {Z.2,,D}, {Z;.2,,D}, {Z,.2,,D}
(see diagram 3 of the Figure 2);
4) {2,,2,,2,,0}, {2,,25,2,,D}, {Z,,25,2,,B}, {Z.2,.2,,D}, {Z,.2,.2,. D},
{2,,2,.2,,0}, {2,,2,,2,,D}
(see diagram 4 of the Figure 2);

5) {Z4,25,2,,2,}, 125,25,2,,2,}, {24,26,25,2,}, {Z4,2,,25, 25}, {Z9,24.25,2}, {Z4,24,2,,2,},
{2,,2,,2,,0}, {2,.2,,2,,0}, {2,.2,,2,.0}, {2,.2,,2,,D}, {Z,,Z,.2,,D}, {Z,.2,,2,,D},
{2,,2,,2,,0}, {2,,2,,2,,0}, {2,.2,,2,,0}, {2,.2,,2,.0}, {2,.2,,2,,0}, {2,.Z,2,,D},
{2,,2,,2,B}, {2,.2,,2,,D}, {2,.2,,2,,0}, {2,,2,,2,,D}, {2,.2,,2,,0}, {Z.2,,2,,};
(see diagram 5 of the Figure 2);

6) {Z4.25,24,2,,0}, {Z4,25,2,,2,,0}, {24,25,25,2,,D}, {2,,2;,.2,,2,, D},

{24.2,,2,,2,,B}, {2,,2,,2,,2,,D}
(see diagram 6 of the Figure 2);

7) {26.25.2,,2,,0}, {24.24,2,,2,,0}, {Z,.,Z,.2,,2,,D}
(see diagram 7 of the Figure 2);

8) {Z5,24,2,2,,2,,0}, {Z5,24.24,2,,2,,D}, {Z25,2,,2,24,2,,0}, {Z,,2,,Z,,2,,2,,D},
124.25.25,23,2,,0}, {Z4,25,25,2,,2,,0}, 124.25,2,,2,,2,,0}, {24.25,2,.2,.2,,D}
(see diagram 8 of the Figure 2);

9) {25.2,.24}, {25:25.25}, {25,250}, {2,
{z,,2,,D}, {z2,.Z, D} (2,2, D} {z.,

D}, {Z,,2,,D}, {Z:.2,.D}, {Z,.2,,D}, {27,26,25},

Zs,
z,,b}, {Z, zsz} (2,2, z} {2:,2,,2}, {2,,2,,D},
Wz

(see diagram 9 of the Figure 2);

10) {Z4,24,2,,0}, {24,2,,2,,D}, {Z,,2,,2,,D}, {Z:,2,,2,,D}, {Z,.2,.2,,D}, {Z,,Z5,Z,,D}
(see diagram 10 of the Figure 3);

11) {Z4,25,2,,2,,D}, {Z5,25,2,,2,,0}, {Z5,2,,2,,2,,D}, {Z.2,.2,,2,, D},

{2,,24,2,,2,,0}, {2;,25,2,,2,,D}, {2,,2,,2,,2,,D}, {24.24,25,2,,D)
(see diagram 11 of the Figure 2);

12) {24,252, 2.} {Z5:21.26. 2}, {23:2,,2,,0}, {25,2,,2,.D}, {2,,2,,2,.D}, {Z,.2,.2,,D},
{2,,2,,2,,0}, {2,.2,,2,,0}, {2,,2,,2,,D}, {2,,2,.2,,D}, {Z,,2:,Z,,D)}

(see diagram 12 of the Figure 2);

13) {Z,,25,2,,0}, {Z,,2,.2,,0}, {24,2,,2,,D}, {Z,,2,,2,,D}, {Z,,2,,2,,D}, {Z,,2,,2,,D},
{2:,2,,2,,b}, {2,,2,,2,,0}, {2,,2,,2,,D}, {2,,2,,2,,D}, {Z,.2,,2,,D}, {Z,,2,.Z,,D},
{2,,2,,2,,0}, {2,,2,,2,,0}, {2,,2,,2,,0}, {Z,,Z,,2,,0)}

(see diagram 13 of the Figure 2);
14) {24,24,25,2,,2,}, {24,245,27,25. 25}, {24.24,2,,2,,0}, {2,,2,,2,,2,,D}, {Z,,2,,2,,Z,,D},
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15) {2,,2,.2,,2,,0}, {25,2,.2,,2,,0}, {2,.25,2,,2,,0}, {Z4,25,2,2,,D}, {Z,,2,.2,,Z,,
{2,,2,,2,,2,,0}, {2,.2,,2,,2,,D}, {2,,2,,2,2,,0}, {Z,,2,.25,2,,D}, {Z,,2,,2,,2,,

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

26)

{24,2,,2,,2,,0}, {2,,2,.2,,2,,

{25,25,2,,2,,B}, {2,,2,,2,,Z,,
(see diagram 14 of the Figure 2);

{24,2,,2,,2,,0}, {2,,2,,2,.2,
(see diagram 15 of the Figure 2);

D}, {Z,.2,.2,.2,,
D}, {Z5,2,.25.2,,

D}, {Z5.2,.2,.Z,,

D}, {2,,2,.2,.2,,D}, {Z,.2,,25,2,.D},
D}

O O

D}, {Z5,2,.25,2,,D}, {Z4.25.25.Z,,

O«

{25,2,.2,,2,,b}, {2:.2,,2,,2,,D}, {2,.2;,2,,2,,D}, {2,,25.2,,2,,D}, {Z,.2,,2,,2,,D},

{25,2,,2,,2,,0}, {2,,2,.2,,Z,,
(see diagram 16 of the Figure 2);
{2:,2,,2,,2,,0}, {2,.2,,2,,Z,
{2,,2,,2,,2,,b}, {2,,2,,2,,Z,,
{25,2,,2,,2,,0}, {2,,2,,2,,Z,
(see diagram 17 of the Figure 2);

D}, {Z4.2;,2,.Z,

O

b {2,.2,.2,,2,
b {20252,,2,,

}

Oc O«

o

D}, {2,.2,,2,.2,,D}, {Z,,2,2,,Z,,D},
D}, {Z4,25.24,2,,0}, {Z,,25,2,,2,,D},

{2,.2,,2,,2,,0}, {2,,25,2,,2,,0}, {2,,25.2,,2,,D}, {Z4.2,,2,,2,, D}

(see diagram 18 of the Figure 2);
{25.25,2,,2,,0}, {2,,2,.2,,2,
(see diagram 19 of the Figure 2);

{24,2,,25,2,2,,0}, {2,,2,,2,
{25,2,,2,,2,,2,,0}, {Z,,2,.2,,

(see diagram 20 of the Figure 2);
{24.25,2,,2,,2,,0}, {2,.2, 2,
(see diagram 21 of the Figure 2);

B},

Z,,2,,0}, {2,,25,2,.2,,2,,0}, {2,.2,,2,,2,,2,,0},

Z,.2,,D}

Z5,2,,0}, {Z,,2,

Z5.25,2,,0}, {Z,,25,2,,2,,2,,D}

{24,25,2,,2,,2,,0}, {2,,2,,2,,2,,2,,D}, {Z,24,27,25,2,,0}, {Z4,24,2Z5,2,,2,, D),
{20,2,,25,2,,2,,0}, {2,,2,,2,,2,,2,,D}, {Z,,24,2,,2,,2,,D}, {Z4,2,,2,,Z5,2,,D}

(see diagram 22 of the Figure 2);
{25,25,2,,2,,2,,0}, {Z,,2,.2,
(see diagram 23 of the Figure 2);

Z,,Z,,D}

{24,24,25,2,,2,,0}, {25,24,2:,2,,2,,D}, {Z,,2,,2,,24,2,,D}, {Z,,2,,2,,2,,2,,D},
{24,2,,2,,2,,2,,0}, {2,.2,,2,,2,,2,,0}, {2,.2,,2,,2,,2,,0}, {Z,.2,.2,,2,,Z,,D},
{25,2,,2,,2,,2,,b}, {2,.2,,2,,2,,2,,D}, {2,.2:,2,.2,,2,,D}, {Z,,2,.2,,2,.2,, D}

(see diagram 24 of the Figure 2);
{25.25,25.2,,2,,B}, {2,.2,.2,
(see diagram 25 of the Figure 2);
{25.25,2,,2,,2,,D}

(see diagram 26 of the Figure 2);

25,2,,0}, {Z,.2,

Z5.2,,2,,D}, {2,,2,,2,,2,,2,,D}
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27) {24,27,25.2,,2,,0}, {24,2;,2,,2,,2,,0}, {24,25,2,.2,,2,,0}, {2,,2,,2,.2,.2,,D}
(see diagram 27 of the Figure 2);

28) {24,25.25,25,2,,0}, {24,24.2,,2,,2,,0}, {24,25.2,,2,,2,,0}, {2,.24,25.2,,Z,, D},
{2,.2,,2,,2,,2,,0}
(see diagram 28 of the Figure 2);

29) {24,25,25,2,,2,,0}, {2,.24,2,,2,,2,,0}, {Z;.25.2,,2,,2,,D}, {Z,,2,,2,.2,,2,,D}
(see diagram 29 of the Figure 2);

30) {Z4,24,25,2,,2,,0}, {2,,25,2,.2,,2,,B}, {2,.2,.2,,2,.2,, D}
(see diagram 30 of the Figure 2);

31) {Z4.27,25.2,,2,,2,,0}
(see diagram 31 of the Figure 2);

32) {Z4.25,24,25,2,,2,,0}, {24,2;,25,2,.2,,2,, D}
(see diagram 32 of the Figure 2);

33) {2,,25,24,2,,2,,2,,0}, {24,25.2,,2,,2,,2,,0}, {2,,2,.2,,2,,2,,2,,D},
{24,2,,25,2,,2,,2,,0)
(see diagram 33 of the Figure 2);

34) {2,.24,25,2,,2,,2,,0}, {24,24,25,2,,2,2,,0}, {2,,2,,2,2,,2,,2,,D},
{24,2,,2,.2,,2,,2,,0)}
(see diagram 34 of the Figure 2);

35) {Z9.25.24,25,2,,2,,0}, {Z5,25,25,2,,2,,2,,D}, {2,,2,.2,,2,,2,,2,,D},
{24,24,24,2,,2,,2,,D}, {2,,2,.2,,2,,2,,2,,D}
(see diagram 35 of the Figure 2);

36) {Z4.24.25,2,,25,2,,D}, {24,24,2,,2,2,,2,,D}, {Z5,2,,2;.,2,,25,2,, D}
(see diagram 36 of the Figure 2);

87) {24.2,,2,,25,2,,2,,0}, {24.2,,25,2,,2,,2,, 0}, {Z4,25,2,,2,,2,,Z,,D},
{24,24,2,,2,,2,,2,,D)
(see diagram 37 of the Figure 2);

38) {Z4.2,.25,2,,25,2,,0}, {Z4,24,25,2,,2,,2,,D}, {Z,2,2,.2,,2,,2,, D}
(see diagram 38 of the Figure 2);

39) {Z,.2,.24.25,25,2,,D}
(see diagram 39 of the Figure 2);

40) {24,2,.25,2,,2,,2,,0}, {Z5,24,25,2,,2,,2,,0}, {25,24,2,.2,,25,Z,,D},
{24,2,,2,,2,,2,,2,,0}, {2,,2,,2,,2,,2,,2,,D}
(see diagram 40 of the Figure 2);

41) {24,24.25,.2,,2,,2,,0}, {Z5,24.2,.24,2,,Z,,D}

(see diagram 41 of the Figure 2);
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42) {2,.24.25,2,,2,2,,Z,,D}
(see diagram 42 of the Figure 2);

43) {24,25,25.2,,2,,2,,2,,0}, {24,2,.2,2,,2,,2,.2,,0}, {24.2,,25.25.24,2,.,Z,,D}
(see diagram 43 of the Figure 2);

44) {2,,2,,25,2,.2,,2,,2,,0}
(see diagram 44 of the Figure 2);

45) {24,24,27,25.2,,2,,2,,0}
(see diagram 45 of the Figure 2);
46) {24,24,25,24,25,2,,2,,0}, {25,25,2,.2,,2,,2,,2,,0)}
(see diagram 46 of the Figure 2);
47) {24,2,,25,2,,2,,2,,2,,0}, {24.2,,2,,25.2,,2,,2,,0}, {2,,2,,2,2,,2,,2,,2,,D},

(24,2,2,,2,,2,,2,,2,,0}
(see diagram 47 of the Figure 2);

48) {24,27,24.25,24,23,2,,0}, {Z4,24,25,25,2,,2,2,,D}, {25,2,,2,,2,2,,2,,2,,D},

(24,2,,2,.2,,2,,2,,2,, D}
(see diagram 48 of the Figure 2);

A TELLASY
PAAALL LD
HHUA DAL

ADTEDCOP
D . A AOS

@@&x@@@'

Figure 2. Diagram of all subsemilattices of D.
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49) {24.27,25.25.2,,25,2,,2,,D)
(see diagram 49 of the Figure 2);
50) {Z4.27,26,25,24,23,25,2,,D}, {Z5,24.24,25,24,24,2,,Z,,D}, {25,24,2,.24,2,,2,,2,,2,, D},
{24,2,,2,,2,,25,2,,2,,2,, D}
(see diagram 50 of the Figure 2);
51) {Z9.25.27.25.2,,25,2,.2,, D}
(see diagram 51 of the Figure 2);
52) {Z4.24,27,24,25,24,25,Z,,D}

(see diagram 52 of the Figure 2);

Diagrams of subsemilattices of the semilattice D.
Lemma3.Let De Zl(X ,10) . Then the following sets are all XI-subsemi-lattices of the given semilattice D:

D (2o}, (2o}, {22} {26} {26} (24}, (24}, {22, {2, {D}
(see diagram 1 of the Figure 2);

2) (25,0}, {Zo,Zs}, {Z6.2:}, {2626}, {2025}, {Z0,24), {20,25) {Z6,2,), (26,24}, {2524},
{Z5,D}, {Z,,2,}, {Z,,D}, {Z..2,}, {Z6.2,}, {262}, {250}, {Z5.2,}, {Z:,D}, {Z..Z,},
{20}, {2..0}. {..D}. {z..0}

(see diagram 2 of the Figure 2);

3) {Z,,2,,D}, {Z,.2,,D}, {Z,,2,,D}, {25,250}, {Z,,2,,D}, {Z,.Z,,D}, {Z,.2,,D}, {Z,,2,,D},
(24,24,2,}, 124,2,,25}, {24,24,25}, {24,24,2,), {Z6,26,2,}, {24,24,2,), {24,2,,Z,},
{2,,2,,D}, {2,,2,,D}, {Z.2,,D}, {Z,.2,,D}, {Z,.2,,D}, {Z,2,,D}, {Z,.Z,,D}

(see diagram 3 of the Figure 2);
4) {2,,2,,2,,0}, {2,,25,2,,0}, {Z,2,.2,,0}, {Z,2,.2,,D}, {Z,,2,,Z,, D},
{25,2,,2,,D}, {Z,,2,,2,,D}
(see diagram 4 of the Figure 2);
5) {Z4,25,24,2,), {Z6,26:24,2,), {Z6,26:25,2,), {26.21,26,25}, 1Z4,24,25,2Z,),
{24,24,2,,24}, {24.2,,2,,D}, {Z,,2,,25,D}, {Z,,2,.2,,D}, {Z,.2,.2,,D},
{2,,2,,2,,D}, {2,,2,,2,,0}, {Z,.2,,2,,D}, {Z,,2,,2,,D}, {Z,,2,,Z,,D},
{2,,2,,2,,0}, {2,,2,,2,,}, {2,,2,,2,,D}, {2,,2,,2,,}, {Z,,Z,,2,,D},

{25,2,,2,,0}, {2,,2,,2,,D}, {Z,.2,,2,,D}, {Z,.2,,2,,D)}

(see diagram 5 of the Figure 2);

(25,25,2,,2,,D}, {2,,2,,2,,2,,D}, {Z,.2,,25,2,,D}, {Z,Z;,2,,2,,D},

{24,25,25,2,,D}, {2,,2,,2,,2,,D}

(see diagram 6 of the Figure 2);

7) {26,25,2,,2,,D}, {24.2,,2,,2,,D}, {Z,.2,.2,,2,,D}

(see diagram 7 of the Figure 2);

6)



S. Makharadze et al.

8) {Z4.24,25.25,2,,0}, {24.24,25.2,,2,,0}, {2,,2,.2,,25,2,,D}, {Z,,2;,2,,2,,2,,D},
{25,25.25,2,,2,,B}, {25,25.2,,2,,2,,0}, {24,25,2,.2,,2,,D}, {Z4.2:,2,,2,,2,,D}

(see diagram 8 of the Figure 2);

Proof. It is well know (see [1]), that the semilattices 1 to 8, which are given by lemma 2 are always XI-semi-

lattices. The semilattices 9 and 10 which are given by Lemma 2
{24,2,,2,}, {24,252}, {2,,2,,D}, {Z,,
{2,252}, {2,

D},
). (22,2, 12
D},

-
L
2,
i,

(see diagram 9 of the Figure 2);

D}, {Z,.2,.D},
b}, {2,,2,,D},
ZY, 125,2,,2,),
D}, {Z,,2,,D},

{24,2,,2,,0}, {2,,2,,2,,D}, {2,.2,,2,,D}, {Z,.,2,,2,,D}, {Z,,2,,2,,D}, {Z;.,Z5,2,,D}

(see diagram 10 of the Figure 2);

are Xl-semilattices iff the intersection of minimal elements of the given semilattices is empty set. From the for-

mal equalities (1) of the given semilattice D we have

ZynZ,=(PRUPRUP,UP,URURUP, UR)U(R,UR UP,UP,UR, UR UR UR)=J

Z,nZs=(PRyURUR,UP,UR UPR, UP, UR)U(R,UP,URUP, URUR, )= T

Z,NZ

Z,NZ,

N

RUPRUP,UPURUPRUP UR)U(RUP,UPRURUPUPURUR)=J

PR UPRURUPURUPRUP UR)U(RUPUPR,UP,URUR UP,URUR) =

NZ,

)

)

R UPRUP,UPURUPRUP UR)U(RUP,UPRUP,URUP, URUR)=J
)

)

R UPRUP,UP,UR URUP, UR)U

R UP,UR,UP,URUR UP,URUR) =

PR UPRURUP,URUPRURUR)U(RUP,URUP URUR)=J

PR URUPR,UP,URUPRURUR)U(RUR,UPUP,URUP, URUR,)=J

=(
5=
=
(
(
(
(
(R
(
(
5 =(
=
o=
2=
2 =(
2=

PR URUPR,UP,URUPURUR)U(RUPRUPUP,URUPRUP, URUR,)=J

D)
N
[

)

)
RUPR,UP,URUPRURUR)U(RUP,UP,UR UR UP, URUR))#J

)

)

PR UPURUP,URUPRURUPR)U(RUPRUPUPURURUP, URUR)=J

1

R UP,URUPURUR)U(RUPUPUP,URUP,URUR)=J

R UP,URUPURUR)U(RUPRUPURUPRUP URUR)%J

PR UPR,UR,UP,UR,UP, UR, UR,)U(R,UP,UP,UR, UR, UP, UR,UR))#J

PR UR,UPR,UP,UR,UP, URUR)U(RURUR,UP,URUPR,UP, URUR,)=J

)
R UP,UP,UP,UR,UP, UR, UR,)U(RUR UP,UP,UR,UR, UP, UR,UR)) #J
)l

R UP,UR,UR,UR,UP, UR UR,)U(R,URUPR,UP, UR,UR, UP,UR, UR,) = J
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Z,nZ,=(RUP,UR,URUPR,UP, UR,UPR)U(R,URUP,UP,UR UR,UP, UR, UR,) = J

Z,nZ,=(R,URUP,UP,UR,URUP, UR,UPR)U(PRURUP,UP,UR UR,UP,URUR) =
Z,nZ,=(R,URUP,UP,UR, URUP, UR,UR)U(RUP,UP,UP,UR UR,UP, URUR)) =
Z,nZ,=(R,UP,UPR,UP,UR, UR,UP, UR, UR)U(RUP,UP,UP,UR, UR,UP, URUR))#J

From the equalities given above it follows that the semilattices 9 and 10 are not XI-semilattices. O
The semilattices 11

{25,25,2,,2,,0}, {2,.2.2,,2,,0}, {2,.2,.2,,2,,0}, {Z,.2,.2,,2,,D},
{2,,2,.2,,2,,0}, {2,.2,,2,,2,,D}, {Z,.2,,2,.2,,D}, {2,,2,.2,,2,,D}.
(see diagram 1-8 of the Figure 3);
are not Xl-semilattice since we have the following inequalities
N2, 2D, 2,N2, 20, L,NL, #D, Z,"L, #D,
2,2, 20, L,NL#DB, LN, =0, ZgNZ, #O.

The semilattices 12 to 52 are never Xl-semilattices. We prove that the semilattice, diagram 52 of the Figure 2,
is not an XI-semilattice (see Figure 4). Indeed, let Q ={T,,T,,T,.T,,T, T, T;, T, T,} and
C (Q) — {PO/’ Pl', PZ', P3,, P4’, PS/7 PB/7 P7r7 PB/}
be a family of sets, where P,, B, P), B, P,, B/, B/, P/, B, are pairwise disjoint subsets of the set X. Let
T LT, T, 1, T T T T
Po/ Pl/ Pz' PS/ P4f P5/ PG/ P7/ Psf

be a mapping of the semilattice Q onto the family of sets C(Q) . Then for the formal equalities of the semilat-
tice Q we have a form;

Figure 3. Diagram of all subsemilattices which are
isomorphic to 11 in Figure 2.

Figure 4. Diagram of subsemilattice 52 in Figure 2.
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To=PR VR URURUP UR UR UR UFR,

T, =R UPRURUR URURUPR UR

T,=RURURUPR URUR UR UR,

T,=RUPRUPUR URUPUPR
T,=RuUPRURUR UR UPR UR

T.=RURUR UR UR UPR/

Ts =P UR'URUPR URUPR UR,),

T,=P/UP'UP/UP,UPR/ UP/UR,,

T, =P,

Here the elements P',R,/,P,,P,,R,’,P, are basis sources, the elements P;,

®)

R’, P,/ are sources of com-

pleteness of the semilattice D. Therefore |X | >6 and 6=7 (see[2]). Then of the formal equalities we have:

Q,
T, T T To)s
T, T T T},

Ts,

T8
T8
T8
AQQ)=1Ts
TB
TB
TB

Tg,

{

{

TR P R O A R
{T7’T6’T5’T3’T2'T1’TO ’
{T7’T6’T41T31T27T11T0
TR S O O S R
(T T T T T, T, )
TR A A O O O R R

j
j
I
j
j

if tePy,
if teP,
if teP,,
if teP,
if teP,,
if te R,
if teP,
if te P,
if tePp,.

if tePy,
if teP,
ifteP,
if teP,
if teP,
if teP,,
if te P,
ifteP,
if tePp,.

We have, that Q" ={T,} and A(Q,Q)eQ forany teQ.Butelements T, Te, Ts, T4, Tz, T2, T1, To are not
union of some elements of the set Q. Therefore from the Definition 1 it follows that Q is not an XI-semilattice

of unions. Statements 12 to 51 can be proved analogously.
We denoted the following semitattices by symbols:

a) Q ={T},where TeD (seediagram 1 of the Figure 5);
b) Q ={T.T'},where T, T'eD and TcT' (seediagram 2 of the Figure 5);
c) Q={T, T T"},where T, T, T"eD and T<T'cT" (seediagram 3 of the Figure 5);

d) Q4:{ZQ,T,T’,D},where T,T'eD and Z,cT cT'c D (seediagram 4 of the Figure 5);
e) Q={T, T\ T"T'UT"} where T, T, T"eD, TcT', TcT", T\T"2@, T'"\T'=2Q, (see dia-

gram 5 of the Figure 5);

f) Qu={Z,,T,T"TUT'D}, where T, T'eD, Z,cT, Z,cT', T\T'#@, T\T =D (see diagram

6 of the Figure 5);

9) Q={Z,Z,T.T'D}, where T, T'eD, Z,cT, Z,cT', T\T'#@, T\T=Q, TuT'=D

(see diagram 7 of the Figure 5);
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ToT"”
.I
T T Z,
1 2 4 5 6

Figure 5. Diagram of all XI-subsemilattices of D.

h)y Q :{ZQ,T,T',T uT',Z,D} ,Where Z, cT'cZ, T\T'20, T'\T20, (TUT')\Z=3,
Z\(TUT')#Q (see diagram 8 of the Figure 5);

Note that the semilattices in Figure 5 are all XI-semilattices (see [1] and Lemma 1.2.3).

Definition 9. Let us assume that by the symbol X', (X,D) denote a set of all XI-subsemilatices of X-semila-
tices of unions D that every element of this set contains an empty set if & e D or denotes a set of all XI-sub-
semilatices of D.

Further, let D', D" €%}, (X,D) and 9, <X} (X,D)xZ} (X,D). Itis assumed that D'3, D" iff there
exists some complete isomorphism ¢ between the semilatices D’ and D”. One can easily verify that the
binary relation 9,, is an equivalence relation on the set ), (X,D).

By the symbol QJ,, denote the J,, -equivalence class of the set X, (X,D), where every element is iso-
morphic to the X-semilattice Q, (i=1,2,---,8).

Let D' be an Xl-subsemilattice of the semilattice D. By | (D’) we denoted the set of all right units of the se-
migroup B, (D'), and

(@)= X [1(D)

D'eQi9x
where i=12,---,8.
Lemma 4. If X is a finite set, then the following equalities hold

) |I(Q1)|=1

D) 1) =24 2

c) | (Z\T'\T\ _1).(3\TH\T'\ _2‘T~\T")'3‘X\T"‘

d) |I (Z\T\zg\ )(3\T\T\ 2\T’\T\).(4‘D\T"_3‘5\T").4‘X\D‘

&) [1(Qu)|=(2""" 1) (2" 1) 4TT
)=

f)| oM _q )(2\T\T\ ).(5‘5\(TUT”)‘_4‘5\(TuT”)‘).5‘X\I5‘

9) || (Z\zﬁng\ ) olT ATz _(3\T\T'\_Z\T\T'\)_(B\T'\T\_Z\T'\T\)B\X\D\

h) |I (Qs )| _ (Z\T\z\ _1).(2\T’\T\ _1).(3\2\(Tw')\ _2\2\(TuT')\ )-B‘X\D‘

Proof. This lemma immediately follows from Theorem 13.1.2, 13.3.2, and 13.7.2 of the [1]. O

Theorem 10. Let DeX,(X,10) and aeB, (D). Binary relation « is an idempotent relation of the

semmigroup B, (D) iff binary relation « satisfies only one conditions of the following conditions:
a) a=XxT,where TeD;

b) a:(YT“ xT)u(YT“, xT ) where T, T'eD, TcT', Y7, Y ¢{@}, and satisfies the conditions: Y;" o
T, YT 20;
c) a=(YT"’ xT)u(YT”? xT’)u(YT‘f, xT”), where T, T, T"eD, TcT'cT", Y7, Y, Y ¢{J}, and sa-

tisfies the conditions: Y" T, YUY oT', Yy nT'#J, YO NT"=#J;
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d) =Y xZg)u(Y xT)U(Y xT) (Y xD), where T, T'eD, Z,cTcT'cD, Y7, Y, Y&,
Y," ¢ {D}, and satisfies the conditions: Yy" 2Z,, YUY 2T, YUY UYS 2T', Y NT =,

YT #0, Y nD=J,

e) =Y xT)U(YxT ) (Y xT) (¥ x(T'UT")), where T,T', T"eD, TcT', TcT”,
T\T"=@, T'"\T'=&, Y7, Y7, Y. ¢{D} and satisfies the conditions: Y LY 2T", Y LY. oT",
YPnT' #0, YO nT"#J;

f) o =¥y xZg ) U(Y xT)U (Y xT )UK x(TUT))U(Yy x D), where Z, T, Z, =T,
T\T'20, T\T=J, Y, Y, Y ¢{D} and satisfies the conditions: Y," LY 2T, Y& UY 2T',
YPNT 20, YPnT' =D, YynD=#J;

0) @ =(Yy xZy)U(Ye xZg ) (Y xT)U(Y xT)U(Ys D), where T, T'eD, Z,cT, Z,cT',
T\T'2Q, T'\T=0, TUT' =D, Y7, Y7, Y ¢{Q} and satisfies the conditions: Yy o7,

YUYy 2Zs, Yo UYs UY DT, YUY OYT 2T, YYnZ, 2D, YYnNT =3, Y NnT'#J;

h) @ =(Y5 xZo )U (Y xT) (Y xT")U(Yr x(TUT')) (Y5 xZ)U(Yy x D), where Z,cT'cZ,
T\T'20, T\T=0, (TUT')\Z=&, Z\(TUT )=, Y7, Y, Y,/ ¢{D} and satisfies the condi-
tions: Y  UY oT, YUY 2T YUY UY, oZ, YPnT 2D, YPnT' =D, Y, NnZ#D.

Proof. By Lemma 3 we know that 1 to 8 are an XI-semilattices. We prove only statement g. Indeed, if

a = (Y xZy )U(Ye x Zg U (Y xT ) UV xT)u(Yy x D),
where Y7, V¥, Y ¢ {@} then it is easy to see, that the set D(a)={Z,,Z,,T,T,} is a generating set of the
semilattice {ZQ,ZG,T T D} Then the following equalities hold

D(O‘)zg ={Z,}, lj(0‘)z6 ={2,.2,},
D(a), ={Zy.Z,, T}, D(a), ={Z,.Z,.T'}.
By statement a of the Theorem 6.2.1 (see [1]) we have:
YE 2Zy, YO UYE 2Z,, YEUYSUYS oT, Y2 UYd uYs oT'.
Further, one can see, that the equalities are true:
1(B(a),, . Zs)=u(B(a), \Zs}) = Z,, Z\(B(a),, . Z5)=2,\Z, #2,
1(D(a), . T)=u(D(a), \{T})=Z,, T\I(D(a), . T)=T\Z,#2,
1(B(a),. . T")=u(D(a), \{T})=Z,, T\I(D(a),. . T')=T'\Z, =,
We have the elements Zs, T, T" are nonlimiting elements of the sets D(oz)ZG . D(a),, D(a), respectively.

By statement b of the Theorem 6.2.1 [1] it follows, that the conditions Y," "Z, =&, YY" NT =, Y7 NT'#
@ hold. Therefore, the statement g is proved. Rest of statements can be proved analogously.
Lemma 5. Let D eZ ,(X,10) and Z, =@ . If X is a finite set, then the number |I*(Q1)| may be calcu-

lated by the formula (Ql) =10.
Lemma 6. Let DeX (X,10) and Z, =@ . If X is a finite set, then the number |I Q2 | may be calcu-

lated by formula

I"(Q, )| =(Zzs\zg —1)-2‘)(\28‘ +(227\29 _1j_2><\z7 +(2\ze\29\ _1).2X\zﬁ +(2\zs\zQ\ —1)-2“25

\24\29\ \Zs\zg\ |23\ [23\27] [23\26]
+ 2 1|2\l +270 7 12T T g ] ol

(
(
(

+
N

\Zz\Zg\ \Zz\Ze\ X\z [20\2Zo|  |2\Ze|  |2a\Zs|[22\Z4] X\z
—2 | 2Rl [ T T QT T g ] Al

2

\D\zg\ \D\ZB\ \5\27\ \D\ze\ \D\zs\ \5\24\ \5\23\ \D\zz\ \D\zl\ \X\D\
+ +2 +2 +2 +2 +2 +2 -9 .27,
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Lemma 7. Let DeX,(X,10) and Z, =@ . If X is a finite set, then the number |I (Q, | may be calcu-
lated by formula

(Q3) (2\23\29\ ( \D\ZB\ _2D\Zsj.3X\f) +(2\27\29\ _1)(36\27 _25\27)3)(\,5

Z7:\Z D\Z, D\z S Z:\Z, D\Z D\z <
+(2\ 6\Zg| 1 ‘ 6‘ ‘ o ].BX\D +(2\ 5\Zg| _1).(3 g _2‘ Sj_sxm
2\Z \Z L')\z < Z,\Z D\Z D\Z <

(2\ o 1) 3‘ 4‘ ‘ 4 \X\D\ +(2\ 3\Zg| _1)'[3 3 _2‘ 3J.3X\D

( [22\24| 1) ", mzzj ool (Enl ‘(35\21_25\21)?\5

(2‘ $\Zo| 1) ) (2\z7\zg\ _1j (3\23\27\ \23\27\)_3\><\z3\
(Z\Ze\zg\ 1) \Zs\ze\ \Zs\zs\) 3‘x\zg‘+(2\ze\29\ _1j ( \Zz\zs\ \Zz\ze\j_B‘x\zz‘

&
(
(
(
(
(a7 e ()
( {
(
(
:

+

+
N

24 \Za\ \Zs\zs\ X\Z
*\z|

+
00

+
w
w

w

3

+

\ze \21\25\ ) Xz

\21\24\ \21\24\ 3\x \Zﬂ

3

+

(2\24\29\ 1) N —1) [3'3\13 D\Zsj g0l

( |23\27] 1) 3‘D\23‘ DAz J'BX\D +(2\Zs\ze\ 1] [ ‘D\Zs‘ ‘D\Zs‘ ]-3X\D
( [22\Z4| l) 3‘D\ZZ‘ D\ZZ]_BX\B +(2\Zl\zs\ 1) ( ‘D\Zl‘ 5\21j-3>(\5
+ 2\21\25\ 1] ‘D\ZJ D\le 3‘X\f)‘ +(2\Z1\Z4\ _1)(3'5\21 _2‘5\21‘ \J'?’X\Ij-

Lemma 8. Let DeX,(X,10) and Z, =@ . If X is a finite set, then the number |I*(Q4)| may be
calculated by formula

+
l\)

+
l\)

|° (Q4 )| _ (2\25\29\ _1).(3\23\23\ _ 2\23\z8\)_(4\|5\z3\ _3‘5\Z3‘)‘4‘X\D‘

n 2\27\29\ 3\23\27\ _ 2\23\27\ 4\0\23\ _3\6\23\ ) ) 4‘X\Ij‘

+ 2\26\29\ 3\23\26\ _ 2\23\26\

(
( )
( )
(3\21\26\ _ 9le\zg| )
( )
(

3\22\26\ _ 2\22\26

+

(4\0\23\ _ 3\5\z3\ ) . 4\>< \D|

4\[‘)\22\ _3\5\22\)_4\X\D\
4\0\21\ ‘5\21‘)'4‘X\D‘

2\25\29\ 3\21\25\ _ 2\21\25\

+

1)
1)
2ol ).
)
1)

(

(

(
(2% (

( (407404

o2

\24\29\ ) 3\21\24\ _2\21\24\).(4\0\21\ _3‘5\21‘).4‘“5‘.

Lemma 9. Let DeX,(X,10) and Z, =@ . If X is a finite set, then the number |I (Qs | may be
calculated by formula

288
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||* (Q5 )| _ (2\25\24\ _1).(2\24\25\ _1)_

_1).4\><\zl\ +(2\z7\zs\ _1),(2\25\27\ _1>.4\><\z3\

n (2\25\25\ _ _(2\25\25\

4 [ ol7s\2l _1) (2\26\28\

n 2\23\24\ 1 2\24\23\
n 2\27\22\ _1). 2\22\27 _
n 2\27\25\ 1 2\25\27\

Z\Zs\zz\ _ 2\22\28\

+

1
)
)
)
1)
2% ). (2% -

+

(
( (
( (
( (
( (
( (
(24 -1). (22
r2. (2% 1) (2%

+2. (2\23\22\_ ) (2\22\23

Lemma 10. Let DeX (X,10) and Z, =< .
lated by formula

4\><\21\ +(2\zs\24\ _1).(2\24\25\ _1).4‘X\Zl‘

1) 4\><\z3\ (2\28\27\ _1).(2\27\28\ _1>'4\><\23\
(2\25\28\ _1)'4‘X\D‘
olz1\z4| _ 1) (2\24\27\ _1).4\><\D\

(

(

(2% -1) (2%l ~1).4°°
( (

o

4% 4 (2P ).

4\><\D\

+

\X\D\

-1)-4" 1+

1)
1)
)
1) 420l | (plza\zal _q ) 2\22\z4\_1)’4\><\|5\
l) 4\><\D\ olz5\2| _1).(2\22\25\ _1).4‘X\f)‘
1) ‘X\D\+(2\Z7\Zﬂ_1).(2\21\27\_1)'4\><\D\
_1)_4\X\f>\ +2_(2\23\21\ _1),(2\zl\z3\ _1).4‘X\D‘
\_1) 4\X\|5\

If X is a finite set, then the number |I (Qs | may be calcu-

[17(Qp)|=1+3+3+3+3+1=14

Lemma 11. Let DeX (X,10) and Z, <.
lated by formula

|| . (Q7 )| _ (Z\Ze\zg\ _1) olz2n2) 2

If X is a finite set, then the number |I (Q | may be calcu-

,(3\22\21\ _ ol7a\z] ) . (3\21\22\ _ola\7| ).S‘X\B‘

+(2\Ze\29\ _1) . 2\(Zsﬂ21)\zs\ ,(3\23\21\ _olza\zi| ),(3\21\23\ _2\21\23\),5‘“5‘

(2\26\29\ _ ).2‘(23m22)\26‘ _(3\23\22\ _2\23\22\).<3\22\23\ _2\22\23\).5‘X\5‘

Lemma 12. Let DeX,(X,10) and Z, =< .
lated by formula
|| (2\23\22\ 1) (2

+(2RH -)
(2% 1)
#2780 -1)-
+(25 5 1)
+(2‘25‘22‘ 1)
(25 -1)-

n (2\z4\zz\ _1).

If X is a finite set, then the number |I (Q | may be calcu-

|26\ _1) . (3\22\23\ _ 2\22\23\ ) . G‘X\D‘

_(Z\ZG\ZS\ _1) ) (3\z1\zg\ _ 2\21\23\ ) ) 6\><\D\

( \26\27 1) (3\22\23\ _2\22\23\),6‘“5‘
(2\26\27\ 1) (3\21\23\_2\21\23\) 6\x\D\
lZ6\2s| _ 1) (3\23\21\ 2\23\21\) 6‘X\D‘

(z\zs\zs\ ) 3\22\21\_2\22\21\).6\X\D\
(2\26\24\ 1) (3\23\21\ 2\23\21\) G\X\D\

\26\24\ FAYAREPN AV ARRPGAL]
(277 -1)-(3 22l 67

Figure 6 shows all XI-subsemilattices with six elements.
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Figure 6. Diagram of all subsemilattices which are isomorphic.

Theorem 11. Let DeX,(X,10), Z, =@ . If Xis afinite setand 1, is a set of all idempotent elements of
the semigroup B, (D). Then [I,|= Z?:1|I* (Q )|
Example 12. Let X ={1,2,3,4,5,6,7,8},
P =1{6}, R ={1}, B, ={2}, B, ={3}, P, = {4},
P, :{5}, P, :{7}, P, :{8}, R=PR =04
Then D={12,3,4,56,7,8}, Z, ={2,34,56,7,8), Z,={134,56,7,8}, Z,={124,56,7,8},
z,={2356,7,8 , Z,={2,34,678}, Z,={4,567,8} , Z,={1,2456,8} , Z,={1,2,456,7} and
Z,=1{6}.
D :{{1,2,3,4,5,6,7,8},{2,3,4,5,6,7,8},{1,3,4,5,6,7,8},{1,2,4,5,6,7,8},{2,3,5,6,7,8},
{2,3,4,6,7,8},{4,5,6,7,8},{1,2,4,5,6,8},{1,2,4,5,6,7},{6}

We have Z, =@ . Where [I°(Q)| =10, |I"(Q,)=1169, |I"(Q,)|=2154, [I"(Q,)[=349,
17(Q)[=122, |1"(Q)|=14, [I"(Q)|=90, [1(Qs)|=8, |Ip|=3916.

3. Results

Lemma 13. Let DeX,(X,10) and Z, =< . Then the following sets exhaust all subsemilattices of the semi-
lattice D= {ZQ,ZS, 2,,24,25,2,,25,2,,Z,, D} which contains the empty set:

1) {2
(see diagram 1 of the Figure 2);

2) (8.5}, (2.2}, (8.2}, (2.2}, (2.2}, (2.2}, (8.2}, (2.2}, (2.2
(see diagram 2 of the Figure 2);

3) {@.2,,0}, {@.2,.0}, {@.Z,.D}, {@.Z,,D}, {3.2,.D}, {@.2,,D}, {3.2,,D}, {@,2,,D},
(3,2,2,), {8,2,,2,}, {3,242}, {8,2,,2,}, {@,2,,2,}, {2,2,.2,}, {3,2,.2,)

(see diagram 3 of the Figure 2);
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4) {2,2,,2,,b}, {2.2,,2,,D}, {@.,2,.2,,D}, {8.,2,,2,,0}, {@.,Z,,Z,,D},

{2.2,,2,,0}, {2.,2,,Z,,D}
(see diagram 4 of the Figure 2);

5) {2,25,2,,2,}, {2,25,2,,2,}, {D,24,25,2,}, {D.,2,,24, 25}, 19,24, 24,25}, {D,24,2,,Z,},
(9.2,,2,.0}, {@.2,.2,,D}, {@.2,.2,,0}, {8.2,,2,,0}, {@.Z,,Z,,D}, {3.2,,Z,,D},
(2.2,,2,.0}, {@,2,.2,,0}, {2.2,.2,,0}, {@.2,2,,0}, {@.Z,2,,D}, {2,2,,Z,,D/,
{9.2,,2,,0}, {2.2,,2,,}, {2,2,,2,.D}

(see diagram 5 of the Figure 2);
6) {©.25,2,,2,,D}, {.2,,2,,2,,D}, {@.Z.2,,2,,0}, {@.,7,,Z,2,,D},

(2.2,,2,,2,,0}, {@,2,,2,,2,,D}
(see diagram 6 of the Figure 2);

7) {©.2,,2,,2,,D}, {©.2,.2,.2,,0}, {@.,24.2,,2,.,D)}
(see diagram 7 of the Figure 2);

8) {©.2,,2,.2,,2,,0}, {3,2,,2,,2,,2,,0}, {8,2,,2,,2,,2,,0}, {3.,2,.2,,2,,2,,0)},

{@,ze,zs,zs,zl,f)}, (2,2,,2,,2,,2,,B}, {@,26,24,23,21, D}, {@,26,24,22,21,5}
(see diagram 8 of the Figure 2);
Theorem 13. Let De¥,(X,10), Z, =< and a eB, (D). Binary relation « is an idempotent relation

of the semmigroup B, (D) iff binary relation « satisfies only one conditions of the following conditions:
a) a=0;

b) a= (YQ“ x@)u(YT“ ><T) yWwhere TeD, @=T, Y =, and satisfies the conditions: Y" T =J;

c) az(fo@)u(YT" xT)u(YT”f ><T’), where T, T'eD, @#TcT', Y7, Y ¢{J}, and satisfies the
conditions: Y, UY” oT, Y NT =3, Y/ NT' #J;

d) =Y x@)u(Y xT)u (¥ xT')u(Yy xD), where T, T'eD, F=Tc<T'cD, Y, Y, V¢
{@}, and satisfies the conditions: Y," UY 2T, YUY UYS 2T', YT 2D, Y NT' =D,

Yy "D=d;

&) = (Y x@)U(Y xT ) (Y xT)U (Y x(TUT')), where T, T'eD, T\T' 2@, T\T =3, Y7,
Y ¢ {D} and satisfies the conditions: Yy" UY 2T, YUY 2T, Y NT#Q, Y nT' #J;

f) o =Y xB) (Y xT U (Y xT ) U (Ve x(TUT))U(Yy x D), where T\T' 2@, T\T 2@, Y,
Yi, Yy e{QD} and satisfies the conditions: YUY 2T, Yy OY' 2T, Y'nT =0, YT =T,
Yy nD#J.

9 « :(Y;‘ x@)u(Y6“ xZG)u(YT“ xT)u(YT”f xT’)u(YO" ><I5),where T,T'eD, ZycT, ZycT',
T\T'2Q, T'\T=@, TUT' =D, Y7, Y/, Y% ¢{D} and satisfies the conditions: Y;" LY 2Z;,

Yo OYs OY oT, YUY UYS oT', YYnZ, 2D, YYnT =0, Y/ nT' =0,

h) a=(Ys x @)UY xT) U (% xT ) U(Yp x (T UT))U(¥y xZ)U(Yy D), where T'cZ,
T\T'2@, T'\T20, (TUT'©\Z=@, Z\(TUT )=, Y, Y, Y, ¢{Q} and satisfies the conditions:
Yo uYy T, YooYy oT', YUY uUY, oZ, YPnT =3, YPnT' #0, Yy NZ =T,

Lemma 14. Let DeX,(X,10) and Z, =@ . If Xis a finite set, then |I*(Ql)|=1.

Lemma 15. Let DeX,(X,10) and Z, =& . If X is a finite set, then the number

I"(Q, )| may be calcu-
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lated by formula

1 (QZ )| = [25 _1} Z‘X\D‘ _’_(2‘28‘ _1)_2‘X\Zg‘ +(2‘Z7‘ _]J . 2\X\Z7\ +(2\Zs‘ _1j Z‘X\ZG‘
+(2\25\ _1j_2\><\z5\ +(2\z4\ _1)2‘)(\24‘ +(2\z3\ _1)2‘)(\23‘
+(2\Zz\ _1j.2\><\22\ +(2\21\ _1j_2\><\zl\.

Lemma 16. Let DeX,(X,10) and Z, =& . If X is a finite set, then the number |I* (Q3)| may be calcu-
lated by formula

(Q, (3 Dwzg| D\Zsj 3\X\D\+(2\27\ _1)(35\27_25\27)3X\5
( ( ) ( Pl 5\Zsj_3xm
( ) ‘X\D‘+(2‘Z3‘ j ( N D\Z3j.3X\D
N 1) (30\22 D\Zz) 3\X\D\+(2\Zﬂ j [ ol D\Z1].3X\I5
B
(
(

i
|

|

)

-

|

(

2 1) ol o

3\ | \zg\za) 3\><\z3\+(2‘26‘ ) (S\ZQ\ZG\ _Z‘Zz\zs‘j's\x\zz\

3\21\26\ 2\2q| gl (2\25\ )(3\21\25\ \A\Zs\)spuzl\

2\z4\ 1) ( \21\24\ \21\24\)_3\x\z1\l

Lemma 17. Let DeX,(X,10) and Z, =9
lated by formula

1" (Q, )| may be calcu-

" (Q4 )| _ (2\24\ _1) ) (3\21\24\ _ oz ) ] (4\5\21\ _ S\D\zl\ ) . 4\xu5\

+(2\zs\ ) (3\z1\z5\ _zwzl\zsw) (4\0\21\ _3\0\21\). Pt
+(2\zs\ 1) (3\z1\ze\_ zwzl\zs\) (4\5\21\_3\5\21\), Pt
_,_(2\26\ 1) (3\22\26\_2\22\26\) (4‘5\22‘_3‘5\22‘).4‘“5‘
+(2\za\ 1) (3\23\26\ _sza\zew) (4\0\23\ _3\0\23\)_4\X\5\
+(2\z7\ 1) (3\z3\z7\_ 2\23\27\) (4\0\23\_3\5\23\). 4ol

(2\28\ ) (3\z3\z8\ _zwzg\ZB\ (4\D\zs\ _3\5\23\).4\X\D\_

Lemma 18. Let DeX,(X,10) and Z, =& . If X is a finite set, then the number |I* (Qs )| may be calcu-
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lated by formula

1 — 2\25\24\_1 . 2\24\25\ -1 ,4\X\Z1\ + 2\26\24\ -1) 2\24\26\_1 ,4\X\Zﬂ
17(Qu)| = (2771 ) (271 -) 4 (25054 ). (2740 )

(2\26\27\ _1),4\“23\
(

2\27\28\ _1).4\><\23\

2\25\26\ _1)_4\X\Z1\ + 2\27\26\ _1)_

+(2\ze\25\ (
2\26\28\ ) 4\X\23\+(2\zs\z7\_1).

1)
+(20% ).
(250 1) (2747 _1). 44 (2505 _1) (275 1) 470
+(27-1) (227 ). 4‘*""+(2‘Z7‘24‘—1)-(2‘24‘Z7‘—1)-4‘“5‘
+(27% ).

)

( ol8\Zo| _q

2\25\27\ 1 4‘X\D‘+(2\Zs\zﬂ 1) 2‘21\28‘_1),4‘X\D‘

(
(277 -1)- X
(

+

lZs\2a _q x\0|

(2 -1).
(255 -1). 40 (25 ).
) )

2%l 1).4
+(2\Zs\23\ _1).(2%\%l 1) ‘X\D‘_,_(z\zﬂzﬂ -1 ) |
(

x\D|

(2771 -1)-4
+(2\Zz\21\ ) 2\21\22\ ) 4‘X\D‘+ 2\23\21\ ) (2\21\23\ _1),4‘“5‘

(

(

(

(

(25-)

(Z\Zz\zs\ ) A%l | (plza\zal _q
(27%-)

(

(

(

[x\D|

+ 2\23\22\ l) 2\22\23\_1),4

Lemma 19. Let DeX,(X,10) and Z, =& . If X is a finite set, then the number |I* (Qs )| may be calcu-
lated by formula

|I "(Q, )| _ (2\25\24\ _1).(2\24\25\ _1) _ (5\5\21\ A ).S‘X\D‘

4 2\26\24\ _1). 2\24\26\ 1 (5\0\21\ 4\0\21\) \X\D\

+

0l26\2s| _ 1) ol25\2Ze| _ l) 5\0\21\ 4\0\21\ S\X\D\

+ 2\26\28\ )

2\28\26\ )
)

5\0\23\ 4\0\23\) S\X\D\
+ 2\28\27\ 1 2\27\28\ 1 (5\0\23\ 4\0\23\) S\X\D\

(2 -1)
(22 ) (2 1)
+(2\z7\zs\ 1) (2\26\27\ 1) (5\0\23\ 4Pzl glxol
(2 -a) (2 )
( (

Lemma 20. Let DeX, (X,10) and Z, =& . If X is a finite set, then the number |I* (Q )| may be calcu-

lated by formula

|| * (Q7 )| _ (Z\ZG\ _1) ) 2\(zzmzl)\ze\ .(3\z2\z1\ _ 2\22\21\ ) ) (3\21\22\ _ 2\zl\z2\ ).S‘X\D‘
+<2\26\ _1)_ 2\(z3mzl)\ze\ '(3\23\21\ _ 2\23\21\ ).(3\21\23\ _ 2\21\23\ )_5\X\D\
+<2\za\ _1),2\(23@)\26\ '(3\z3\zz\ _z\zgxzz\)'(S\zZ\zs\ 3 2‘22\23‘)-5‘“5‘.

Lemma 21. Let DeX, (X,7) and Z, = . If X is a finite set, then the number |I"(Q8 )| may be calcu-
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lated by formula

1" (Q, )| _ (2\23\22\ _1).(2\25\23\ _1),(3\zz\z3\ 3 2\22\23\).6@(\5\
+(2\ze\z1\ ol26\z4| _1)‘(3\21\23\ o7z ) g%l

1)
+ 2\27\22\ ) ) (3\22\23\ 2‘22\23‘)'6‘“5‘
) )

(

(

(

(2% 1) (372 g ).
< oo
( )

)

2\26\27\

2\27\21\ -1 2\26\27\ -1 3\21\23\ 2\21\23\) G‘X\D‘

[x\D|

(
(
(3\22\21\ ol22\2s
(

3%\a| _ ola\z|

6

i (2\24\22\

)
a5 ),
-y
o)

( \26\24\

( \22\21\_2\22\21\ G‘X\D‘

Theorem 14. Let D e X, (X,10), Z = . If Xis afinite set and 1, is a set of all idempotent elements of
the semigroup B, (D), then |[I,|=>"" [1"(Q, )|
Example 15. Let X ={1,2,3, 4,5,6,7},
R={} R={2} R={3]. P.={4}. R ={5}, R ={6}, R={7} R =R =R =0.
Then D={12,3,4,56,7}, Z,={2,3456,7}, Z, {13 4,5,6, 7} Z,={1,2,4,56,7},
Z,={2356,7}, Z :{2,3,4,6,7}, Z,=1{4,56,7}, Z,={1,2,457}, Z,={1,2,456} and Z,=0.

={(1L2,3,4,56,7},{2,3,4,56,7},{1,34,56,7},{12,4,56,7},{2,35,6,7},
{2,3,4,6,7),{4,56,7},{L2,4,5,7},{1,2,4,5,6},0}

We have Z, = 1(Q)|=1, [I"(Q,)[=1121, |1"(Q,)|=2141,
1"(Qq)[=14, [I(Q)|=90, [1(Qy)[=8. |I,|=3843.

It was seen in ([4], Theorem 2) that if « and S are regular elements of B, (D) then V(D,aof) isan
Xl-subsemilattice of D. Therefore «o g is regular elements of B, (D) That is the set of all regular elements
of B, (D) isasubsemigroup of B, (D).

I*(Q4)|=349,

"(Q;)| =119,
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