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Abstract 
A ghostbursting model is a mathematical model (a system of coupled nonlinear ordinary differen-
tial equations) that is based on the Hodgkin-Huxley formalism. The ghostbursting model describes 
bursting similar to the in vitro bursting of electrosensory neurons of weakly electric fish. Doiron 
and coworkers have focused on two system parameters of the model: maximal conductance of the 
dendritic potassium current ( ),Dr dg  and the current injected into the somatic compartment ( )sI . 

They performed bifurcation analysis and revealed that the ( ), ,Dr d sg I -parameter space was di-
vided into three dynamical states: quiescence, periodic tonic spiking, and bursting. The present 
study focused on a third system parameter: the time constant of dendritic potassium current inac-
tivation ( )pdτ . A computer simulation of the model revealed how the dynamical states of the 

( ), ,Dr d sg I -parameter space changed in response to variations of pdτ . 
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1. Introduction 
Hodgkin and Huxley [1] proposed a mathematical model that is composed of a system of four-coupled nonlinear 
ordinary differential equations (page 518 in [1]) and that describes the action potential regeneration of the squid 
giant axon and the biophysical mechanisms underlying the action potential generation. Various types of mathe-
matical models describing the electrical excitability of neurons and endocrine cells have been developed on the 
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basis of the concepts proposed by Hodgkin and Huxley [1], and analyses of these models, including the RPeD1 
neuron model in [2], various bursting models in Chapter 5 of [3], and pituitary lactotroph bursting model in [4], 
are important research areas in the field of applied mathematics. The concepts proposed by Hodgkin and Huxley 
[1] are also important in the fields of theoretical physics [5] and mathematical physics [6]. The Hodgkin-Huxley 
model is also used in drug-disease modeling (see Chapter 5.2.2 in [7]). 

A ghostbursting model [8], which is a mathematical model based on the concepts proposed by Hodgkin and 
Huxley [1], describes a system of six-coupled nonlinear ordinary differential equations [see Equations (1) to (6) 
in Section 2]. This model exhibits bursting similar to that observed in in vitro recordings of pyramidal cells in 
the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus. This model 
consists of two compartments: the somatic compartment [see Equations (1) and (2) in Section 2] and the den-
dritic compartment [see Equations (3) to (6) in Section 2]. Doiron et al. have focused on two system parameters 
of the model: maximal conductance of the delayed-rectifying potassium current in the dendritic compartment 
( ),Dr dg  [see Equation (3)] and the current injected into the somatic compartment ( )sI  [see Equation (1)]. 
They performed ( ), ,Dr d sg I -parameter bifurcation analysis of the model (see Figure 6 in [8]). This figure indi-
cates that the organizing center of the ( ), ,Dr d sg I -parameter bifurcation diagram is a codimension-two bifurca-
tion point and that unfolding the codimension-two bifurcation point yields two types of bifurcation manifolds: a 
curve for a saddle-node bifurcation of fixed points (SNFP curve) and a curve for a saddle-node bifurcation of 
limit cycles (SNLC curve). The SNFP and SNLC curves divide the ( ), ,Dr d sg I -parameter space into three dy-
namical states: quiescence, periodic tonic spiking, and bursting. When crossing the SNFP curve with an increase 
in sI  under a condition in which ,Dr dg  is fixed to a certain value smaller than the ,Dr dg  value at the codi-
mension-two bifurcation point, the dynamical state changes from quiescence to bursting. When crossing the 
SNFP curve with an increase in sI  under a condition in which ,Dr dg  is fixed to a certain value larger than the 

,Dr dg  value at the codimension-two bifurcation point, the dynamical state changes from quiescence to periodic 
tonic spiking. The periodic tonic spiking further changes into bursting when the SNLC curve is crossed with an 
increase in sI . In addition, various bursting patterns are shown in Figure 13 in [8] and Figure 3 in [9]. 

Vo et al. have indicated that it is important to investigate the kinetic properties of ionic conductance for un-
derstanding the dynamics of pituitary cell models [10]. In other words, variations in the time constant values of 
ionic conductance can change the dynamical states of the cell model (Figure 4 in [10]). Doiron et al. have also 
suggested that the appropriate setting of the time constant value in dendritic potassium current inactivation is 
important for bursting dynamics (see the last paragraph of Section 3.3 in [8]). However, how variations in the 
time constant values affect the ( ), ,Dr d sg I -parameter space was not revealed in their study. Therefore, to con-
tribute to an in-depth understanding of the kinetic properties of dendritic potassium current inactivation, in the 
present study, we performed numerical analysis and clarified the influence of time constant variations on the 
( ), ,Dr d sg I -parameter space. 

2. Materials and Methods 
The ghostbursting model [Equations (1)-(6)] contains the following six state variables: the somatic membrane 
potential ( )mVsV   , activating variable of the somatic delayed-rectifying potassium current ( )sn , dendritic 
membrane potential ( )mVdV   , inactivating variable of the dendritic sodium current ( )dh , activating variable 
of the dendritic delayed-rectifying potassium current ( )dn , and inactivating variable of the dendritic delayed- 
rectifying potassium current ( )dp . The time evolution of these variables is described with the following equa-
tions: 

( ) ( ) ( ) ( ) ( ) ( )
2
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where the definitions and values of the above-mentioned parameters are listed in Table 1. Equation (1) indicates 
that the time evolution of the somatic membrane potential ( )sV  is regulated by the fast inward sodium current  

 
Table 1. Values of the parameters in Equations (1)-(6) from [8].                                                   

Parameter Value Unit Definition 

mC  1 μF/cm2 Membrane capacitance 

sI  5.6 - 6.6 mA/cm2 Current injected into somatic compartment 

,Na sg  55 mS/cm2 Maximal conductance of the somatic sodium current 

,Dr sg  20 mS/cm2 Maximal conductance of the somatic potassium current 

,Na dg  5 mS/cm2 Maximal conductance of the dendritic sodium current 

,Dr dg  11.2 - 14.0 mS/cm2 Maximal conductance of the dendritic potassium current 

Lg  0.18 mS/cm2 Leak conductance 

cg  1 mS/cm2 Coupling coefficient 

κ  0.4  Ratio of the somatic-to-total surface area 

NaE  40 mV Reversal potential for the sodium ion 

KE  −88.5 mV Reversal potential for the potassium ion 

LE  −70 mV Reversal potential of the leak current 

msV  −40 mV Voltage at the midpoint of the steady-state function of the somatic 
sodium current activating variable 

msk  3 mV Slope factor of the steady-state function of the somatic sodium current activating variable 

mdV  −40 mV Voltage at the midpoint of the steady-state function of the dendritic  
sodium current activating variable 

mdk  5 mV Slope factor of the steady-state function of the dendritic sodium current activating variable 

nsV  −40 mV Voltage at the midpoint of the steady-state function of ns 

nsk  3 mV Slope factor of the steady-state function of ns 

hdV  −52 mV Voltage at the midpoint of the steady-state function of hd 

hdk  −5 mV Slope factor of the steady-state function of hd 

ndV  −40 mV Voltage at the midpoint of the steady-state function of nd 

ndk  5 mV Slope factor of the steady-state function of nd 

pdV  −65 mV Voltage at the midpoint of the steady-state function of pd 

pdk  −6 mV Slope factor of the steady-state function of pd 

nsτ  0.39 ms Time constant of ns 

hdτ  1 ms Time constant of hd 

ndτ  0.9 ms Time constant of nd 

pdτ  4.2, 5.0, 5.8 ms Time constant of pd 
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(the 2nd term), outward delayed-rectifying potassium current (the 3rd term), leak current (the 4th term), and elec-
trotonic diffusive current between the somatic and dendritic compartments (the 5th term). Similarly, Equation (3) 
indicates that the time evolution of the dendritic membrane potential ( )dV  is regulated by the fast inward so-
dium current (the 1st term), outward delayed-rectifying potassium current (the 2nd term), leak current (the 3rd 
term), and electrotonic diffusive current between the somatic and dendritic compartments (the 4th term). Equa-
tions (2), (4), (5), and (6) indicate that the activating or inactivating variables approach the steady-state function 

( )
1

1 e x y yV V k− −
+

 ( ), . , , , .x s d y ns hd nd pd= =  at a rate that depends on the time constant yτ  ( ),  ,  ,  .y ns hd nd pd= . 

For detailed explanations of the model, see [8]. 
The free and open source software Scilab (http://www.scilab.org/) was used to numerically solve equations 

(1)-(6) under the following initial conditions: 70 mVsV = − , 0.00005sn = , 70 mVdV = − , 0.973dh = , 
0.002dn = , and 0.697dp = . The response of the model to various ( ), ,Dr d sg I  values was investigated under 

different values of pdτ . The total simulation time was 1.2 s, and the constant depolarizing current pulse ( )sI  
was injected between 0.1 s and 1.1 s. Otherwise, the injected current was zero. 

3. Results 
3.1. Reproduction of Previous Results 
The ghostbursting model can show the three dynamical states: quiescence (Figure 1(a)), periodic tonic spik-
ing (Figure 1(b)), and bursting (Figure 1(c)). The present study shows that the regions of these dynamical states 
in the ( ), ,Dr d sg I -parameter space change in response to pdτ  variations (Figure 2). The results at low pdτ  
are shown in Figure 2(a), those at intermediate pdτ  are shown in Figure 2(b), and those at high pdτ  are 
shown in Figure 2(c). First, in the present study, we performed a simulation of the model with ( ), ,Dr d sg I  va-
riable values set at 5.0 mspdτ =  (Figure 2(b)), which was the same condition as that used in Figure 6 in [8]. 
At a low sI  value (5.6 μA/cm2), the dynamical state of the model was that of quiescence, irrespective of the 

,Dr dg  value (× in Figure 2(b)). An example of the time course of the somatic membrane potential during the 
quiescent state is shown in Figure 1(a). At high sI  values (≥5.8 μA/cm2), the dynamical state was that of pe-
riodic tonic spiking (○ in Figure 2(b)) or bursting (● in Figure 2(b)). In other words, when the ,Dr dg  value 
was small (≤12.0 mS/cm2), the dynamical state was that of bursting. In contrast, when the ,Dr dg  value was 
large (≥12.2 mS/cm2), the dynamical state was that of periodic tonic spiking at smaller sI  values and that of 
bursting at larger sI  values, and the sI  threshold between periodic tonic spiking and bursting increased as the 

,Dr dg  value was increased. Examples of the time courses of the somatic membrane potential during periodic 
tonic spiking and bursting are shown in Figure 1(b) and Figure 1(c), respectively. When the above-mentioned 
results were compared with previous findings (Figure 6 in [8]), the present numerical analysis could reproduce 
the previous results. 

Based on the previous results (Figure 6 in [8]), SNFP was thought to occur at certain sI  values between × 
and ● in Figure 2(b). In addition, SNFP was thought to occur at certain sI  values between × and ○ in Figure 
2(b). SNLC was thought to occur at certain sI  values between ○ and ● in Figure 2(b). Codimension-two bi-
furcation was thought to occur at a certain ( ), ,Dr d sg I  value that is surrounded by ×, ○, and ● in Figure 2(b). 

3.2. Effects of Changes in pdτ  on the ( ), ,Dr d sg I -Parameter Space 
The simulation results under conditions in which the pdτ  value was decreased and increased are shown in 
Figure 2(a) and Figure 2(c), respectively. At a low Is value (5.6 μA/cm2), the dynamical state was that of 
quiescence, irrespective of the ,Dr dg  value (× in Figure 2(a) or Figure 2(c)), which is the same as that shown 
in Figure 2(b). The sI  threshold between quiescence and bursting, which is the boundary between × and ● in 
Figure 2(a) and Figure 2(c), is the same as that shown in Figure 2(b). The sI  threshold between quiescence 
and periodic tonic spiking, which is the boundary between × and ○ in Figure 2(a) and Figure 2(c), is also the 
same as that shown in Figure 2(b). These results suggested that changes in the pdτ  values did not affect SNFP. 

At high sI  values (≥5.8 μA/cm2), patterns similar to Figure 2(b) were observed. In other words, when the 
,Dr dg  value was small (≤12.8 mS/cm2 in Figure 2(a) and ≤11.6 mS/cm2 in Figure 2(c)), the dynamical state 

was that of bursting only (● in Figure 2(a) and Figure 2(c)). In contrast, when the ,Dr dg  value was large 
(≥13.0 mS/cm2 in Figure 2(a) and ≥11.8 mS/cm2 in Figure 2(c)), the dynamical state was that of periodic tonic  

http://www.scilab.org/
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Figure 1. Examples of the time courses of the simulated somatic membrane 
potential ( )sV  at different ,Dr dg  and Is values at 5.0pdτ =  ms. (a) Quiescent 

state at ( ) ( ), , 12.6,5.6Dr d sg I = ; (b) Periodic tonic spiking state at 

( ) ( ), , 13.6,6.2Dr d sg I = ; (c) Bursting state at ( ) ( ), , 11.8,6.2Dr d sg I = . 

 
spiking (○ in Figure 2(a) and Figure 2(c)) at smaller sI  values and that of bursting at larger sI  values. The 

sI  threshold between periodic tonic spiking and bursting increased as the ,Dr dg  value increased, as illustrated 
in Figure 2(a) and Figure 2(c). However, the sI  threshold between periodic tonic spiking and bursting dif-
fered among Figure 2(a), Figure 2(b), and Figure 2(c). In other words, an increase in the pdτ  value with fixed 

,Dr dg  values increased the sI  threshold between periodic tonic spiking and bursting. These results suggested 
that changes in the pdτ  values had a great impact on SNLC and changes in the pdτ  values had no influence 
on the sI  value of the codimension-two bifurcation point but had a great impact on the ,Dr dg  value of the co-
dimension-two bifurcation point. 

4. Discussion 
In the field of dynamical systems, it is important to investigate the dependence of the solutions of ordinary dif-
ferential equations on system parameters. The present study illustrates the dependence of the qualitative nature 
of the solutions of ordinary differential equations on the following system parameters: ,Dr dg , sI , and pdτ . In 
the ghost bursting model, there were three qualitatively different dynamical states: quiescence, spiking, and 
bursting. In particular, the present results revealed how the dynamical states of the two-dimensional ( ), ,Dr d sg I - 
parameter space changed in response to variations in the third parameter pdτ . These results are important in 
that they imply a relationship between pdτ  and bifurcation manifolds in the ( ), ,Dr d sg I -parameter space. In 
other words, these findings suggested that an increase in the pdτ  value did not shift the SNFP curve in the 
( ), ,Dr d sg I -parameter space but rather shifted the SNLC curve upward. A very interesting finding in the present  



T. Shirahata 
 

 
133 

 
Figure 2. The effects of variations in the pdτ  value on the dynamical states in the two-dimensional 

( ), ,Dr d sg I -parameter space (a) 4.2 mspdτ = ; (b) 5.0 mspdτ = ; (c) 5.8 mspdτ = . The symbols are ×: 
quiescence, ○: periodic tonic spiking, and ●: bursting. 

 
study, which was not reported in the previous study [8], is that there was a nonlinear relationship between pdτ  
and the area of the bursting state. In other words, although the amount of pdτ  decrease was the same (−0.8 ms) 
between the changes from Figure 2(c) to Figure 2(b) and the changes from Figure 2(b) to Figure 2(a), the 
amount of increase in the area of the bursting state in the latter case was much larger than that in the former 
case. 

Other examples that illustrate how the dynamical states of two-dimensional parameter space change in re-
sponse to variations in the third parameter are (1) a model of CA1 pyramidal neuron spiking dynamics (Figure 
12 in [11]) and (2) a compartmental model of Cheyne-Stokes respiration (Figure 5 in [12]). In analysis of the 
CA1 model, Bianchi et al. have focused on the following three parameters: the injected current ( )injI , half-ac- 
tivation voltage of the transient sodium current ( )( )1 2 mNaTV , and half-activation voltage of the delay-rectifier 
potassium current ( )( )1 2 mKDRV . Their findings revealed that the dynamical states of the two-dimensional 

( )( )1 2 mNaT , injV I -parameter space hardly changed in response to variations in ( )1 2 mKDRV , while the dynamical 
states of the two-dimensional ( )( )1 2 mKDR , injV I -parameter space drastically changed in response to variations in 

( )1 2 mNaTV . In analysis of the Cheyne-Stokes respiration model, Atamanyk and Langford focused on the following 
three parameters: the partial pressure of CO2 in the inspired air ( )Ix , ventilation-perfusion ratio ( )AV F , and 
slope of the Hill function ( )µ . Their findings revealed that the two-dimensional ( ),AV F µ -parameter space 
was divided into stable equilibria and unstable equilibria regions by a Hopf bifurcation curve and that an in-
crease in Ix  shifted the Hopf bifurcation curve upward, resulting in an expansion of the stable equilibria re-
gion. 
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Study [13] proposed an algorithm for the visualization of the bifurcation manifolds in the three-dimensional 
parameter space. In the three-dimensional parameter space, the parameter sets at which codimension one-bifur- 
cation occurs are visualized as bifurcation surfaces. Higher codimension bifurcations are located at intersections 
of the bifurcation surfaces. For example, analyses of a socioeconomic model have revealed codimension-one 
bifurcation surfaces: a Hopf bifurcation surface and a saddle-node bifurcation surface (Figure 5 in [13]). In addi-
tion, the following codimension-two bifurcation curves were visualized: a Gavrilov-Guckenheimer bifurcation 
curve and a Takens-Bogdanov bifurcation curve. In contrast to the findings of the previous study [13], in the 
present study, we did not visualize bifurcation manifolds in the three-dimensional ( ), , ,Dr d s pdg I τ -parameter 
space. However, when considering the changes in the dynamical states of the two-dimensional ( ), ,Dr d sg I -para- 
meter space in response to variations in pdτ  (Figure 2), one can roughly imagine the bifurcation manifold in 
the three-dimensional ( ), , ,Dr d s pdg I τ -parameter space. In other words, in the three-dimensional parameter 
space that is defined as a three-dimensional orthogonal coordinate system with axis lines ,Dr dg , sI  and pdτ , 
the parameter sets at which SNFP occurs are thought to form the surface of SNFP that is orthogonal to the 
( ), ,Dr d sg I  plane, while the parameter sets at which SNLC occurs are thought to form the surface of SNLC that 
is not orthogonal to the ( ), ,Dr d sg I  plane. The parameter sets at which codimension-two bifurcation occurs are 
thought to form a bifurcation curve at the intersection of the surfaces of SNFP and SNLC. 

5. Conclusion 
In conclusion, the novelty of this paper is that it reveals in detail the influence of pdτ  variations on the dynam-
ical states in the ( ), ,Dr d sg I -parameter space of the ghostbursting model. 
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