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Abstract 
We present an alternative sixteen-component hypercomplex scalar-vector values named “space- 
time sedenions”, generating associative noncommutative space-time Clifford algebra. The gener-
alization of relativistic quantum mechanics and field theory equations based on sedenionic wave 
function and space-time operators is discussed. 
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1. Introduction 
The multicomponent hypercomplex numbers such as quaternions and octonions are widely used for the refor-
mulation of quantum mechanics and field theory equations. The first generalization of quantum mechanics and 
electrodynamics was made on the basis of four-component quaternions, which were interpreted as scalar-vector 
structures [1]-[5]. The next step was taken on the basis of eight-component octonions, which were interpreted as 
the sum of scalar, pseudoscalar, polar vector and axial vector [6]-[11]. Scalars and axial vectors are not trans-
formed under spatial inversion, while pseudoscalars and polar vectors change their sign under spatial inversion. 
Therefore, this interpretation takes only the symmetry with respect to the spatial inversion into account. How-
ever, a consistent relativistic approach requires taking full time and space symmetries into consideration that 
leads to the sixteen-component space-time algebras.  

The well-known sixteen-component hypercomplex numbers, sedenions, are obtained from octonions by the 
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Cayley-Dickson extension procedure [12] [13]. In this case the sedenion is defined as  

1 2S O O= + e ,                                      (1) 

where Oi is an octonion and the parameter of duplication e is similar to imaginary unit 2 1= −e . The algebra of 
sedenions has the specific rules of multiplication. The product of two sedenions 

1 11 12S O O= + e , 

2 21 22S O O= + e , 

is defined as  

( )( ) ( ) ( )1 2 11 12 21 22 11 21 22 12 22 11 12 21S S O O O O O O O O O O O O= + + = − + +e e e ,              (2) 

where ijO  is conjugated octonion. The sedenionic multiplication (2) allows one to introduce a well-defined 
norm of sedenion. However, such procedure of constructing the higher hypercomplex numbers leads to the fact 
that the sedenions as well as octonions generate normed but nonassociative algebra [14]-[16]. It complicates the 
use of the Cayley-Dickson sedenions in the physical applications. 

Recently we have developed an alternative approach to constructing the multicomponent values based on our 
scalar-vector conception realized in associative eight-component octons [17]-[19] and sixteen-component sede-
ons [20]-[24]. In particular, we have demonstrated the method, which allows one to reformulate the equations of 
relativistic quantum mechanics and field theory on the basis of sedeonic space-time operators and scalar-vector 
wave functions. In this paper we present an alternative version of the sixteen-component associative space-time 
hypercomplex algebra and demonstrate some of its application to the generalization of relativistic quantum me-
chanics and field theory equations.  

2. Sedenionic Space-Time Algebra 
It is known, the quaternion is a four-component object 

0 1 2 3q q q q q= + + +0 1 2 3a a a a ,                                (3) 

where components qν  (Greek indexes 0,1,2,3ν = ) are numbers (complex in general), 1≡0a  is scalar units 
and values am (Latin indexes m = 1, 2, 3) are quaternionic units, which are interpreted as unit vectors. The rules 
of multiplication and commutation for am are presented in Table 1. We introduce also the space-time basis et, er, 
etr, which is responsible for the space-time inversions. The indexes t and r indicate the transformations (t for 
time inversion and r for spatial inversion), which change the corresponding values. The value 1≡0e  is a scalar 
unit. For convenience we introduce numerical designations ≡1 te e  (time scalar unit); ≡2 re e  (space scalar 
unit) and ≡3 tre e  (space-time scalar unit). The rules of multiplication and commutation for this basis we 
choose similar to the rules for quaternionic units (see Table 2). 
 

Table 1. Multiplication rules for unit vectors am. 

 a1 a2 a3 

a1 −1 a3 −a2 

a2 −a2 −1 a1 

a3 a2 −a1 −1 

 
Table 2. Multiplication rules for space-time units. 

 e1 e2 e3 

e1 −1 e3 −e2 

e2 −e2 −1 e1 

e3 e2 −e1 −1 
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Note that the unit vectors a1, a2, a3 and the space-time units e1, e2, e3 generate the anticommutative algebras: 
,
,

= −
= −

n m m n

n m m n

a a a a
e e e e

                                     (4) 

for ≠n m , but e1, e2, e3 commute with a1, a2, a3: 
=n m m ne a a e ,                                     (5) 

for any n and m. Besides, we assume the associativity of e1, e2, e3, a1, a2, a3 multiplication.  
Then we can introduce the sixteen-component space-time sedenion V  in the following form: 

( ) ( )
( ) ( )
00 01 02 03 10 11 12 13

20 21 22 23 30 31 32 33 .

V V V V V V V V

V V V V V V V V

= + + + + + + +

+ + + + + + + +
0 0 1 2 3 1 0 1 2 3

2 0 1 2 3 3 0 1 2 3

e a a a a e a a a a

e a a a a e a a a a

V
              (6) 

The sedenionic components Vνµ  are numbers (complex in general). Introducing designation of scalar and vec-
tor values in accordance with the following relations 

( )

( )

( )

( )

00

01 02 03

10

11 12 13

20

21 22 23

30

31 32 33

,

,
,

,
,

,
,

.

V V

V V V V
V V V

V V V V V
V V V

V V V V V
V V V

V V V V V

=

= + +

≡ =

≡ = + +

≡ =

≡ = + +

≡ =

≡ = + +



 

 

 

0 0

0 1 2 3

t 1 1 0

t 1 1 1 2 3

r 2 2 0

r 2 2 1 2 3

tr 3 3 0

tr 3 3 1 2 3

e a

e a a a
e a

e a a a
e a

e a a a
e a

e a a a

                             (7) 

we can represent the sedenion in the following scalar-vector form: 
V V V V V V V V= + + + + + + +V

   



t t r r tr tr .                            (8) 
Thus, the sedenionic algebra encloses four groups of values, which are differed with respect to spatial and time 
inversion.  

1) Absolute scalars ( )V  and absolute vectors ( )V


 are not transformed under spatial and time inversion.  
2) Time scalars ( )Vt  and time vectors ( )V



t  are changed (in sign) under time inversion and are not trans-
formed under spatial inversion.  

3) Space scalars ( )Vr  and space vectors ( )V


r  are changed under spatial inversion and are not transformed 
under time inversion.  

4) Space-time scalars ( )Vtr  and space-time vectors ( )V


tr  are changed under spatial and time inversion. 
Further we will use the symbol 1 instead units a0 and e0 for simplicity. Introducing the designations of scalar- 

vector values 
0 00 01 03

1 10 11 12 13

2 20 21 22 23

3 30 31 32 33

,
,
,
.

V V V V
V V V V
V V V V
V V V V

= + + +

= + + +

= + + +

= + + +

1 2 3

1 2 3

1 2 3

1 2 3

a a a
a a a
a a a
a a a

02V
V
V
V

                                (9) 

we can write the sedenion (6) in the following compact form: 
0 1 2 3+ +1 2 3e e eV = V + V V V .                                (10) 

On the other hand, introducing designations of space-time sedenion-scalars 

( )
( )
( )
( )

0 00 10 20 30

1 01 11 21 31

2 02 12 22 32

3 03 13 23 33

,

,

,

.

V V V V

V V V V

V V V V

V V V V

= + + +

= + + +

= + + +

= + + +

1 2 3

1 2 3

1 2 3

1 2 3

e e e

e e e

e e e

e e e

V

V

V

V

                              (11) 

we can write the sedenion (6) as 
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0 1 2 3= + + +1 2 3a a aV V V V V ,                                (12) 

or introducing the sedenion-vector  

1 2 3V V V V+ + + + +V = = V V V
    

t r tr 1 2 3a a a ,                          (13) 

we can rewrite the sedenion in following compact form: 

0= +V V V


 .                                      (14) 

Further we will indicate sedenion-scalars and sedenion-vectors with the bold capital letters. 
Let us consider the sedenionic multiplication in detail. The sedenionic product of two sedenions A  and B

can be represented in the following form  

( ) ( ) ( )0 0 0 0 0 0  = + + = + + + ⋅ + × AB A A B B A B A B AB A B A B
      

  .                (15) 

Here we denoted the sedenionic scalar multiplication of two sedenion-vectors (internal product) by symbol “∙” 
and round brackets 

( ) 1 1 2 2 3 3⋅ = − − −A B A B A B A B
 

,                              (16) 

and sedenionic vector multiplication (external product) by symbol “×” and square brackets, 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1 × = − − − A B A B A B + A B A B + A B A B
 

1 2 3a a a .                (17) 

In (16) and (17) the multiplication of sedenionic components is performed in accordance with (11) and Table 2. 
Thus the sedenionic product  

0=F = AB F + F


  ,                                  (18) 

has the following components:  

( )
( )
( )

0 0 0 1 1 2 2 3 3

1 1 0 0 2 3 3 2

2 2 0 0 2 3 1 1 3

3 3 0 0 3 1 2 2 1

,
,

,

.

− − −

−

+ −

+ −

1

F = A B A B A B A B
F = A B + A B + A B A B

F = A B + A B A B A B

F = A B + A B A B A B

                            (19) 

Note that in the sedenionic algebra the square of vector is defined as  

( )2 2 2 2
1 2 3A A A A A A= ⋅ = − − −

  

,                              (20) 

and the square of modulus of vector is  

( )2 2 2 2
1 2 3A A A A + A + A= − ⋅ =

  

.                              (21) 

3. Spatial Rotation and Space-Time Inversion 
The rotation of sedenion V  on the angle θ  around the absolute unit vector n  is realized by sedenion 

( ) ( )cos 2 sin 2nθ θ= +U 

 ,                              (22) 

and by conjugated sedenion ∗
U : 

( ) ( )cos 2 sin 2nθ θ∗ = −U 

 ,                              (23) 

with 

1∗ ∗= =   UU U U .                                   (24) 
The transformed sedenion ′V  is defined as sedenionic product  

∗′ =   V U VU ,                                     (25) 
Thus, the transformed sedenion ′V  can be written as 
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( ) ( ) ( ) ( ) ( )

( ) ( )
0

0

cos 2 sin 2 cos 2 sin 2

 cos 1 cos sin .

n n

n n n

θ θ θ θ

θ θ θ

′ = − + +      

 = + − ⋅ − − × 

V V V

V V V V



 



  

  

                 (26) 

It is clearly seen that rotation does not transform the sedenion-scalar part, but the sedenionic vector V


 is ro-
tated on the angle θ  around n . 

The operations of time inversion ( )R̂t , space inversion ( )R̂r  and space-time inversion ( )R̂tr  are con-
nected with transformations in e1, e2, e3 basis and can be presented as  

ˆ ,
ˆ ,
ˆ .

R

R

R

= − = − + −

= − = + − −

= − = − − +

V V V V V V

V V V V V V

V V V V V V

 

 

 

t 2 2 0 1 1 2 2 3 3

r 1 1 0 1 1 2 2 3 3

tr 3 3 0 1 1 2 2 3 3

e e e e e

e e e e e

e e e e e

                           (27) 

4. Sedenionic Lorentz Transformations  
The relativistic event four-vector can be represented in the follow sedenionic form: 

+ct r=S 



1 2e e .                                     (28) 
The square of this valueis the Lorentzinvariant 

2 2 2 2 2c t + x + y + z= − SS .                                (29) 
The Lorentz transformation of event four-vector is realized by sedenions 

ch sh ,

ch sh ,

m

m

ϑ ϑ

ϑ ϑ∗

= +

= −

L

L









3

3

e

e
                                  (30) 

where th2 v cϑ = , v  is velocity of motion along the absolute unit vector m . Note that 
1∗ ∗= =   L L LL .                                    (31) 

The transformed event four-vector ′S  is written as 

( ) ( ) ( )
( ) ( ) ( )

ch sh + ch sh

ch2 sh2 sh2 1 ch2 .

m ct r m

ct m r r ctm m r m

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

∗′ = = − +

= + ⋅ − + ⋅ −

S L  S L   

  

      

3 1 2 3

1 1 2 2 2

e e e e

e e + e e e
            (32) 

Separating the values with e1 and e2 we get the well known formulas for time and coordinates transformation 
[25]: 

2

2 2 2 2
, , ,

1 1
t xv c x tvt x y y z z

v c v c
− −′ ′ ′ ′= = = =
− −

,                     (33) 

where x is the coordinate along the m  vector. 
Let us also consider the Lorentz transformation of the full sedenion V . The transformed sedenion ′V  can 

be written as sedenionic product 
∗′ =   V L  VL .                                    (34) 

( ) ( ) ( )
( )

( )

0

2 2 2
0 0 0 0

2

ch sh ch sh

ch sh ch sh ch

sh ch sh .

m m

m

m m m m

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

′ = − + +

= + − − +

− − −

V V V

V V V V V

V V V



 







  

   

tr tr

tr rt tr tr

tr tr tr tr

e e

e e e e

e e e e

                 (35) 

Rewriting the expression (35) with scalar (16) and vector (17) products we get 

( ) ( )
( ) ( )( ) ( )

2 2 2 2 2ch sh ch sh ch sh 2 sh

ch sh ch sh .

0 0 0 0 m m m

m m m m

ϑ ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ = + − − + − − ⋅

   − ⋅ − ⋅ − × − ×   

V V V V V V V V

V V V V

  

  



   

   

tr tr tr tr tr tr tr tr

tr tr tr tr

e e e e e e e e

e e e e
   (36) 

Thus, the transformed sedenion has the following components:  
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( )
( )

( ) ( )

( ) ( )

( ) ( )

,
,

ch 2 sh 2 ,

ch 2 sh 2 ,

ch 2 1 ch2 sh2 ,

ch 2 1 ch2 sh2 ,

1 ch2 sh 2 ,

V V
V V

V V m V

V V m V

V V m V m m V

V V m V m m V

V V m V m V m

V V

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

′ =
′ =

′ = − ⋅

′ = − ⋅

 ′ = − ⋅ − − × 
 ′ = − ⋅ − − × 

′ = + ⋅ − −

′=









   

  

   

  

  

  

 

tr tr

r r tr t

t t tr r

tr rt

tr tr tr tr

r r r tr t

t t

e

e

e

e

e

( ) ( )1 ch2 sh 2 .m V m V mϑ ϑ+ ⋅ − −


  

t tr re

                    (37) 

5. Subalgebras of Space-Time Complex Numbers, Quaternions and Octonions 
The sedenionic basis introduced above enables constructing different types of low-dimensional hypercomplex 
numbers. For example, one can introduce space-time complex numbers  

1 2

1 2

1 2

,
,
,

Z z z
Z z z
Z z z

= +

= +
= +

t t

r r

tr tr

e
e
e

                                    (38) 

where z1 and z2 real numbers. These values are transformed under space and time conjugation and Lorentz 
transformations. Moreover, we can consider the space-time quaternions, which differ in their properties with re-
spect to the operations of the spatial and time inversion and Lorentz transformations: 

( )0 1 2 3q q q q q= + + +0 0 1 2 3a e a a a ,                            (39) 

( )0 1 2 3q q q q q= + + +t 0 t 1 2 3a e a a a ,                            (40) 

( )0 1 2 3q q q q q= + + +r 0 r 1 2 3a e a a a ,                            (41) 

( )0 1 2 3q q q q q= + + +tr 0 tr 1 2 3a e a a a .                           (42) 

The absolute quaternion (39) is the sum of the absolute scalar and absolute vector. It remains constant under 
the transformations of space and time inversion (27). Time quaternion qt

 , space quaternion qr
  and space-time 

quaternion qtr
  are transformed under inversions in accordance with the commutation rules for the basis ele-

ments et, er, etr. For example, performing the operation of time inversion (see (27)) with the quaternion qt
  we 

obtain the conjugated quaternion  

( )0 1 2 3R̂ q q q q q q− = − + +t t r t r 0 t 1 2 3= e e a e a a a  .                       (43) 

In addition, the sedenionic basis allows one to construct various types of space-time eight-component oc-
tonions: 

( )00 01 02 03 10 11 12 13G G G G G G G G G= + + + + + + +t 1 2 3 t t 1 2 3a a a e e a a a


,               (44) 

( )00 01 02 03 20 21 22 23G G G G G G G G G= + + + + + + +r 1 2 3 r r 1 2 3a a a e e a a a


,              (45) 

( )00 01 02 03 30 31 32 33G G G G G G G G G= + + + + + + +tr 1 2 3 tr tr 1 2 3a a a e e a a a


.             (46) 

6. Generalized Sedenionic Equations of Relativistic Quantum Mechanics 
The wave function of free quantum particle should satisfy an equation, which is obtained from the Einstein rela-
tion for energy and momentum  

2 2 2 2 4
0E c p m c− = ,                                  (47) 
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by means of changing classical energy E and momentum p  on corresponding quantum-mechanical operators: 

ˆ ˆ  and  E i p i
t
∂

= = − ∇
∂




  .                                (48) 

Here c is the speed of light, m0 is the particle rest mass,   is the Planck constant. In sedenion algebra the Ein-
stein relation (47) can be written as 

( ) ( )2 2
0 0 0E cp i m c E cp i m c+ + + + =

 

t r tr t r tre e e e e e .                       (49) 

Let us consider the wave function in the form of space-time sedenion 

( ) ( ) ( )0, , ,t r t r t r= +W W W


  

 .                               (50) 

Then the generalized sedenionic wave equation for free particle can be written in the following symmetric form: 

0 01 1 0m c m c
c t c t
∂ ∂  − ∇+ − ∇+ =  ∂ ∂  

W
 



 

t r tr t r tre e e e e e .                     (51) 

Note that for electrically charged particle in an external electromagnetic field we have the following sedenionic 
wave equation: 

0 01 1 0m c m cie ie ie ieA A
c t c c c t c c

ϕ ϕ∂ ∂  + − ∇+ + + − ∇+ + =  ∂ ∂  
W

   



     

t t r r tr t t r r tre e e e e e e e e e .      (52) 

This equation describes the particles with spin 1/2 in an external electromagnetic field [18] [21]. 
There is a special class of particles described by the first-order wave equation [26]. For these particles the 

sedenionic Dirac-like wave equation has the following form: 

01 0m c
c t
∂ − ∇+ = ∂ 

W






t r tre e e .                              (53) 

In fact, this equation describes the special quantum field with zero field strengths [19]. Analogously the electri-
cally charged particle interacting with external electromagnetic field is described by the following sedenionic 
first-order wave equation: 

01 0m cie ie A
c t c c

ϕ∂ + − ∇+ + = ∂ 
W

 



  

t t r r tre e e e e .                      (54) 

This equation also describes particles with spin 1/2 in an external electromagnetic field [19]. 

7. Generalized Sedenionic Equations for Massive Field 
The generalized sedenionic wave equation 

0 01 1 0m c m c
c t c t
∂ ∂  − ∇+ − ∇+ =  ∂ ∂  

W
 



 

t r tr t r tre e e e e e ,                    (55) 

enables another interpretation. It can be considered as the equation for the force massive field [27]. In this case 
the parameter m0 is the mass of quantum of field and W  is field potential. Considering the phenomenological 
source of field J  we can propose the following nonhomogeneous wave equation for the field potential: 

0 01 1m c m c
c t c t
∂ ∂  − ∇+ − ∇+ =  ∂ ∂  

W J
 

 

 

t r tr t r tre e e e e e .                    (56) 

Seemingly this equation describes the baryon (strong) field [23] [24] and J  is baryon current. On the other 
hand, corresponding nonhomogeneous first-order equation  

01 m c
c t
∂ − ∇+ = ∂ 

W I


 



t r tre e e ,                             (57) 

describes the lepton (weak) field, where I  is a lepton current [23] [24]. 
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8. Generalized Sedenionic Equations for Massless Field 
In the special case, when the mass of quantum m0 is equal to zero, the Equation (56) coincides with the equation 
for electromagnetic field. Indeed, choosing the potential as 

Aϕ= +W




t re e ,                                     (58) 
and the source of field as 

4π4π j
c

ρ= − −J




t re e ,                                  (59) 

we obtain the following wave equation: 

( )1 1 4π4πA j
c t c t c

ϕ ρ∂ ∂  − ∇ − ∇ + = − −  ∂ ∂  

   

t r t r t r t re e e e e e e e .                   (60) 

After the action of the first operator in the left-hand side of Equation (60) we obtain 

( ) ( )1 1 1 AA A A
c t c t c t

ϕϕ ϕ∂ ∂ ∂   − ∇ + = − ∇ + ∇⋅ + ∇×   ∂ ∂ ∂ 



      

t r t r tr tre e e e + e + e .              (61) 

In sedenionic algebra the electric and magnetic fields are defined as 
1 ,

.

AE
c t

H A

ϕ∂
= − −∇

∂
 = ∇× 





 

                                    (62) 

Besides we can define the scalar field  

( )1f A
c t

ϕ∂
= − + ∇⋅

∂

 

.                                  (63) 

Assuming electric charge conservation the scalar field f can be chosen equal to zero, that coincides with Lorentz 
gauge condition [22]. In Lorentz gauge we can rewrite the expression (61) as 

( )1 A E H
c t

ϕ∂ − ∇ + = − + ∂ 

   

t r t r tre e e e e .                          (64) 

Then the wave Equation (60) can be represented in the following form: 

( )1 4π4πE H j
c t c

ρ∂ − ∇ − + = − − ∂ 

   

t r tr t re e e e e .                       (65) 

Performing sedenionic multiplication in the left-hand side of Equation (65) we get 

( ) ( )1 1 4π4πE HE E H H j
c t c t c

ρ∂ ∂   + ∇⋅ + ∇× + − ∇⋅ − ∇× = − −   ∂ ∂

 

       

r t t t r r t re e e e e e e e .        (66) 

Separating space-time values we obtain the system of equations in the following form: 

( ) ( )

( )

( )

( ) ( )

4π , time scalar part

1 4π , space vector part

1 , time vector part

0. space scalar part

E

EE j
c t c

HE
c t

H

ρ∇⋅ = −

∂ ∇× = +  ∂
∂ ∇× = −  ∂

∇⋅ =

 



  



 

 

t t

r r r

t t

r

e e

e e e

e e

e

                      (67) 

The system (67) coincides with the Maxwell equations. 
Among the solutions of the homogeneous sedeonic wave equation of electromagnetic field (60) there is a spe-

cial class that satisfies the sedeonic first-order equation of the following form [22]: 

1 0
c t ν
∂ − ∇ = ∂ 

W




t re e .                                   (68) 
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This equation describes the free neutrino field. On the other hand, let us consider the nonhomogeneous equation 
of neutrino field  

t r
1

vc t ν
∂ − ∇ = ∂ 

W I


 e e ,                                  (69) 

where v
I  is phenomenological source. We choose the scalar source in the form 

4πv vσ=I ,                                       (70) 

where vσ  is the density of neutrino charge. Choosing the potential ν
W  in the form (58): 

t ri Aν ν νϕ= +W


 e e ,                                   (71) 

we obtain following nonhomogeneous equation for the neutrino field: 

( )t r t r
1 4π vA
c t ν νϕ σ∂ − ∇ + = ∂ 

 

e e e e .                            (72) 

It follows that in this case only scalar field strength vf  (see (63)) is nonzero: 

4πv vf σ= .                                      (73) 

The density of neutrino charge for point source is equal  

( )v vq rσ δ=
 ,                                     (74) 

where qv is point neutrino charge. Then the interaction energy of two point neutrino charges can be represented 
as follows: 

1 2 1 2
1 d

8πv v v vW f f V= ∫ .                                 (75) 

Substituting (73) and (74), we obtain 

( )1 2 1 22πv v v vW q q Rδ=


,                                (76) 

where R


 is the vector of distance between first and second charges. 

9. Discussion 
The algebra of sedenions proposed in this article is the anticommutative associative space-time Clifford algebra. 
The sedenionic basis elements an are responsible for the spatial rotation, while the elements en are responsible 
for the space-time inversions. Mathematically, these two bases are equivalent, and the different physical proper-
ties attributed to them are an important physical essence of our sedenionic hypothesis.  

In contrast to the previously discussed sedeonic algebra [20]-[23], which uses the multiplication rules of basic 
elements ′na  and ′ne  proposed by A. Macfarlane [28], the multiplication rules for sedenionic basis elements an 
and en coincide with the rules for quaternion units introduced by W. R. Hamilton [29]. There is a close connec-
tion between these two basses. The transition from the sedeonic basis to sedenionic basis is performed by fol-
lowing replacement: 

i′ =n na a , 

i′ =n ne e . 

There is one disadvantage of sedenions connected with the fact that the square of the vector is a negative value. 
However, on the other side the sedenionic rules of cross-multiplying do not contain the imaginary unit and this 
leads to the some simplifications in the calculations. But of course, the physical results do not depend on the 
choice of algebra, so these two algebras are equivalent. 

10. Conclusion 
Thus, in this paper we presented the sixteen-component hypercomplex values sedenions, generating associative 
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noncommutative space-time algebra. We considered the generalization of the relativistic quantum mechanics 
and theory of massive and massless fields based on hypercomplex scalar-vector wave functions and sedenionic 
space-time operators.  

Acknowledgements 
The authors are very thankful to G. V. Mironova for kind assistance and moral support. 

References 
[1] Adler, S.L. (1995) Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York. 
[2] Imaeda, K. (1976) A New Formulation of Classical Electrodynamics. Nuovocimento, 32, 138-162. 

http://dx.doi.org/10.1007/BF02726749 
[3] Majernik, V. (1999) Quaternionic Formulation of the Classical Fields. Advances in Applied Clifford Algebras, 9, 119- 

130. http://dx.doi.org/10.1007/BF03041944 
[4] Davies, A.J. (1990) Quaternionic Dirac Equation. Physical Review D, 41, 2628-2630. 

http://dx.doi.org/10.1103/PhysRevD.41.2628 
[5] Schwartz, C. (2006) Relativistic Quaternionic Wave Equation. Journal of Mathematical Physics, 47, Article ID: 

122301. http://dx.doi.org/10.1063/1.2397555 
[6] Liu, Y.-F. (2002) Triality, Biquaternion and Vector Representation of the Dirac Equation. Advances in Applied Clifford 

Algebras, 12, 109-124. http://dx.doi.org/10.1007/BF03161242 
[7] Gogberashvili, M. (2006) Octonionic Electrodynamics. Journal of Physics A: Mathematics in General, 39, 7099-7104. 

http://dx.doi.org/10.1088/0305-4470/39/22/020 
[8] Gamba, A. (1998) Maxwell’s Equations in Octonion Form. NuovoCimento A, 111, 293-302.  
[9] Tolan, T., Özdas, K. and Tanisli, M. (2006) Reformulation of Electromagnetism with Octonions. Nuovo Cimento B, 

121, 43-55. http://dx.doi.org/10.1393/ncb/i2005-10189-9 
[10] Gogberashvili, M. (2006) Octonionic Version of Dirac Equations. International Journal of Modern Physics A, 21, 

3513-3523. http://dx.doi.org/10.1142/S0217751X06028436 
[11] De Leo, S. and Abdel-Khalek, K. (1996) Octonionic Dirac Equation. Progress in Theoretical Physics, 96, 833-846. 

http://dx.doi.org/10.1143/PTP.96.833 
[12] Dickson, L.E. (1919) On Quaternions and Their Generalization and the History of the Eight Square Theorem. Annals 

of Mathematics, 20, 155-171. http://dx.doi.org/10.2307/1967865 
[13] Imaeda, K. and Imaeda, M. (2000) Sedenions: Algebra and Analysis. Applied Mathematics and Computations, 115, 77- 

88. http://dx.doi.org/10.1016/S0096-3003(99)00140-X 
[14] Carmody, K. (1988) Circular and Hyperbolic Quaternions, Octonions, and Sedenions. Applied Mathematics and Com-

putations, 28, 47-72. http://dx.doi.org/10.1016/0096-3003(88)90133-6 
[15] Carmody, K. (1997) Circular and Hyperbolic Quaternions, Octonions, and Sedenions—Further Results. Applied 

Mathematics and Computations, 84, 27-47. http://dx.doi.org/10.1016/S0096-3003(96)00051-3 
[16] Köplinger, J. (2006) Dirac Equation on Hyperbolic Octonions. Applied Mathematics and Computations, 182, 443-446.  

http://dx.doi.org/10.1016/j.amc.2006.04.005 
[17] Mironov, V.L. and Mironov, S.V. (2009) Octonic Representation of Electromagnetic Field Equations. Journal of 

Mathematical Physics, 50, Article ID: 012901. http://dx.doi.org/10.1063/1.3041499 
[18] Mironov, V.L. and Mironov, S.V. (2009) Octonic Second-Order Equations of Relativistic Quantum Mechanics. Jour-

nal of Mathematical Physics, 50, Article ID: 012302. http://dx.doi.org/10.1142/S0217751X09045480 
[19] Mironov, V.L. and Mironov, S.V. (2009) Octonic First-Order Equations of Relativistic Quantum Mechanics. Interna-

tional Journal of Modern Physics A, 24, 4157-4167. http://dx.doi.org/10.1142/S0217751X09045480 
[20] Mironov, V.L. and Mironov, S.V. (2011) Noncommutative Sedeons and Their Application in Field Theory. e-Print. 

http://arxiv.org/abs/1111.4035 
[21] Mironov, V.L. and Mironov, S.V. (2013) Reformulation of Relativistic Quantum Mechanics Equations with Non- 

Commutative Sedeons. Applied Mathematics, 4, 53-60. http://dx.doi.org/10.4236/am.2013.410A3007 
[22] Mironov, V.L. and Mironov, S.V. (2014) Sedeonic Equations of Gravitoelectromagnetism. Journal of Modern Physics, 

5, 917-927. http://dx.doi.org/10.4236/jmp.2014.510095 
[23] Mironov, S.V. and Mironov, V.L. (2014) Sedeonic Equations of Massive Fields. International Journal of Theoretical 

http://dx.doi.org/10.1007/BF02726749
http://dx.doi.org/10.1007/BF03041944
http://dx.doi.org/10.1103/PhysRevD.41.2628
http://dx.doi.org/10.1063/1.2397555
http://dx.doi.org/10.1007/BF03161242
http://dx.doi.org/10.1088/0305-4470/39/22/020
http://dx.doi.org/10.1393/ncb/i2005-10189-9
http://dx.doi.org/10.1142/S0217751X06028436
http://dx.doi.org/10.1143/PTP.96.833
http://dx.doi.org/10.2307/1967865
http://dx.doi.org/10.1016/S0096-3003(99)00140-X
http://dx.doi.org/10.1016/0096-3003(88)90133-6
http://dx.doi.org/10.1016/S0096-3003(96)00051-3
http://dx.doi.org/10.1016/j.amc.2006.04.005
http://dx.doi.org/10.1063/1.3041499
http://dx.doi.org/10.1142/S0217751X09045480
http://dx.doi.org/10.1142/S0217751X09045480
http://arxiv.org/abs/1111.4035
http://dx.doi.org/10.4236/am.2013.410A3007
http://dx.doi.org/10.4236/jmp.2014.510095


V. L. Mironov, S. V. Mironov 
 

 
56 

Physics, e-Print. http://vixra.org/abs/1311.0005 
[24] Mironov, S.V. and Mironov, V.L. (2014) Space-Time Sedeons and Their Application in Relativistic Quantum Me-

chanics and Field Theory. Institute for Physics of Microstructures RAS, Nizhny Novgorod. 
http://vixra.org/abs/1407.0068 

[25] Landau, L.D. and Lifshits, E.M. (1975) Classical Theory of Fields. 4th Edition, Pergamon Press, New York. 
[26] Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. Clarendon Press, Oxford. 
[27] Cafaro, C. and Ali, S.A. (2006) The Spacetime Algebra Approach to Massive Classical Electrodynamics with Mag-

netic Monopoles. Advances in Applied Clifford Algebras, 17, 23-36. http://dx.doi.org/10.1007/s00006-006-0014-7 
[28] Macfarlane, A. (1900) Hyperbolic Quaternions. Proceedings of the Royal Society at Edinburgh, 1899-1900 Session, 

169-181. 
[29] Hamilton, W.R. (1853) Lectures on Quaternions. Royal Irish Academy, Dublin. 

 

http://vixra.org/abs/1311.0005
http://vixra.org/abs/1407.0068
http://dx.doi.org/10.1007/s00006-006-0014-7


http://www.scirp.org/
mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/
http://www.scirp.org/journal/CE/
http://www.scirp.org/journal/ENG/
http://www.scirp.org/journal/FNS/
http://www.scirp.org/journal/Health/
http://www.scirp.org/journal/JCC/
http://www.scirp.org/journal/JCT/
http://www.scirp.org/journal/JEP/
http://www.scirp.org/journal/JMP/
http://www.scirp.org/journal/ME/
http://www.scirp.org/journal/NS/
http://www.scirp.org/journal/PSYCH/

	Associative Space-Time Sedenions and Their Application in Relativistic Quantum Mechanics and Field Theory
	Abstract
	Keywords
	1. Introduction
	2. Sedenionic Space-Time Algebra
	3. Spatial Rotation and Space-Time Inversion
	4. Sedenionic Lorentz Transformations 
	5. Subalgebras of Space-Time Complex Numbers, Quaternions and Octonions
	6. Generalized Sedenionic Equations of Relativistic Quantum Mechanics
	7. Generalized Sedenionic Equations for Massive Field
	8. Generalized Sedenionic Equations for Massless Field
	9. Discussion
	10. Conclusion
	Acknowledgements
	References



