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Abstract 
Invertibility is one of the desirable properties of moving average processes. This study derives 
consequences of the invertibility condition on the parameters of a moving average process of or-
der three. The study also establishes the intervals for the first three autocorrelation coefficients of 
the moving average process of order three for the purpose of distinguishing between the process 
and any other process (linear or nonlinear) with similar autocorrelation structure. For an inverti-

ble moving average process of order three, the intervals obtained are 1
1 5 1 5

4 4
− − −

< <ρ , 

20.5 0.5− < <ρ  and 10.5 0.5− < <ρ . 
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1. Introduction 
Moving average processes (models) constitute a special class of linear time series models. A moving average 
process of order q  ( ( )MA q  process) is of the form: 

1 1 2 2t t t q t q qX e e e eθ θ θ− − −= + + + +                             (1.1) 

where 1 2,  ,  ,  qθ θ θ  are real constants and te , t Z∈  is a sequence of independent and identically distri-
buted random variables with zero mean and constant variance. These processes have been widely used to model 
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time series data from many fields [1]-[3]. The model in (1.1) is always stationary. Hence, a required condition 
for the use of the moving average process is that it is invertible. Let m

t t mB e e −= , then the model in (1.1) is in-
vertible if the roots of the characteristic equation 

2
1 21 0q

qB B Bθ θ θ+ + + + =                             (1.2) 

lie outside the unit circle. The invertibility conditions of the first order and second order moving average models 
have been derived [4] [5]. 

Ref. [6] used a moving average process of order three (MA (3) process) in his simulation study. Though, 
higher order moving average processes have been used to model time series data, not much has been said about 
the properties of their autocorrelation functions. This study focuses on the invertibility condition of an MA (3) 
process. Consideration is also given to the properties of its autocorrelation coefficients of an invertible moving 
average process of order three. 

2. Consequence of Invertibility Condition on the Parameters of an MA (3) Process 
For 3q = , the following moving average process of order 3 is obtained from (1.1): 

1 1 2 2 3 3t t t t tX e e e eθ θ θ− − −= + + +                            (2.1) 

The characteristic equation corresponding to (2.1) is given by 

2 3
1 2 31 0B B Bθ θ θ+ + + =                              (2.2) 

Dividing (2.2) by 3θ  yields 

3 22 1

3 3 3

1 0B B Bθ θ
θ θ θ

+ + + =                             (2.3) 

It is important to know that (2.2) is a cubic equation. Detailed information on how to solve cubic equations 
can be found in [7] [8] among others. It has been a common tradition to consider the nature of the roots of a 
characteristic equation while determining the invertibility condition of a time series model [9]. As a cubic equa-
tion, (2.2) may have three distinct real roots, one real root and two complex roots, two real equal roots or three 
real equal roots. The nature of the roots of (2.2) is determined with the help of the discriminant [8] 

2 3
1 2D D D= −                                  (2.4) 

where 
3

2 2 1

3 3 3 3
1

12 9 27

54
D

θ θ θ
θ θ θ θ
      

− +      
      =                       (2.5) 

and 
2

2 1

3 3
2

3

9
D

θ θ
θ θ
   

−   
   =                              (2.6) 

If 0D < , (2.2) has the following distinct roots [7] 

2
1 22 cos

3 3
x D θθ = − − 

 
,                            (2.7) 

2
2 2

2π2 cos
3 3

x D θθ + = − − 
 

,                          (2.8) 
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and 

2
3 2

2π2 cos
3 3

x D θθ − = − − 
 

.                           (2.9) 

where θ  is measured in radians and 1 1
3
2

cos
D

D
θ −

 
 =
 
 

. 

When 0D > , (2.2) has only real root given by [1] as 

23 3
1 1 1 3

x D D D D θ
= − + + − − −                         (2.10) 

The other roots are [8] 

( ) ( ) ( )2 2
1 1 1 1

2 3

4
,  

2

ax b ax b a ax bx c
x x

a

− + ± + − + +
=                   (2.11) 

If 1 0D ≠ , 2 0D ≠  and 2 3
1 2D D= , then 0D =  and (2.2) has two equal roots. The roots of (2.2) in this case, 

are the same as (2.7), (2.8) and (2.9). For 0D =  and 1 2 0D D= = , (2.2) has three real equal roots. Each of 
these roots is given by [8] as 

2

33
x θ

θ
−

=                                     (2.12) 

For (2.1) to be invertible, the roots of (2.2) are all expected to lie outside the unit circle and 3 1θ < . In the 
following theorem, the invertibility conditions of an MA (3) process are given subject to the condition that the 
corresponding characteristic equation has three real equal roots. 

Theorem 1. If the characteristic equation 2 3
1 2 31 0B B Bθ θ θ+ + + =  has three real equal roots, then the mov-

ing average process of order three 1 1 2 2 3 3t t t t tX e e e eθ θ θ− − −= + + +  is invertible if 

2 33 0θ θ− > , 2 33 0θ θ+ <  and 3 1θ < . 

Proof 
For invertibility, we expect each of the three real equal roots to lie outside the unit circle. Thus, 

2 2

3 3

1 1
3 3
θ θ
θ θ
− −

> ⇒ < −  or 2

3

1
3
θ
θ
−

>  

Solving the inequality 2

3

1
3
θ
θ
−

< − , we obtain 

2 33 0θ θ− >  

For 2

3

1
3
θ
θ
−

> , we have 

2 33 0θ θ+ <  

Since each of the roots lie outside the unit circle, the absolute value of their product must therefore be greater 
than one. Hence, 

3 1θ <  

This completes the proof. 
The invertibility region of a moving average of order three with equal roots of the characteristic Equation (2.2) is 

enclosed by triangle OAB in Figure 1. 
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Figure 1. Invertibility region of an MA (3) process when the characteristic 
equation has three real equal roots. 

3. Identification of Moving Average Process 
Model identification is a crucial aspect of time series analysis. A common practice is to examine the structures 
of the autocorrelation function (ACF) and partial autocorrelation function (PACF) of a given time series. In this 
regard, a time series is said to follow a moving average process of order q  if its associated autocorrelation 
function cut off after lag q  and the corresponding partial autocorrelation function decays exponentially [10]. 
Authors using this method, believe that each process has unique ACF representation. However, the existence of 
similar autocorrelation structures between moving average process and pure diagonal bilinear time series 
process of the same order makes it difficult to identify a moving average process based on the pattern of its ACF. 
Furthermore, a careful look at the autocorrelation function of the square of a time series can help one determine 
if the series follows a moving average process. If the series can be generated by a moving average process, then 
its square follows a moving average process of the same order [11] [12]. The conditions under which we use the 
autocorrelation function to distinguish among processes behaving like moving average processes of order one 
and two have been determined by [13] [14] respectively. These conditions are all defined in terms of the extreme 
values of autocorrelation coefficients of the processes. 

4. Intervals for Autocorrelation Coefficients of a Moving Average Process of Order 
Three 

As stated in Section 3, knowledge of the extreme values of the autocorrelation coefficient of a moving average 
process of a particular order can enable us ensure proper identification of the process. It has been observed that 
for a moving average process of order one, 10.5 0.5ρ− ≤ ≤  [15] while for a moving average process of order  

two 1
2 2

2 2
ρ− ≤ ≤  and 20.5 0.5ρ− ≤ ≤  [5]. In order to generalize about the range of values of qρ  for a  
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moving average process of order q , it is worthwhile to determine the range values of 3ρ  for a moving aver-
age process of order three. The model in (2.1) has the following autocorrelation function [10]: 

1 1 2 2 3
2 2 2

1 2 3

2 1 3
2 2 2

1 2 3

3
2 2 2

1 2 3

1,                                0

,        1
1

,        2
1

,        3
1
0,                               1, 2, 3

k

k

k

k

k

k

θ θ θ θ θ
θ θ θ
θ θ θ

ρ
θ θ θ

θ
θ θ θ

 =


+ + = ±
 + + +


+= = ±
+ + +


= ±

+ + +
 ≠ ± ± ±

                          (4.1) 

We can deduce from (4.1) that the autocorrelation function at lag one of the MA (3) process is 

1 1 2 2 3
1 2 2 2

1 2 31
θ θ θ θ θ

ρ
θ θ θ
+ +

=
+ + +

                                  (4.2) 

Using the Scientific Note Book, the minimum and maximum values of 1ρ  are found to be 1 5
4

− −  and 

1 5
4
−  respectively. For the autocorrelation function at lag two, we have 

2 1 3
2 2 2 2

1 2 31
θ θ θ

ρ
θ θ θ

+
=

+ + +
                                  (4.3) 

The extreme values of 2ρ  are equally obtained with the help of the Scientific Note Book. To this effect, 2ρ  
has a minimum value of −0.5 and a maximum value of 0.5. 

From (4.1), we obtain 

3
3 2 2 2

1 2 31
θ

ρ
θ θ θ

=
+ + +

                                  (4.4) 

Based on the result obtained from the Scientific Notebook, 3ρ  has a minimum value of −0.5 and a maxi-
mum value of 0.5. However, the intervals for 3ρ  can easily be obtained analytically and this result is genera-
lized in Theorem 2 for qρ  of the MA ( )q  process. 

The partial derivatives of 3ρ  with respect to 1θ , 2θ  and 3θ  are 

( )
3 1 3

22 2 21 1 2 3

2

1

ρ θ θ
θ θ θ θ

∂ −
=

∂ + + +
                                (4.5) 

( )
3 2 3

22 2 22 1 2 3

2

1

ρ θ θ
θ θ θ θ

∂ −
=

∂ + + +
                                (4.6) 

( )
2 2 2

3 1 2 3
22 2 23 1 2 3

1

1

ρ θ θ θ
θ θ θ θ

∂ + + −
=

∂ + + +
                                (4.7) 

The critical points of 3ρ  occurs when 3

i

ρ
θ
∂

=
∂

, 1, 2,3i = . Equating each of the partial derivatives in (4.5),  

(4.6) and (4.7) to zero, we obtain 

1 3 0θ θ =                                       (4.8) 
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2 3 0θ θ =                                       (4.9) 

2 2 2
1 2 31 0θ θ θ+ + − =                                  (4.10) 

From (4.10), we have 
2 2

3 1 21θ θ θ= ± + +                                  (4.11) 

Using (4.8), we obtain 

1 0θ =                                       (4.12) 

or 

3 0θ =                                       (4.13) 

Substituting 1 0θ =  into (4.11) yields 
2

3 21θ θ= ± +                                   (4.14) 

For 2
3 21θ θ= − + , (4.9) becomes 

( )2
2 21 0θ θ+ =  

( )2 2
2 21 0θ θ+ =  

2 20   or   1θ θ= = ± −                                (4.15) 

If we also substitute 2
3 21θ θ= +  into (4.9), we obtain 

2 20   or   1θ θ= = ± −                                (4.16) 

When we substitute 1 0θ =  and 2 0θ =  into (4.11), we have 3 1θ = ± . It is also clear that if 1 0θ =  and 
2 1θ = − − , then 3 0θ = . Similar result is obtained when 1 0θ =  and 2 1θ = − . 
Hence, the critical points of 3ρ  are ( )0,0, 1− , ( )0,0,1 , ( )0, 1,0− −  and ( )0, 1,0− . 

The minimum and maximum values of a function occur at it critical points. To determine which of the critical 
points is a local minimum, local maximum or a saddle point, we shall apply the second derivative test. The 
second derivative test for critical points of a function of three variables ( )3 , ,f x y zρ =  focuses on the Hessian 
matrix: 

xx xy xz

xy yy yz

xz yz zz

f f f
H f f f

f f f

 
 =  
  

                               (4.17) 

where 

( )
( )

2 2 2 22
3 1 2 3 1 33

2 32 2 2
1 1 2 3

2 1 8

1
xxf

θ θ θ θ θ θρ
θ θ θ θ

− + + + +∂
= =
∂ +

                      (4.18) 

( )
2

3 1 2 3
32 2 21 2 1 2 3

8

1
xyf

ρ θ θ θ
θ θ θ θ θ

∂ −
= =
∂ ∂ +

                                  (4.19) 

( )
( )

2 2 2 22
1 1 2 3 1 33

32 2 21 3 1 2 3

2 1 8

1
xzf

θ θ θ θ θ θρ
θ θ θ θ θ

− + + + +∂
= =
∂ ∂ +

                     (4.20) 
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( )
( )

2 2 2 2
3 1 2 3 2 3

32 2 2
1 2 3

2 1 8

1
yyf

θ θ θ θ θ θ

θ θ θ

− + + + +
=

+
                              (4.21) 

( )
( )

2 2 2 2
2 1 2 3 2 3

32 2 2
1 2 3

2 1 8

1
yzf

θ θ θ θ θ θ

θ θ θ

− + + + +
=

+
                              (4.22) 

( ) ( )
( )

2 2 2 2 2 2
3 1 2 3 3 1 2 3

32 2 2
1 2 3

2 1 4 1

1
zzf

θ θ θ θ θ θ θ θ

θ θ θ

− + − + + −
=

+
                      (4.23) 

Let ( ), ,a b c  be a critical point of ( )3 , ,f x y zρ = . Then ( ), ,a b c  is called a local minimum point if at  

( ), ,a b c , 1 0xxf∆ = > , 2 0xx xy

xy yy

f f
f f

∆ = >  and 3 0H∆ = >  [16]. If 0xxf < , 2 0∆ >  and 3 0∆ <  at ( ), ,a b c ,  

then ( ), ,a b c  represents a local maximum. 
A critical point that is neither a local minimum nor a local maximum is called a saddle point. 
Though 3ρ  has four critical points, it is not defined at ( )0, 1,0− −  and ( )0, 1,0− . We then focus on the 

classification of the two remaining critical points. 
At ( )0,0, 1−  

1 0 0
2

10 0
2

10 0
2

H

 
 
 
 =  
 
 
  

 

Hence, 1
1 0
2

∆ = > , 2

1 0 12 0
1 40
2

∆ = = >  and 3

1 0 0
2

1 10 0 0
2 8

10 0
2

∆ = = > . 

Therefore, ( )0,0, 1−  is a local minimum. The value of 3ρ  at this point is 0.5− . 
For the critical points ( )0,0,1 , we have 

1 0 0
2

10 0
2

10 0
2

H

 − 
 
 = − 
 
 −
  

 

Consequently, 

1
1 0,
2

∆ = − <  

2

1 0 12 0
1 40
2

−
∆ = = >

−
 



O. E. Okereke et al. 
 

 
180 

and 

3

1 0 0
2

1 10 0 0.
2 8

10 0
2

−

∆ = − = − <

−

 

We therefore conclude that ( )0,0,1  is a local maximum. The maximum value of 3ρ  obtained at ( )0,0,1  is 
0.5. 

We can deduce from the result in this section and other previous works that for MA (1) process 1 0.5ρ ≤ , 
while for MA (2) process and MA (3) process 2 0.5ρ ≤  and 3 0.5ρ ≤  respectively. 

In what follows, we establish the bounds for qρ , where q  is order of the moving average process. 
Theorem 2. 
Let 1 1 2 2t t t q t q qX e e e eθ θ θ− − −= + + + +  be an MA ( )q  process. Then, 0.5qρ ≤ . 
Proof 
It is easily seen that for the MA ( )q  process, 

2 2 2
1 21

q
q

q

θ
ρ

θ θ θ
=

+ + + +

 

Partial derivatives of qρ  with respect to 1 2, , ,q qρ θ θ θ=   are as follows 

( )

( )

( )

( )

1
22 2 21 1 2

2
22 2 22 1 2

1
22 2 21 1 2

2 2 2 2
1 2 1

22 2 2
1 2

2
,

1

2
,

1

     
2

,
1

1
.

1

q q

q

q q

q

q q q

q q

q q q

q q

ρ θ θ
θ θ θ θ

ρ θ θ
θ θ θ θ

ρ θ θ
θ θ θ θ

ρ θ θ θ θ
θ θ θ θ

−

−

−

∂ −
=

∂ + + + +

∂ −
=

∂ + + + +

∂ −
=

∂ + + + +

∂ + + + + −
=

∂ + + + +













 

Equating each of the partial derivatives to zero yields 

1

2

1

2 2 2 2
1 2 1

2 0,

2 0,

   
2 0,

1 0.

q

q

q q

q q

θ θ

θ θ

θ θ

θ θ θ θ
−

−

− =

− =

− =

+ + + + − =





                            (4.24) 

From (4.24), we obtain 

2 2 2
1 2 11q qθ θ θ θ −= ± + + + −                             (4.25) 

Since 0qθ ≠  for an MA ( )q  process, it is obvious that the 1q −  equations preceding (4.24) are only sa-
tisfied if 1 2 1 0qθ θ θ −= = = = . Substituting 1 2 1 0qθ θ θ −= = = =  into (4.25) leads to 1qθ = ± . The two 
critical points of qρ  are then ( )0,0,0, , 1−  and ( )0,0,0, ,1 . . 
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At ( )0,0,0, , 1− , 0.5qρ = −  while at ( )0,0,0, ,1 , 0.5qρ = . It then follows that q 0.5ρ ≤ . 

Remark: For an invertible MA (3) process, 3 1θ < . Hence, 1
1 5 1 5

4 4
ρ− − −

< < , 20.5 0.5ρ− < <  and 

10.5 0.5ρ− < < . 

5. Conclusion 
We have established necessary conditions for the parameters of an invertible MA (3) process. When the charac-
teristic equation has three real equal roots, the conditions are 2 33 0θ θ− > , 2 33 0θ θ+ <  and 3 1θ < . Also the 
intervals for the autocorrelation coefficients of an invertible moving average process of order three are estab- 

lished. These are 1
1 5 1 5

4 4
ρ− − −

< < , 20.5 0.5ρ− < <  and 10.5 0.5ρ− < < . It is also noteworthy that the  

condition on 3ρ  for an invertible MA (3) process is generalized for qρ  of the invertible MA ( )q  process. 
That is for the invertible MA ( )q  process, q 0.5ρ < . These results can now be used to compare other linear 
and nonlinear processes that have similar autocorrelation structures with the MA (3) process. 
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