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Abstract

In this paper, a new Kkind of energy identities for the Maxwell equations with periodic boundary
conditions is proposed and then proved rigorously by the energy methods. By these identities,
several modified energy identities of the ADI-FDTD scheme for the two dimensional (2D) Maxwell
equations with the periodic boundary conditions are derived. Also by these identities it is proved
that 2D-ADI-FDTD is approximately energy conserved and unconditionally stable in the discrete L2
and H! norms. Experiments are provided and the numerical results confirm the theoretical analy-
sis on stability and energy conservation.
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1. Introduction

The alternative direction implicit finite difference time domain (ADI-FDTD) methods, proposed in [1] [2], are
interesting and efficient methods for numerical solutions of Maxwell equations in time domain, and cause many
researchers’ work since ADI-FDTD overcomes the stability constraint of the FDTD scheme [3]. For example, it
was proved by Fourier methods in [4]-[8] that the ADI-FDTD methods are unconditionally stable and have rea-
sonable numerical dispersion error; Reference [9] studied the divergence property; Reference [10] studied
ADI-FDTD in a perfectly matched medium; Reference [11] gave an efficient PML implementation for the
ADI-FDTD method. By Poynting’s theorem, Energy conservation is an important property for Maxwell equa-
tions and good numerical method should conform it. In 2012, Gao [12] proposed several new energy identities
of the two dimensional (2D) Maxwell equations with the perfectly electric conducting (PEC) boundary condi-
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tions and proved that ADI-FDTD is approximately energy conserved and unconditionally in the discrete L? and
H* norms. Is there any other structure which can keep energy conservation for Maxwell equations? Is there any
other energy identity for ADI-FDTD method? This two interesting questions promote us to find other energy-
conservation structure.

In this paper, we focus our attention on structure with periodic boundary conditions and propose energy iden-
tities in L? and H* norms of the 2D Maxwell equations with periodic boundary conditions. We derive the energy
identities of ADI-FDTD for the 2D Maxwell equations (2D-ADI-FDTD) with periodic boundary conditions by a
new energy method. Several modified energy identities of 2D-ADI-FDTD in terms of the discrete L? and H*
norms are presented. By these identities it is proved that 2D-ADI-FDTD with the periodic boundary conditions
is unconditionally stable and approximately energy conserved under the discrete L? and H* norms. To test the
analysis, experiments to solve a simple problem with exact solution are provided. Computational results of the
energy and error in terms of the discrete L? and H* norms confirm the analysis on the energy conservation and
the unconditional stability.

The remaining parts of the paper are organized as follows. In Section 2, energy identities of the 2D Maxwell
equations with periodic conditions in L? and H' norms are first derived. In Section 3, several modified energy
identities of the 2D-ADI-FDTD method are derived, the unconditional stability and the approximate energy
conservation in the discrete L? and H* norms are then proved. In Section 4, the numerical experiments are pre-
sented.

2. Energy Conservation of Maxwell Equations and 2D-ADI-FDTD

Consider the two-dimensional (2D) Maxwell equations:

E ok E OCE
B M B g e B 2.1)
a ey a oy ox

in a rectangular domain with electric permittivity & and magnetic permeability x, where ¢ and x are positive con-
stants; E =(E, (x,.t),E, (X, y,t)) and H, =H,(x,y,t) denote the electric and magnetic fields, t<(0,T],
(x,y)eQ= O,aﬁx[o,b] )

We assume that the rectangular region Q is surrounded by periodic boundaries, so the boundary conditions
can be written as

E, (0.y,t)=E (ay.t), E,(x0t)=E (xb,t), E,(0,y,t)=E, (ayt), (2.2)
E, (x,0,t)=E, (x,b,t), H,(0,y,t)=H,(a y,t), H,(x,0,t)=H,(xb,t). (2.3)

We also assume the initial conditions
E(%¥,0)= Ey (%) = (Eo (% ). Eyo (%, ¥)), Hy (%, ¥,0) = Hy (x,¥). (24)

It can be derived by integration by parts and the periodic boundary conditions (2.2)-(2.3) that the above
Maxwell equations have the energy identities:

Lemma 2.1 Let E(t):(EX(x, y.t),E, (X, y,t)) and H,(t)=H,(xy,t) be the solution of the Maxwell-
systems (2.1)-(2.4). Then

[EO +[H. O =[E @ +[H. O (25)

where and in what follows, [e| denotes the L? norm with the weights & (corresponding electric field) or p
(magnetic field). For example,

IE® =[E ) +E, @) [EOF =[], £E2 (x. y.t)dya (2.6)

Identity (2.5) is called the Poynting Theorem and can be seen in many classical physics books. Besides the
above energy identities, we found new ones below.

Theorem 2.2 Let E(t) and H,(t) be the solution of the Maxwell systems (2.1)-(2.4), the same as those
in Lemma 2.1. Then, the following energy identities hold
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EM)| eH, ) _[eE©)]  [oH, () o
au | eu | T[au | e '
[ +[H O =[E O +[H. ()] (28)
where u=xory,and ||, isthe H' norm (the H* norm of f is defined by ||f|| —||f|| +||f||]/2,where

|f||]/2 =|f,J° ||f || fo=af jox, f,=0of joy. |[f],, isalsocalled the H"-semi norm of f).

Proof. First, we prove Equation (2.7) with u = x. Differentiating each of the Equations in (2.1) with respect to
X leads to

2H o°E 2 2E, O°E
aE _0°H L, y:_aHZ and 1 O°H, aEX_ v 2.9)
8x6t axay oxot OXOX axat OXoy  OXOX
By the integration by parts and the periodic boundary conditions (2.2)-(2.3), we have
‘[J-baE Zd d :_‘[ J-bGE 5H2d dy,
0 oxoy
(2.10)
a0’ E, oH baE 0°H
Zdxdy =r( —L.——~dxd
0 ox*  ox y I IO ox  ox? y
where
oE oH oH
r(t)= t a,y,t 0,y,t 0,y,t) |dy. 2.11
<>J0[6X<y>x<y)a(y) 00 @1

Multiplying the Equations (2.9) by &E, /ox, g@Ey/ax and woH,/ox respectively, integrating both sides
over [0,a]x[0,b] and using (2.10), we have

Ldflef,
2dt| | ox
From (2.1) and the boundary conditions (2.2)-(2.3) we note that

3E, _E, oH (e OF
0 L—2(x,y,t)=-I X t
ox 6x(y) Mo ¢ YY) X'ﬂgg(ay ﬂé’t]&t(xy)

oE oE
:—Ixi_rgg(a;; yaaHt jﬁ(x Y, t)—llmg(x y,t)—=

2

oE,
ax

A
OX

J:—r(t). (2.12)

OH,
oX

L(x,y,t) (2.13)

OE, oH
= i) lt z
OX (a y ) OoX

So, r(t)=0. Then, by integrating (2.12) with respect to time over [0,T], we get equation (2.7) with u = x.
Similarly, the identity (2.7) with u =y can be proved. Combining (2.5) and (2.7) leads to (2.8). O

(a,yt).

The 2D-ADI-FDTD Scheme

The alternating direction implicit FDTD method for the 2D Maxwell equations (denoted by 2D-ADI-FDTD)
was proposed by (Namiki, 1999). For convenience in analysis of this scheme, next we give some notations. Let
1
X =IAXX 1 =X +&,y,- =AYy 1 =Y, A a2 o 2
2 i+ 2 2

i+=
2

i=01---,1-,x =4a,j=01---,J-4y,=b,n=01---,N-1 NAt=T.

where Ax and Ay are the mesh sizes along x and y directions, At is the time step, I, J and N are positive integers.

For a grid function f, = f(x,,y,.t"), define
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fm .fm1 Fm fm .
m a+5ﬂ a—z,ﬂ m a,/f'+E aﬂ—z
S fn =22 5 ", = ,
’ AX ’ Ay
1 1
f m+5 _f m—E
a.p a.p 2 2
é‘t fan,]ﬂ = A—t’ 5u5v fanjﬂ = 5u (5V fan,]ﬂ)’ AU = (AU) !

whereu=x,yort. For V = (V v Wiy .02, AV =AXAy, define some discrete energy norms based

Xi41/2, ’VVi, j+1/2 )
on the Yee staggered grids (Yee, 1966),

2 1-1J-1 z 2 1-1J-1 2 2 1-1J-1 z
% 3% A P % 7 (PR PV 7 A B
i=0 j=0 2 y i=0 j=0 L+ i=0 j=0 s
2
2 1-1J-1 2 2 1-1J-1
65 e =10V, +loM e 18V e, = izogg(@vxivj) oV, = i_oj_og(5xvya+%+lJ Av.
Other norms: ||5va 5, ||5yVy 5, and "5sz 5, are similarly defined. Denote by EL?;ﬁ and Hz";ﬁ

the approximations of E, (xa,yﬂ,tm) (u=xy)and H, (xa, yﬁ,tm), respectively. Then the 2D-ADI-FDTD
scheme for (2.1) is written as

Stage 1:
nel
E, 2 -E; S,H;
i+£‘j |+1.J y i+,
Zm/z I (214)
n+l -¢-1
n
Ey. ,1 B Eyi,j+f 5XHZi,ji
Nz e (2.15)
n+1
Hzi+12,j+1 - T 1 sl
2”2 272 _ — §yE: - _5xEy 12 ) (2.16)
At/2 7 I idies
Stage 2:
nel
n+1 n+1
Exi+1,j - Exi+f,j 5yHZi+1,j
2At/z - & 2 @17)
n+1 n+1
E;Hl EY. .21 5XHZ. .21
%At/z i S g""? (2.18)
1
+1 n+y
Hzni+1j+£ B |+12J+1 1 n+l
2”2 22 _ — S gt —S0E 2 (2.19)
At/z /L[ y xi+%,j+% X yl+%]+%

For simplicity in notations, we sometimes omit the subscripts of these field values without causing any ambi-
guity. By the definition of cross product of vectors, the boundary conditions for (2.2)-(2.3) become
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_Em m _pEm _m m = m _m m  _pEm
E, _EX1 ’EX1._EX B, =K 1.’Ey. _EV.1’EY1_EV 1’EY.1_EV. 1!
i+=0 I+E'J E,J I+= -] 1-=j 0,j+= I,]-v-E |E iJ+= |,—E |,J—E 2 20
H™ _gm m —H" Hm —HM m m ( ' )
LS R S B B A B Tt A B T A U L A U zq 1!
= j+= 1+=, j+= — = I-= j+= == i+=J+= ——— i+=J-=
272 272 272 272 22 2°2 272 2" 2

where m=n or m=n+1/2. Finally, the initial values Eg,,, and wa of the2D-ADI-FDTD scheme are
obtained by the initial condition (2.4). '
3. Modified Energy Identities and Stability of 2D-ADI-FDTD in H! Norm

In this Section we derive modified energy identities of 2D-ADI-FDTD and prove its energy conservation and
unconditional stability in the discrete H* norm.

Theorem 3.1 Let n>0, E" :<E” E’ ) and H" be the solution of the ADI-FDTD scheme

Xisg/2,j Vi jy2 Zi41/2,j+1/2
2
JXHZ
2

(2.14)-(2.19). Then the following modified energy identities hold,
5H, )

2
)
2
5,H, j’

2 At? ( 2
+_

%H:  Aue
2 At? (

6,6,E,

x“y =x

5,E"

+
E

o,H;

5,0,H;

+
OxEx

" (3.1)

2

=s,E° S,H? 5,0,E;

+_
%M. Apue

+
OxEx

+
E

0
6,0,H;

2
x

2

. +||5szn S At?
y

n

M. dug ("5V5YHZ
2 A
+_

SyH, 4,u£

2

|s,E" e, * |6,5,E;

(3.2)

2 2

- +||65E°
JEx

yoy X

- ”5on

Jo,H:

(| 5,6,H?

+
oyE

where for u=x,y,and m=n or0
2 2

S,E7

uTy

S,E"

S,E!

+
‘gu EX

2
SE SEy

Proof. First we prove (3.1). Applying &, to the Equations (2.14)-(2.19), and rearranging the terms by the
time levels, we have

neZ At
SE 2=6E" +2585H" (3.3)
i,j i,j 2¢ y i,j
s At s
ST 4o 00H 2 =5E (3.4)
ity & s i+ j+
nel At nel n At n
oOH, 2 +—66E, 2 =6,H; +—60,E (3.5)
i,j+1 Z,U i,j+l i,j+1 2[Ll I‘J+i
n+1 At n+1 n+%
SE -5 SO HIN =6 E 2, (3.6)
1 1
sEM —5E Assn (3.7)
i+£,j+1 yi+£j+1 & |+1,j+1
272 272 272
n+l At n+l n+1 At n+£
SHIM —5 5B =G H 2 =5 5E) 2. (3.8)
i 2 ity g 2 i

Multiplying both sides of the equations, (3.3)-(3.4) by Je respectively, and those of (3.5) by \/; and
taking the square of the updated equations lead to
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nal 2 2 At? 2
¢| 68, | =¢(8.E), ) +o—u(8,6,H] ) +AS.E] SSH] (3.9)
i i, 4,ng y i,j i,j i,j
et 2 Atz el 2 et el §
gl 6 E, ? + ul 60H, ? +AtSE, 2 60H, 2 =¢g|6E] , (3.10)
XTY 1.1 XTXTTZ g1 X7TY 1.1 XTXT Tz XTY 1.1
i+, 4= 4/Ll€ i35 5 35 W35
s 2 Atz et 2
u{OH, % |+ 60E, +ASH, 2 55 E,
ij+s /18 ij+s ij+s |J+—
? ’ ? (3.11)
=u|o,H 2 At* g| 0,6, E! 2 o MH; 55E"
- :u X Zi,j»% +— 4#8 X7y xl J+£ +At X IJ+7 Xy X. J+1,

Applying summation by parts, we see that

1-1J-1 1-1J-1
S H] 5X5VEQ 25 E;‘m (ﬁxH; -6,H] IJ zz&XEQ~5X5yHZ”
i=0 j=0 i, J+— i E "7 i=1 j=1 i
2
1= 1-1J-1
=—Z5 Ey S,0,HT —%ZléxE;“-&XayH;" (3.12)
i=0 j= i
1-1J-1
ZéXE;"-EXEVHZm ,
i=0 j=0 i

where we have used that &,E} =06,E} ~and that 5,H; =4,H; , which can be obtained from the peri-

iJ—= X i,f1
2 2
odic boundary conditions. Similarly, we get that
1-1J-1 N+ ns 1-1J-1 nel WL
Z&XEy 2.60H, ? =— o,H, 2 5X5XEy (3.13)
i=0 j=0 il el i=0 j=0 it
2’702 2

So, if summing each of the Equalities (3.9)-(3.11) over their subscripts, adding the updated equations, mul-
tiplying both sides by AxAy, and using the two identities, (3.12) and (3.13), together with the norms defined in
Subsection 2.2, we arrive at

2 2 2 2 2

n+> et et Atz
o,E, 2 +||0,E, 2 +|oH, 2 5,0, H 5X5yEx
4,ug
OxEx 5><Ey oxH; OxEx OxH, (314)
LA ( +ls.s,Ef )
= axEy 0XHZ 4[u€ Sy Ex y oxH;
Similar argument is applied to the second Stage (3.6)-(3.8), we have
XE;Hl 2» En+1 Hn+1 ( Hn+1 5X5y E;Hl , )
éXEX bXEy S,H, 4#5 S4E SeH,
1P 12 2 ) 112 112 (3.15)
n+= n+= n+— At n+= n+=
=||0,E, 2 +|6E, 2 +|0,H, + 6,0,H, 2 +||0,0,E, ? .
5,Ey 5,Ey S,H, 4pe S,Ey S,H,

Combination of (3.14) and (3.15) leads to the identity (3.1). Identity (3.2) is similarly derived by repeating the
above argument from the operated Equations (2.14)-(2.19) by &, . This completes the proof of Theorem 3.1. [

In the above proof, if taking &, as the identity operator, we obtain that

Theorem 3.2 Let n>0, E" and H. be the solution of 2D-ADI-FDTD. Then, the following energy iden-

tities hold
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2

H, +m(" Y XK,

(||5 Eoff

z

2 n
vl +{H
Ey

n 2
S H! EX)

2
).
Combining the results in Theorems 3.1 and 3.2 we have
Theorem 3.3 If the discrete H' semi-norm and H* norm of the solution of 2D-ADI-FDTD are denoted respec-
tively by

(3.16)

2

i, 4pue

' = +||5 E”
2
E”2=EQ2+E;2,E"2=E"2 el
Ex Ey 1 12 E
"5VE: f =[9x9y Ex ZXHZ +||5y5yEX” Z‘yHZ +"5YEQ

n 2 n 2 n 2 n 2
"HZ" =||5XHZ|| +||5 HZ" +||HZ|| ,

il 5.H, y S H, H,
§H"2—55H"2 5§H"2 5H"2
JHAL =(00,H | +[6,6,H, ] _ +|lo,H;(_

1 5Ex 5yEx Ey

then, the following energy identities for 2D-ADI-FDTD hold

[E"LL, +[H:];, + 4ﬂg(||5E|| e bl ) =[E L, el + 4#8("5 e+l Hef) e
HI;+ 4Atg(" x +||5sz":):||'50||12+ HY[; + f:,g(||5'5° ) (3.18)

Remark 3.4 It is easy to see that the identities in Theorems 3.1, 3.2 and 3.3converge to those in Lemma 2.1
and Theorem 2.2 as the discrete step sizes approach zero. This means that2D-ADI-FDTD is approximately
energy-conserved and unconditionally stable in the modified discrete form of the L? and H* norms.

4. Numerical Experiments

In this section we solve a model problem by 2D-ADI-FDTD, and then test the analysis of the stability and ener-
gy conservation in Section 3 by comparing the numerical solution with the exact solution of the model. The
model considered is the Maxwell equations (2.1) with ¢=x=1, Q=[0,1]x[0,1], te(0,T], and its exact so-

lutionis: E, =E, (t) =cos(2n(x+ y)—2x/§nt), E, =E,(t)=-E,, H,=H,(t)=—2E,.

It is easy to compute the norms of this solution are
I(E@).H. @)= IEOF +[H. 0 =
12
IE© R O =(IEOF IR, OF) =(2+8x)"

4.1. Simulation of the Error and Stability
To show the accuracy of 2D-ADI-FDTD, we define the errors:

n _ n _En n _ n _En n _ n _ N
& g E, (t )M/Z,j B 42 gywz E, (t )i,j /2 Eyu/z and Hliwz,wz B Hz(t )i+]/2,j+]/2 HZHMJM’

where E,(t"), E,(t"), H, t“) are the true values of the exact solution. Denote the error and relative error
in the norms defined in Section 3 by ErL,, R-ErL,, ErH; and R-ErHj, i.e.

==l BT el R e

(E@.H. )]
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2 nll2 nli2 nll2 2 IR " 12
o :((ErLZ) ok s Oy S5Ey *oxH 5H, +||5ng SyEx +||5Y‘5’y 5,Ey +”5)'7"1 a‘szj :
ErH Error(h)
R'ErH = 1 ' Rate _ |0g il
CE®.HO), 2 Error (h/2)

where log is the logarithmic function.

Table 1 gives the error and relative error of the numerical solution of the model problem computed by 2D-
ADI-FDTD in the norms, and the convergence rates with different time step sizes At = 4h, 2h and h, when Ax =
Ay =h=0.01is fixed and T = 1. From these results we see that the convergence rate of 2D-ADI-FDTD with re-
spect to time is approximately 2 and that 2D-ADI-FDTD is unconditionally stable (when At = Ax = Ay = h,

the CFL number cAty1/Ax? +1/Ay? =2 >1).

Table 2 lists the similar results to Table 1 when At = 0.1h is fixed, Ax = Ay varies from 2h, h and 0.5h, and
the time length T = 1. From the columns “Rate” we see that 2D-ADI-FDTD is of second order in space under
the discrete L and H' norm.

4.2. Simulation of the Energy Conservation of 2D-ADI-FDTD

In this subsection we check the energy conservation of 2D-ADI-FDTD by computing the modified energy
norms derived in Section 3 for the solution to the scheme. Denote these modified energy norms by

IU(En’H?):\/5UEn ZE+ o,H; ZH fi( Ao, H; z‘E +]000, Ex ZH )
f e Aue uEx uHz
2
(%)=l o, <2 (i, ol il )
Il(E",HZ”):\/IX(E",HZ”)Z+‘Iy(E”,HZ”)2+‘I0(E”,HZ”)2.

In Table 3 are presented the energy norms 1,(E", Hz”)(u =X,¥,0,1) of the solution of the 2D-ADI-FDTD
scheme at the time levels n = 0, n = 1000 and n = 4000 (the third to fifth rows), and the absolute values of their
difference (the last two rows), where the sizes of the spatial and time steps are Ax = Ay = 0.01, At = 0.04. The
second row shows the four kind of energies of the exact solution computed by using the definitions of
l, (u =0,X%, y) . From these value we see that 2D-ADI-FDTD is approximately energy-conserved.

Table 1. Error of (E", HZ") in L? and H* with Ax = Ay = h and different At.

At R-ErL, ErL, Rate R-ErH; ErH; Rate
4h 6.0284e-2 8.5254e-2 6.0287e-2 7.6675e—1

2h 1.6264e-2 2.3001e-2 1.8901 1.6265e—2 2.0595e-1 1.8901
h 5.1571e-3 7.2932e-3 1.6571 5.1571e-3 6.5229e-2 1.3182

Table 2. Error of (E",H) inL?and H' with At = 0.1h and different spatial step sizes.

z

Ax = Ay R-ErL, ErL, Rate R-ErH; ErH; Rate
2h 5.0019e-3 8.3182e-3 5.0019e-3 7.4333e-3
h 1.4981e-3 2.1186e-3 1.7393 1.4981e-3 1.8942e-3 1.7393
0.5h 4.0200e—4 5.6851e—4 1.8979 4.0200e—4 5.0834e—4 1.8978

()
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Table 3. Energy of (E", HZ") and its error when Ax = Ay = h =0.01, At = 4h and n = 0, 1000, 4000.

Fields\Norms () I,(e) I, (+) I,(+)
(E(t).H, (1)) 8.9367 8.9367 1.4226 12.7183
(E°,H?) 8.9367 8.9367 1.4226 12.7183
(E™, H™) 8.9367 8.9367 1.4226 12.7183
(E*,H*) 8.9367 8.9367 1.4226 12.7183
(E**, HX)-(E°,H?) 3.2685e-13 3.2685¢-13 5.2403¢-14 4.6718¢-13
(E“°, H™)—(E°,HY) 3.2685¢-13 3.2685¢-13 5.2403¢-14 4.6718¢-13

5. Conclusion

In this paper, the modified energy identities of the 2D-ADI-FDTD scheme with the periodic boundary condi-
tions in the discrete L? and H' norms are established which show that this scheme is approximately energy con-
served in terms of the two energy norms. By the deriving methods for the energy identities, new kind of energy
identities of the Maxwell equations are proposed and proved by the new energy method. Numerical experiments
are provided and confirm the analysis of 2D-ADI-FDTD.
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