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Abstract

In this work, we used the complex variable methods to derive the Goursat functions for the first
and second fundamental problem of an infinite plate with a curvilinear hole C. The hole is mapped
in the domain inside a unit circle by means of the rational mapping function. Many special cases
are discussed and established of these functions. Also, many applications and examples are consi-
dered. The results indicate that the infinite plate with a curvilinear hole inside the unit circle is
very pronounced.
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1. Introduction

Many intangible phenomena can be found in nature-like magnetic field, electricity and heat. These phenomena
cannot be presented mathematically in the real plane. The complex plane plays an important role in presenting
these intangible phenomena. Also, many mathematical problems cannot be solved in the real plane; their solu-
tions can be found in the complex plane.

The considerable mathematical difficulties which arise during any attempt to solve plane elastic problems ne-
cessitate the search for practical methods of solution. The first use and development of the methods of complex
function theory in two-dimensional elastic problems were made by Muskhelishvili (see [1]), and their ideas were
expounded in their latter books (see [2]-[4]). The development of the theory was based on the complex repre-
sentation of the general solution of the equations of the plane theory of elasticity. This complex representation
has been found very useful for the effective solution of the plane elastic problems.

Contact and mixed problems in the theory of elasticity have been recognized as a rich and challenging subject
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for study (see Popov [5], Sabbah [6] and Atkin and Fox [7]). These problems can be established from the initial
value problems or from the boundary value problems, or from the mixed problems (see Colton and Kress [8] and
Abdou [9]). Also, many different methods are established for solving the contact and mixed problems in elastic
and thermoelastic problems; the books edited by Noda [10], Hetnarski [11], Parkus [12] and Popov [5] contain
many different methods to solve the problems in the theory of elasticity in one, two and three dimensions.

Several authors wrote about the boundary value problems and their applications in many different sciences
(see [7] [13]-[15]). Form these problems, we established contact and mixed problems (see [8] [16]). Complex
variable method used to express the solutions of these problems in the form of power series applied Laurent’s
theorem (see [8] [17]-[19]). The extensive literature on the topic is now available and we can only mention a
few recent interesting investigations in [20]-[24].

The first and second fundamental problems in the plane theory of elasticity are equivalent to finding analytic
functions ¢ (z) and w,(z) of one complex argument z = x+iy .

These functions satisfy the boundary conditions

ke (1) —tgh (t) = (1) = (1) €

where ¢ (t) and w,(t) are two analytic functions; t denotes the affix of a point on the boundary. In the first
fundamental problem k=-1, f(t) isa given function of stresses, while in the second fundamental problem

A+3
k:Z:(iky)
+u
2
e )
(1-2v)(1+v)
And f =2ug isagiven function of the displacement; 2 and . are called the Lame constants.
Let the complex potentials ¢ (t) and w;,(t) take the form
X +iY
= T 3
4=y e e +4(0) ©
(X —iY) .
=y—=I r 4
A % on(is ) ng+cl'¢+y (L) @)

where X, Y are the components of the resultant vector of all external forces acting on the boundary and T',T"”
are constants; generally complex functions ¢(§),V/(§) are single-valued analytic functions within the region
inside the unit circle » and ¢(x)=0.

Take the conformal mapping which mapped the domain of the curvilinear hole C on the domain inside a
unit circle » by the rational function

z=w(¢), [¢]<Lc>0. (5)

and W’(g’) does not vanish or become infinite to conform the curvilinear hole of an infinite elastic plate onto
the domain inside a unit circle » i.e.

W'(¢)#0, 0. (6)

2. Conformal Mapping

Consider the rational mapping on the domain inside a unit circle 3 by the rational function

= (@)= < [e]< 0

where, m and n are complex number n=n, +in,, m=m, +im,, Equation (7) must satisfy the condition Equa-

tion (6).
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For determining the tax parameters X and y,we put ¢ =pe", |p|=1 in Equation (7) to get

(cos360+m, cos§—m,sin@)+i(sin360 +m, sin & +m, cos o)

iy = 8
o (cos@—n,)+i(sind—n,) ®)
Then
0526 +m, —n, (cos30 +m, cos & —m, sin &)+ n, (sin30 +m, sin & +m, cos )
X = k ! ©
(cos@—n,) +(sin@—n,)
_sin20+m, +n, (cos30 +m, cosd—m, sin @) —n, (sin36 +m, sin &+ m, cos 0 (10)
(cos@—n,)* +(sin@—n, )’
Also,
., 203 -3n¢% —mn
72'=w (é’) = %
(¢-n)
To obtain the critical points, we consider
2% -3n¢? -mn=0 (11)
this linear equation of three order, the roots of this equation must be under 1.
The following graphs give the different shapes of the rational mapping (7), see Figure 1.
3. The Components of Stresses
It is known that, the components of stresses are given by, see [1]
o, +0, =4Re{¢'(2)} (12)
0, — 0y +io, =2{74"(2)+y'(2)} (13)
Hence, we have
o, =Re{2¢'(2)+M(2,7)}, M(2,7)=7¢"(2)+y'(2) (14)
o, =Re{24'(2)-M (2,2)}, M(2,7)=74"(2)+v'(2) (15)
and
o, =2Im{zZ4"(2)+y'(z)} =2Im{M (z,7)} (16)

4. Goursat Functions

To obtain the tow complex potential functions (Goursat functions) by using the conformal mapping (7) in the

boundary condition (6). We write the expression M in the form,
w'(¢$)
M:a(g)JrM 17)
w(¢)
where,
_ h 20 - W(é’) __h 18
a($) (C-n)’ () m Z-n (18)
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Figure 1. The different shapes of the rational mapping (7).

ﬁ(g‘l) is a regular function for |¢|<1.
In order to separate the singularity, we use the definition of mapping, to have

W(§):§3+m§. £(1-ng) 1 Cz(§2+m)(l—n/;)2
(

= . (19)
w(¢) ¢-n (2-3ng-mng®) {-n (2-3ng-mng?)
The term (2—3n§—mn§3) in the are has no singular point while (g“— n) has a singularityat ¢ =n.
where
— (2-3n¢-mn¢?
@=L me) (20)
¢(1-ng)
To determine h form Equation (19), we can write the form
(6% +m)(1-no )
Wo) 1 (o m)(i-no) o

w(o) “o-n (2—3na—mna3)

By using the residues in this equating we have
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he nz(n2+m)(1—n2)2. 22
(2—3n2 —mn“)

Using Equation (3) and Equation (4) in Equation (1), we get

(4(0)-a(o)F(o)-7-()=6(0) @)
where

v.(o)=w(o)+B(c)¢ (o) (24)

G(o)= F(o-)—ckl"o-+%+N(a)a(a)JrN(a)m 25)

N (o) :{cf‘—%}, F(o)=f (1) (26)

Assume that the function F (o) with its derivatives must satisfy the Holder condition. Our aim is to deter-
mine the functions ¢(¢) and (<) for the various boundary value problems. For this multiply both sides of

Equation (23) by > _da , where ¢ is any point in the interior of » and integral over the circle, we ob-

ni(oc—¢)

tain
L_I¢(O-)da—i_fa(a)g(a)da—i.jlz(a)do'=i._[G(O-)dO' @7)
2nis0-¢ 2nis,  o-¢ 2niy, o—¢ 2niy o—-¢

Using Equations (24)-(26) in Equation (27) then applying the properties of Cauchy integral, to have

k (#(o), __
and
1 Ia(0)¢’(0)d02 chb 29)
2nis,  o-— n-¢
1 (N(o)a(o) ,  N(n)h
2—m£ (0-2) do = - (30)
Also,
1 . G(o) o hN(n)
— do=A({)- 31
7m0 (02707 M) ) 1)
where,
_1F _|poa(X2iY)
A(C)—%J;Hda, N(a)_{cl“ 2n(1+;()}' (32)
From the above, Equation (27) becomes
Kp ()= AC)+— (cb+N(n))—% (33)
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To determined b, where b are complex constants, differentiating Equation (33) with respect to ¢ and
substituting in Equation (29), we get

1ea(o) | o oo ho® o = ckhb
20 (0-0) -A(o)-cl'o —W(Cb”\'(”))do’ = (34)

Substituting Equation (18) in Equation (34), then using the properties of Cauchy integral and applying the re-
side theorem at the singular points, we obtain

ckb + A’(n)+cl"*n2+uh(cE+N(n))=O (35)

where

(36)

The last equation can be written in the form

ckb +wvhch = E (37)

where,

E=-A'(n)-cI"n*-vhN(n) (38)

taking the complex conjugate of Equation (37), we get

ckb +vhch = E (39)
form Equation (37) and Equation (39), we have
kE —vhE
b=—— 7 = 40
C(k2 - Uzhz) (40)

To obtain the complex function z//(g“ ) we have form Equation (23) after substituting the expression of
z//(cr) and G(U), and taking the complex conjugate of the resulting equation after using the expression of

B(o) toyields,

y(0)=-F(co)+ ko —cl" o +kg(o)-a(o)p.(0) - \:’VV((?) ¢ (o)+ (1Eia) ¢ (o) (41)
where,
o = | . o (X +iY)
¢.(c)=¢'(c)+N (o), N(o)= {CF —Zﬂ(1+}() } (42)
and calculate sum residue, we obtain multiplying both sides of Equation (41) by ; where ¢ is any
2mi (0'—4‘)

point in the interior of » and integrating over the circle, then using the properties of Cauchy’s integral and
calculating the sum residue, we obtain

=ckl ‘1—M +h—§ n?t)+ -
v (€) =g = b (O 4 () +B()-B (43)

where,

D



F.S. Bayones, B. M. Alharbi

1 F(o
B({)=5= (@) 4o, (44)
27y (6-¢)
and
1 F(o
=— (— do. (45)
2mi 2
5. Special Cases
Now, we are in a position to consider several cases:
1) Let m=0,n=0, we get the mapping function represent of the hole is an ellipse, see Figure 2
413
=W = 46
)= (46)
by let
7=0=2¢%-3n¢
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Figure 2. The different shapes of the rational mapping for special cases.
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Then (33) and (43) becomes

o n’ (1—nz)
2-3n
o nt(1-n?) KE - hoE
—k =A(S)- N 47
M) o N @
| n°E
kE —
(e A o nf(1-n?) N (2-3n%)
- ¢(§)_ (é’)_ ¢ (2—3n2)(n—§) (n)+k2_ ni2
(2-3n%)
Also,
o w(¢) e
=B = ) — 7~ _&4(n")-B. 48
W(é’) (C:) é/ W'(é’) ¢(§)+(2_3n2)(1_n§)¢k< ) ( )
where
E=-A(n)-cI'n T N (n)
2) For n=0,0<m <1, we get the mapping function represent of the hole is an ellipse, see Figure 2
_ £+mg _ 2
oo 9)
7’=0=2£=0
then
=e“, e =cosa+isina.
Then (33) and (43) becomes
h=0
Hp(6)=A() 5 (50)
ekl 1+m¢?
W(§)=B(§)+?——+2§§ ¢.(£)-B (51)
where
E=-A'(n)-cI"n? n=0.
3) Let m=n=0, we get the mapping function represent of the hole is an ellipse, see Figure 2
&
1==2_= 52
5 ¢ (52)
7’=0=>2{=0

¢ =e“, e“ =cosa+isina

G2
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Then (33) and (43) becomes

E=-A'(n)-cl'n* n=0.

(53)

(54)

4) Let m=-1, where m =-1m, =0 we get the mapping function represent of the hole is an ellipse, see

Figure 2

¢
¢—n

7’=0=2°-3n*+n=0

Then (33) and (43) becomes

n* (n’ —1)(1—n2)2

2-3n’ +n*
i n“(nz—l)E |
2 kE—————+>—
) o nz(nz—l)(l—nz) (2—3n2+n4)
_k¢(§)_A(g)_?+(2—3n2+n4)(n—§) N(n) P ng(nz—l)2
I _(2—3n2+n4)2_
Also,
v(¢)=B(6)+ V::V(,fg))ﬂ(é) (Zfzni)s)_g_)n; (n)-
where
E=—A’(n)—cr*nz+%N(n)

5) Let m=—n”,we get the mapping function represent of the hole is an ellipse, see Figure 2

_gs_nzgz 2
Z_—g’—n +ng

77=0=>2{+n=0

Then (33) and (43) becomes

(55)

(56)

(57)

(58)
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k()= A(c)—% (59)
Also,
ckC W(Cl)

=B —_— -B 60
V(€)=8(0)+ ST () ()

E=-A(n)-cI"n’+ n4(n2+1) N(n)

2-3n%+n*
6. Applications

In this section we study some applications:
1) For k=-1T :%F* = —% pe?? and X =Y =f =0, we have the case of infinite plate stretched at in-
finity by the application of a uniform tensile stress of intensity p, making an angle & with the x-axis. The

plate weakened by the curvilinear hole C which is free from stresses (see Figure 3, Figure 4 (n; = 0.001, n, =
0.0021, m; = 0.025, m, = 0.03l, ¢ = 2, p = 0.25)). Then the functions in (33) and (43) become

f=0=A({)=0 (61)
— X —iY
N(n)= cl“—u e (62)
2n(1+ ;() 4
2 na-2i0 _ 2 ~a2i0
E_ 2cn®pe uhcp' E_ 2cn“pe vhep (63)
4 4
kE—-vhE  —-E-vhE
b= = 64
(K —vh?) ~ (1-oth?) &9
2i0 2 ,-2i0 2,20 2,2
$(0)= cp;e N chp 1+ chv—2cn“e —2?uzcn e’ +ch’v . (65)
¢ 4(n-¢) 1-h%

max o, at 0~—.
60

min o, at o~ =
90

max o, at Hzi,
90

min o, at o~L .
” 60

max o, at ¢ between i, T

60 45

min o, at @ between%| 610

Figure 3. The relation between components of stresses and the angle made on the x-axis.
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Figure 4. The ratio of vertical to horizontal stresses.
-1
cp W(é’ ) hg -1
v(¢)=-T () + g.(n?) (66)
4 w'(<$) (1-n¢)

where

, C
w($)=9(0)+ 2.
2) For k=-1, T=T"=X=Y=0 and f=Pt, where P is a real constant (see Figure 5, Figure 6
(n, =0.001,n, =0.0021,m, =0.025,m, =0.031,c =2, p=0.25)).
Then the functions in (33) and (43) become

PC(O‘3+mG)
f=Pt= f o (67)
- CP(1+ maz) o8
N o’ (1-no) (68)
_cP o’ +mo B cP(n3+mn)
M2l 00 ©
cP(n*+mn) —— cPS*(n*+mn
A’(§)=(—z)r A(¢)= ( : )
(n-¢) (ng'-1)
, anZ(n3+mn)
A(n):T, N(n)=0 (70)
(n*-1)
_ cPn (n +mn>:E 1)

(3
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Figure 5. The relation between components of stresses and the angle made on the x-axis.
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Figure 6. The ratio of vertical to horizontal stresses.
cPn? (n® +mn)
2
(1-vh)(n*-1)

cP(n3+mn) thnz(n3+mn)

ch=

#(¢) =

he

("=¢)  (n-¢)(-vh)(n?-1)

where

(0) <P (1+ mo2

+(1—n§)¢’(nil)

) g __cP(l+n§)

(C;)_Zm( g) 2mi3 o’ (1-no)(o -

G

SR

(72)

(73)

(74)
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B cP (1+m02)

B=—f—~— 7~
2mi o (1-no)

do=2cP(m+n’), 4.(£)=¢'(<).

3) For k=y, I'=T"=f=0 (see Figure 7, Figure 8 (n, =0.001 n, =0.0021, m, =0.025, m, =0.03I,
c=2,x=0.25 X =2,Y =2)). Then the functions in (33) and (43) become

f=0=A({)=0 (75)
n(x—iy
(n):—g (76)
2n(1+ y)
hn(X +iY) - ohn(X-iY
E_UMn(X+IY) o ohn(X-iY) )
2n(1+ y) 2n(1+y)
1541 9, . , o
o b f"o o o0 max o, at @~ even values.
1] ¢ ° ‘; : v 9 9 o 0 min o, at @~ odd values.
A ANNARDNNAA
I% ‘.5. e TE / \ 42\ [or | max o, at @~ odd values.
| K / 6° | 80 min o, at @~ even values

]8T

max o, at 6 between L, T oand 95~
36 60

min o, at & between % T and 9~L .

Figure 7. The relation between components of stresses and the angle made on the x-axis.
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Figure 8. The ratio of vertical to horizontal stresses.
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b xhon(X +iY)-nh%? (X =iY)

2n(1+ ;()(;(2 - hzvz) (78)

h ;(hun(X +iY)—nh21)2(X—iY)_n(X—iY)
(n-¢) 2n(1+;()(;(2 —hzuz) 2n(1+ y)

~24(¢) =

h?v?

1 hn yho(X +iY)

=— 79
,{27t(1+}()(n—§) (}(Z—hzuz) ( )

—(X —iY)| 1+

_ b
w($)=——=24(<) (1_n§)¢( ) (80)

where

~ (X +iY)
2n(1+ 7)<
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