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Abstract 
In this paper, we introduce the concept of a (weak) minimizer of order k for a nonsmooth vector 
optimization problem over cones. Generalized classes of higher-order cone-nonsmooth (F, ρ)- 
convex functions are introduced and sufficient optimality results are proved involving these 
classes. Also, a unified dual is associated with the considered primal problem, and weak and 
strong duality results are established. 
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1. Introduction 
It is well known that the notion of convexity plays a key role in optimization theory [1] [2]. In the literature, 
various generalizations of convexity have been considered. One such generalization is that of a ρ -convex 
function introduced by Vial [3]. Hanson and Mond [4] defined the notion of an F-convex function. As an ex-
tended unification of the two concepts, Preda [5] introduced the concept of a ( ),F ρ -convex function. Antczak 
gave the notion of a locally Lipschitz ( ),F ρ -convex scalar function of order k [6] and a differentiable ( ),F ρ - 
convex vector function of order 2 [7]. 

L. Cromme [8] defined the concept of a strict local minimizer of order k for a scalar optimization problem. 
This concept plays a fundamental role in convergence analysis of iterative numerical methods [8] and in stability 
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results [9]. The definition of a strict local minimizer of order 2 is generalized to the vectorial case by Antczak 
[7]. 

Recently, Bhatia and Sahay [10] introduced the concept of a higher-order strict minimizer with respect to a 
nonlinear function for a differentiable multiobjective optimization problem. They proved various sufficient 
optimality and mixed duality results involving generalized higher-order strongly invex functions. 

The main purpose of this paper is to extend the concept of a higher-order minimizer to a nonsmooth vector 
optimization problem over cones. The paper is organized as follows. We begin in Section 2 by recalling some 
known concepts in the literature. We then define the notion of a (weak) minimizer of order k for a nonsmooth 
vector optimization problem over cones. Thereafter, we introduce various new generalized classes of cone- 
nonsmooth ( ),F ρ -convex functions of higher-order. In Section 3, we study several optimality conditions for 
higher-order minimizers via the introduced classes of functions. In Section 4, we associate a unified dual to the 
considered problem and establish weak and strong duality results. 

2. Preliminaries and Definitions 
Let nS ⊆ R  be a nonempty open subset of nR . Let mK ⊆ R  be a closed convex cone with nonempty inte-
rior and let intK  denote the interior of K. The dual cone K* of K is defined as 

{ }: , 0  for all  mK y y y y K∗ ∗ ∗= ∈ ≥ ∈R . 

The strict positive dual cone sK
∗

 of K is given by 

{ }{ }: , 0  for all  \ 0 .s mK y y y y K
∗ ∗ ∗= ∈ > ∈R  

A function : Sψ → R  is said to be locally Lipschitz at a point u S∈  if for some 0l > , 
( ) ( )x x l x xψ ψ− ≤ −  x∀ , x  within a neighbourhood of u. 

A function ψ  is said to be locally Lipschitz on S if it is locally Lipschitz at each point of S. 
Definition 2.1. [11] Let : Sψ → R  be a locally Lipschitz function, then ( )0 ;u vψ  denotes the Clarke’s ge-

neralized directional derivative of ψ  at u S∈  in the direction v  and is defined as 

( ) ( ) ( )0

0

; limsup
y u
t

y tv y
u v

t
ψ ψ

ψ
+

→
→

+ −
= . 

The Clarke’s generalized gradient of ψ  at u is denoted by ( )uψ∂  and is defined as 

( ) ( ){ }0: ; ,  for all  n nu u v v vψ ξ ψ ξ∂ = ∈ ≥ ∈R R . 

Let : mf S → R  be a vector valued function given by ( )1 2, , , t
mf f f f=   , :if S → R . Then f is said to 

be locally Lipschitz on S if each if  is locally Lipschitz on S. The generalized directional derivative of a locally 
Lipschitz function : mf S → R  at u S∈  in the direction v  is given by 

( ) ( ) ( ) ( )( )0 0 0 0
1 2; ; , ; , , ;

t

mf u v f u v f u v f u v=  . 

The generalized gradient of f at u is the set 

( ) ( ) ( )1 mf u f u f u∂ = ∂ × ×∂
, 

where ( )if u∂  is the generalized gradient of if  at u for 1, 2, ,i m= 
. 

Every element ( ) ( )1, , t
mA A A f u= ∈∂  is a continuous linear operator from nR  to mR  and 

( )1 , ,
tt t m

mAu A u A u= ∈R

 for all u S∈ . 

A functional : nF S S× × →R R  is sublinear with respect to the third variable if, for all ( ),x u S S∈ × , 
(i) ( ) ( ) ( )1 2 1 2, ; , ; , ;F x u A A F x u A F x u A+ ≤ +  for all 1 2,  nA A ∈R , and 
(ii) ( ) ( ), ; , ;F x u A F x u Aα α=  for all α +∈R . 
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(i) and (ii) together imply ( ), ;0 0F x u = .                                                    (1) 
We consider the following nonsmooth vector optimization problem 

(NVOP)   K-minimize ( )f x  

subject to ( )g x Q− ∈ , 

where ( )1, , t
mf f f=  : mS → R , ( )1, ,

t
pg g g=  : pS → R , K and Q are closed convex cones with nonempty 

interiors in Rm and Rp respectively. We assume that if  for each { }1, ,i m∈   and jg  for each { }1, ,j p∈   
are locally Lipschitz on S. 

Let ( ){ }0 :S x S g x Q= ∈ − ∈  denote the set of all feasible solutions of (NVOP). 
The following solution concepts are well known in the literature of vector optimization theory. 
Definition 2.2. A point 0x S∈ , is said to be 
(i) a weak minimizer (weakly efficient solution) of (NVOP) if for every 0x S∈ , 

( ) ( ) int ;f x f x K− ∉−  

(ii) a minimizer (efficient solution) of (NVOP) if for every 0x S∈ , 

( ) ( ) { }\ 0 .f x f x K− ∉−  

With the idea of analyzing the convergence and stability of iterative numerical methods, L. Cromme [8] in-
troduced the notion of a “strict local minimizer of order k”. As a recent advancement on this platform, Bhatia 
and Sahay [10] defined the concept of a higher-order strict minimizer with respect to a nonlinear function for a 
differentiable multiobjective optimization problem. We now generalize this concept and give the definition of a 
higher-order (weak) minimizer with respect to a function ω  for a nonsmooth vector optimization problem over 
cones. 

Definition 2.3. A point 0x S∈  is said to be 
(i) a weak minimizer of order 1k ≥  for (NVOP) with respect to ω , if there exists a vector intKβ ∈  such 

that, for every 0x S∈  

( ) ( ) ( ), int
k

f x f x x x Kβ ω− − ∉− ; 

(ii) a minimizer of order 1k ≥  for (NVOP) with respect to ω , if there exists a vector intKβ ∈  such that, 
for every 0x S∈  

( ) ( ) ( ) { }, \ 0 .
k

f x f x x x Kβ ω− − ∉−  

Remark 2.1. (1) If f is a scalar valued function, K += R  and ( ),x x x xω = − , the definition of a weak mi-
nimizer of order k reduces to the definition of a strict minimizer of order k (see [8] [9] [12] [13]). 

(2) If mK += R , 2k =  and ( ),x x x xω = − , the definition of a (weak) minimizer of order k becomes the 
definition of a vector strict global (weak) minimizer of order 2 given by Antczak [7]. 

(3) If mK += R  the definition of a weak minimizer of order k reduces to the definition of a strict minimizer of 
order k given by Bhatia and Sahay [10]. 

Remark 2.2. (1) Clearly a minimizer of order k for (NVOP) with respect to ω  is also a weak minimizer of 
order k for (NVOP) with respect to the same ω . 

(2) A direct implication of the fact that intKβ ∈  is that, a (weak) minimizer of order k for (NVOP) with re-
spect to ω  is a (weak) minimizer for (NVOP). 

(3) Note that if x  is a (weak) minimizer of order k for (NVOP) with respect to ω , then for all k> , it is 
also a (weak) minimizer of order   for (NVOP) with respect to the same ω . 

In the sequel, for a vector function : mf S → R  and ( ) ( )1, , t
mA A A f u= ∈∂ , ( ), ;F x u A  denotes the vec-

tor ( ) ( )( )1, ; , , , ;
t

mF x u A F x u A . 
We now define various classes of nonsmooth ( ),F ρ -convex functions of higher-order over cones. 
Definition 2.4. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -convex of order 

k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) functional 
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: nF S S× × →R R  and a vector ( )1 2, , , m
mρ ρ ρ ρ= ∈R  such that, for each ( )A f u∈∂  and all x S∈  

( ) ( ) ( ) ( ), ; ,
k

f x f u F x u A x u Kρ ω− − − ∈ . 

If the above relation holds for every u S∈  then f is said to be K-nonsmooth ( ),F ρ -convex of order k with 
respect to ω  on S. 

Remark 2.3. (1) If f is a scalar valued function and K += R , the above definition reduces to the definition of 
a (locally Lipschitz) ( ),F ρ -convex function of order k with respect to ω  given by Antczak [6]. 

(2) If f is a differentiable function, mK += R , 2k =  and ( ),x x x xω = −  the definition of a K-nonsmooth 
( ),F ρ -convex function of order k with respect to ω  becomes the definition of a vector ( ),F ρ -convex func-
tion of order 2 given in [7]. 

(3) If mK += R , ( ) ( ), ; ,F x u A A x uη=  for some function : nS Sη × → R and 2k = , K-nonsmooth ( ),F ρ - 
convexity of order k with respect to ω  reduces to ( ),ρ η θ− -invexity, where ( ) ( ), ,x x x xω θ= , introduced 
by Nahak and Mohapatra [14]. 

(4) If f  is a differentiable function, mK += R  and ( ) ( ), ; ,tF x u a a x uη= , na∈R , for some function 
: nS Sη × → R , the above definition becomes the definition of a higher-order strongly invex function given by 

Bhatia and Sahay [10]. 
Definition 2.5. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -pseudoconvex 

type I of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S× × →R R  and a vector mρ ∈R  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( ), ; int , int
k

F x u A K f x f u x u Kρ ω − ∉ ⇒ − − − ∉  
. 

Equivalently, 

( ) ( ) ( ) ( ), int , ; int
k

f x f u x u K F x u A Kρ ω− − ∈− ⇒ ∈− . 

If f is K-nonsmooth ( ),F ρ -pseudoconvex type I of order k with respect to ω  at every u S∈  then f is said 
to be K-nonsmooth ( ),F ρ -pseudoconvex type I of order k with respect to ω  on S. 

Clearly, if f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω , then f is K-nonsmooth ( ),F ρ - 
pseudoconvex type I of order k with respect to the same ω , however the converse may not be true as shown by 
the following example. 

Example 2.1. Consider the following nonsmooth function 2:f S → R , ( )2, 2S = − ⊆ R, ( ) ( ) ( )( )1 2,f x f x f x=  
and ( ){ }, : 0,K x y x y x= ≥ ≤  

( )1 6

2 , 0
, 0

x x
f x

x x x
− <

= − − ≥
 ( )

3

2
2, 0

3, 0
x x x

f x
x x

 − <
= 

− ≥
 

Here ( ) [ ]1 0 2, 1f∂ = − −  and ( )2
1 10 ,
2 3

f  ∂ = − −  
. 

Define :F S S× × →R R  as 

( ) ( ), ;F x u a a x u= − . 

Let : S S Rω × →  be given by ( ) 2 2,x u x uω = − , 3k =  and ( )1,0ρ = − . 
Then, at 0u = . 

( ) ( ) ( ) ( ), int 0 , ; int
k

f x f u x u K x F x u A Kρ ω− − ∈− ⇒ > ⇒ ∈− , 

for every x S∈  and ( )0A f∈∂ . 
Hence, f is K-nonsmooth ( ),F ρ -pseudoconvex type I of order 3 with respect to ω  at u on S. 

However, for 1x =  and ( )1, 1 2A = − − . 

( ) ( ) ( ) ( ), ; ,
k

f x f u F x u A x u Kρ ω− − − ∉ , 
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so that f is not K-nonsmooth ( ),F ρ -convex of order 3 at u on S. 
Definition 2.6. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -pseudoconvex 

type II of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S× × →R R  and a vector mρ ∈R  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( ), ; , int int
k

F x u A x u K f x f u Kρ ω − + ∉ ⇒ − − ∉    
 

Equivalently, 

( ) ( ) ( ) ( )int , ; , int
k

f x f u K F x u A x u Kρ ω − ∈− ⇒ + ∈−  
. 

If the above relation holds for every u S∈ , then f is said to be K-nonsmooth ( ),F ρ -pseudoconvex type II 
of order k with respect to ω  on S. 

We now give an example to show that a K -nonsmooth ( ),F ρ -pseudoconvex type II function of order k with 
respect to ω  may fail to be a K -nonsmooth ( ),F ρ -convex function of order k with respect to ω . 

Example 2.2. Consider the following nonsmooth function 2:f S → R , ( )0,2S = ⊆ R , ( ) ( ) ( )( )1 2,f x f x f x=  
and ( ){ }, : 0,K x y x y x= ≤ ≥  

( )1 2

, 1
, 1

x x
f x

x x
− ≤

= − >
, ( )

( )2 2

4, 1

1 2 , 1

x x
f x

x x

≤= 
− >

 

Here ( ) [ ]1 1 2, 1f∂ = − −  and ( )2
11 ,1
4

f  ∂ =   
. 

Let :F S S× × →R R  be given by ( ) ( ), ; e ex uF x u a a= − . 

( ) 2 2 9,
16

x u x uω = − −  and ( )1, 1ρ = − . 

Then, at 1u = , 

( ) ( ) ( ) ( )int 1 , ; , int
k

f x f u K x F x u A x u Kρ ω− ∈− ⇒ ≤ ⇒ + ∈− , 

for every 1k ≥ , x S∈  and ( )1A f∈∂ . 
Therefore, f is K-nonsmooth ( ),F ρ -pseudoconvex type II of order 1k ≥  with respect to ω  at u on S. 
However, for 5 4x =  and ( )22,A α= − , [ ]2 1 4,1α ∈ , 

( ) ( ) ( ) ( ), ; ,
k

f x f u F x u A x u Kρ ω− − − ∉ . 

Thus, f is not K-nonsmooth ( ),F ρ -convex of any order k with respect to ω  at u on S. 
Definition 2.7. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -quasiconvex 

type I of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S R R× × →  and a vector mRρ ∈  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( )int , ; ,
k

f x f u K F x u A x u Kρ ω − ∉ ⇒ − + ∈     
. 

If the above relation holds at every u S∈ , then f is said to be K-nonsmooth ( ),F ρ -quasiconvex type I of 
order k with respect to ω  on S. 

Definition 2.8. A locally Lipschitz function : mf S → R  is said to be K-nonsmooth ( ),F ρ -quasiconvex 
type II of order k with respect to ω  at u S∈  on S if there exist a sublinear (with respect to the third variable) 
functional : nF S S× × →R R  and a vector mρ ∈R  such that, for each ( )A f u∈∂  and all x S∈ , 

( ) ( ) ( ) ( ), int , ;
k

f x f u x u K F x u A Kρ ω − − ∉ ⇒ − ∈  
. 

If f is K-nonsmooth ( ),F ρ -quasiconvex type II of order k with respect to ω  at every u S∈ , then f is said 



S. K. Suneja et al. 
 

 
12 

to be K-nonsmooth ( ),F ρ -quasiconvex type II of order k with respect to ω  on S. 
Remark 2.4. When f is a differentiable function, mK += R  and ( ) ( ), ; ,tF x u a a x uη= , na∈R  for some 

function : nS Sη × → R , Definition 2.4 - 2.7 take the form of the corresponding definitions given by Bhatia and 
Sahay [10]. 

3. Optimality 
In this section, we obtain various nonsmooth Fritz John type and Karush-Kuhn-Tucker (KKT) type necessary 
and sufficient optimality conditions for a feasible solution to be a (weak) minimizer of order k for (NVOP). 

On the lines of Craven [15] we define Slater-type cone constraint qualification as follows: 
Definition 3.1. The problem (NVOP) is said to satisfy Slater-type cone constraint qualification at x  if, for 

all ( )B g x∈∂ , there exists a vector nRξ ∈  such that intB Qξ ∈− . 
Remark 3.1. The following inclusion relation is worth noticing. 
For ( )1, , t m

mλ λ λ= ∈R  and ( )1, ,
t p

pµ µ µ= ∈R , 

( )( ) ( )

( ) ( )

( ) ( )

( ) ( )( )

1 1

1 1

1 1

                           

                           

                           .

pm
t t

i i j j
i j

pm

i i j j
i j

pm

i i j j
i j

t t

f g x f g x

f x g x

f x g x

f x g x

λ µ λ µ

λ µ

λ µ

λ µ

= =

= =

= =

 
∂ + = ∂ + 

 
  ⊆ ∂ + ∂  

   

⊆ ∂ + ∂

= ∂ + ∂

∑ ∑

∑ ∑

∑ ∑

 

Thus, 

( )( ) ( ) ( )( )t tt tf g x f x g xλ µ λ µ∂ + ⊆ ∂ + ∂ .                         (2) 

Since a weak minimizer of order 1k ≥  for (NVOP) is a weak minimizer for (NVOP), the following non-
smooth Fritz John type necessary optimality conditions can be easily obtained from Craven [15]. 

Theorem 3.1. If a vector 0x S∈  is a weak minimizer of order k with respect to ω  for (NVOP) with 
nS = R , then there exist Lagrange multipliers Kλ ∗∈  and Qµ ∗∈  not both zero, such that 

( )( )0 t tf g xλ µ∈∂ +  

( ) 0t g xµ = . 

The necessary nonsmooth KKT type optimality conditions for (NVOP) can be given in the following form. 
Theorem 3.2. If a vector 0x S∈  is a weak minimizer of order k with respect to ω  for (NVOP) with 

nS = R  and if Slater-type cone constraint qualification holds at x , then there exist Lagrange multipliers 
{ }\ 0Kλ ∗∈  and Qµ ∗∈ , such that 

( )( )0 t tf g xλ µ∈∂ +                                   (3) 

( ) 0t g xµ = .                                      (4) 

Proof. Assume that 0x S∈  is a weak minimizer of order k with respect to ω  for (NVOP), then by Theo-
rem 3.1 there exist Kλ ∗∈  and Qµ ∗∈ , not both zero, such that (3) and (4) hold. 

If possible, suppose 0λ = . Then, 0µ ≠  and (3) reduces to 

( )( ) ( )0 tt g x g xµ µ∈∂ ⊆ ∂ . 

So there exists ( )B g x∈∂  such that 

0tB µ = .                                       (5) 
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Now, since Slater-type cone constraint qualification holds at x , we have for all ( )B g x∈∂ , there exists a 
vector nRξ ∈  such that intB Qξ ∈− . Since { }\ 0Qµ ∗∈ , we get 0t Bµ ξ < . In particular, 0t Bµ ξ < . On the 
contrary (5) implies 0t tBξ µ = . This contradiction justifies 0λ ≠ . 

Now, we give sufficient optimality conditions for a feasible solution to be a higher-order (weak) minimizer 
for (NVOP). 

Theorem 3.3. Let x  be a feasible solution for (NVOP) and suppose there exist vectors Kλ ∗∈ , 0λ >  
and Qµ ∗∈ , 0µ ≥  such that 

( ) ( )( )0 t tf x g xλ µ∈ ∂ + ∂                                 (6) 

( ) 0t g xµ = .                                      (7) 

Further, assume that f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at x  on 0S  and g is 
Q-nonsmooth ( ),F σ -convex of order k with respect to the same ω  at x  on 0S . If intKρ ∈  and Qσ ∈ , 
then x  is a weak minimizer of order k with respect to ω  for (NVOP). 

Proof. Assume on the contrary that x  is not a weak minimizer of order k with respect to ω  for (NVOP). 
Then, for any intKβ ∈ , there exists a vector 0x̂ S∈  such that, 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kβ ω− − ∈− . 

As intKρ ∈ , the above relation holds in particular for β ρ= , so that we have 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kρ ω− − ∈− .                            (8) 

As (6) holds, there exist ( )A f x∈∂  and ( )B g x∈∂  such that 

0t tA Bλ µ+ = .                                   (9) 

Since f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at x  on 0S , we have 

( ) ( ) ( ) ( )ˆ ˆ ˆ, ; ,
k

f x f x F x x A x x Kρ ω− − − ∈ .                      (10) 

Adding (8) and (10), we get 

( )ˆ, ; intF x x A K− ∈ . 

As { }\ 0Kλ ∗∈ , we obtain 

( )ˆ, ; 0t F x x Aλ < .                                   (11) 

Also, since g is Q-nonsmooth ( ),F σ  convex of order k with respect to ω  at x  on 0S  and Qµ ∗∈ , we 
have 

( ) ( ) ( ) ( )ˆ ˆ ˆ, ; , 0
kt g x g x F x x B x xµ σ ω − − − ≥  

. 

However, 0x̂ S∈ , Qµ ∗∈  and (7) together give 

( ) ( )ˆ ˆ, ; , 0
kt F x x B x xµ σ ω + ≤  

.                           (12) 

Adding (11) and (12), we get 

( ) ( ) ( )ˆ ˆ ˆ, ; , ; , 0
kt t tF x x A F x x B x xλ µ µ σ ω+ + < , 

which implies that 

( ) ( ) ( )ˆ ˆ ˆ, ; , ; , | 0t k
i i j j

i j
F x x A F x x B x xλ µ µ σ ω+ + <∑ ∑ . 
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Using sublinearity of F under the assumption 0λ >  and 0µ ≥ , we obtain 

( ) ( )ˆ ˆ, ; , 0
kt t tF x x A B x xλ µ µ σ ω+ + < , 

which on using (9) and (1), gives 

( )ˆ, 0
kt x xµ σ ω < . 

This is impossible as Qµ ∗∈ and Qσ ∈ , so that 0tµ σ ≥ , and norm is a non-negative function. Hence x  
is a weak minimizer of order k  with respect to ω  for (NVOP). 

Theorem 3.4. Suppose there exists a feasible solution x  for (NVOP) and vectors ,  0Kλ λ∗∈ >  and 
,  0Qµ µ∗∈ ≥  such that (6) and (7) hold. Moreover, assume that f is K-nonsmooth ( ),F ρ -pseudoconvex type 

I of order k with respect to ω  at x  on 0S  and g  is Q -nonsmooth ( ),F σ -quasiconvex type I of order k 
with respect to the same ω  at x  on 0S . If intKρ ∈  and Qσ ∈ , then x  is a weak minimizer of order k 
with respect to ω  for (NVOP). 

Proof: Let if possible, x  be not a weak minimizer of order k with respect to ω for (NVOP). Then, for any 
intKβ ∈ , there exists 0x̂ S∈  such that, 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kβ ω− − ∈− . 

Since intKρ ∈  taking, in particular, β ρ=  in the above relation, we obtain 

( ) ( ) ( )ˆ ˆ, int
k

f x f x x x Kρ ω− − ∈− .                           (13) 

As (6) holds, there exist ( )A f x∈∂  and ( )B g x∈∂  such that (9) holds. 
Since f is K-nonsmooth ( ),F ρ -pseudoconvex type I of order k with respect to ω at x  on 0S , (13) implies 

( )ˆ, ; intF x x A K∈− . 

As { }\ 0Kλ ∗∈ , we have 

( )ˆ, ; 0t F x x Aλ < .                                   (14) 

Now, 0x̂ S∈  means ( )ˆg x Q− ∈ , so that ( )ˆ 0t g xµ ≤ . This along with (7) gives 

( ) ( ){ }ˆ 0t g x g xµ − ≤ .                                (15) 

If 0µ ≠ , then (15) implies ( ) ( )ˆ intg x g x Q− ∉ . 
Since g is Q-nonsmooth ( ),F σ -quasiconvex type I of order k with respect to ω  at x  on 0S , therefore 

( ) ( )ˆ ˆ, ; ,
k

F x x B x x Qσ ω − + ∈  
, 

so that 

( ) ( )ˆ ˆ, ; , 0
kt F x x B x xµ σ ω + ≤  

.                            (16) 

If 0µ = , then also (16) holds. 
Now, proceeding as in Theorem 3.3, we get a contradiction. Hence, x  is a weak minimizer of order k with 

respect to ω  for (NVOP). 
Theorem 3.5. Assume that all the conditions of Theorem 3.3 (Theorem 3.4) hold with ,  0sKλ λ

∗
∈ > . Then 

x  is a minimizer of order k with respect to ω  for (NVOP). 
Proof: Let if possible, x  be not a minimizer of order k with respect to ω  for (NVOP), then for any 

intKβ ∈  there exists 0x̂ S∈  such that 

( ) ( ) ( ) { }ˆ ˆ, \ 0
k

f x f x x x Kβ ω − − − ∈  
.                        (17) 
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Proceeding on similar lines as in proof of Theorem 3.3 (Theorem3.4) and using (17) we have 

( ) { }ˆ, ; \ 0F x x A K− ∈ . 

As sKλ
∗

∈ , we get 

( )ˆ, ; 0t F x x Aλ < . 

This leads to a contradiction as in Theorem 3.3 (Theorem 3.4). Hence, x  is a minimizer of order k with re-
spect to ω  for (NVOP). 

4. Unified Duality 
On the lines of Cambini and Carosi [16], we associate with our primal problem (NVOP), the following unified 
dual problem (NVUD). 

(NVUD)        K-maximize ( ) ( ) ( )1 t
t

lf y g y
l

δ µ
λ

+ −  

subject to ( )( )0 ,t tf g yλ µ∈∂ +                                            (18) 

( ) 0,t g yδµ ≥                                                   (19) 

where y S∈ , intl K∈ , { }\ 0Kλ ∗∈ , Qµ ∗∈  and { }0,1δ ∈  is a 0 - 1 parameter. 
Note that Wolfe dual and Mond-Weir dual can be obtained from (NVUD) on taking 0δ =  and 1δ =  re-

spectively. 
Definition 4.1. Given the problem (NVOP) and given a vector int ,l K∈  we define the following Lagrange 

function: 

( ) ( ) ( ), , ,     ,   ,   t
t

lx f x g x x S K Q
l

λ µ µ λ µ
λ

∗ ∗= + ∀ ∈ ∈ ∈L . 

Theorem 4.1. (Weak Duality) Let x be feasible for (NVOP) and ( ), ,y λ µ  be feasible for (NVUD). If f is 
K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at y on 0S  and g is Q-nonsmooth ( ),F σ -convex 
of order k with respect to the same ω  at y on 0S , with 0,  0λ µ> ≥  and 

0t tλ ρ µ σ+ ≥ ,                                     (20) 

then, 

( ) ( ) ( ) ( )1 intt
t

lf y g y f x K
l

δ µ
λ

+ − − ∉ . 

Proof: Assume on the contrary that 

( ) ( ) ( ) ( )1 intt
t

lf y g y f x K
l

δ µ
λ

+ − − ∈ .                         (21) 

Since ( ), ,y λ µ  is feasible for (NVUD), therefore by (2), there exist ( )A f y∈∂  and ( )B g y∈∂  such that 

0t tA Bλ µ+ = .                                   (22) 

Since f is K-nonsmooth ( ),F ρ -convex of order k with respect to ω  at y on 0S , we have 

( ) ( ) ( ) ( ), ; , .
k

f x f y F x y A x y Kρ ω− − − ∈                         (23) 

Adding (21) and (23), we obtain 

( ) ( ) ( ) ( )1 , ; , int
kt

t

l g y F x y A x y K
l

δ µ ρ ω
λ

− − − ∈ . 
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As { }\ 0Kλ ∗∈ , we get 

( ) ( ) ( ) ( )1 , ; , 0
kt t tg y F x y A x yδ µ λ λ ρ ω− − − > .                     (24) 

Also, since g is Q-nonsmooth ( ),F σ -convex of order k with respect to ω  at y on 0S  and Qµ ∗∈ , we 
have 

( ) ( ) ( ) ( ), ; , 0
kt g x g y F x y B x yµ σ ω − − − ≥  

.                      (25) 

Adding (24) and (25), we get 

( ) ( ) ( ) ( ) ( ) ( ), ; , ; ,
kt t t t t tg x g y F x y A F x y B x yµ δµ λ µ λ ρ µ σ ω− > + + +  

or, 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, ; , ; , .
pm kt t t

i i j j
i j

g x g y F x y A F x y B x yµ δµ λ µ λ ρ µ σ ω
= =

′− > + + +∑ ∑  

Using sublinearity of F under the assumption that 0λ >  and 0µ ≥ , together with (22), (1) and (20), we 
obtain 

( ) ( )t tg y g xδµ µ< . 

As 0 ,  ( )x S g x Q∈ − ∈  and Qµ ∗∈ , so that ( ) 0t g xµ ≤  and we have ( ) 0t g yδµ < . 
This contradicts the feasibility of ( ), ,y λ µ , hence the result. 
Theorem 4.2. (Weak Duality) Let x be feasible for (NVOP) and ( ), ,y λ µ  be feasible for (NVUD) with 

0λ >  and 0µ ≥ . Suppose the following conditions hold: 
(i) If ( )0,  ,  ., ,Kδ ρ λ µ= ∈ L  is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω  

at y on 0S , and 
(ii) If 1,  0t tδ λ ρ µ σ= + ≥ , f is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω  at 

y on 0S  and g is Q-nonsmooth ( ),F σ -quasiconvex type I of order k with respect to ω  at y on 0S . 
Then, we have 

( ) ( ) ( ) ( )1 intt
t

lf y g y f x K
l

δ µ
λ

+ − − ∉ . 

Proof: Case (i): Let 0δ =  and on the contrary assume that, 

( ) ( ) ( ) intt
t

lf y g y f x K
l
µ

λ
+ − ∈ .                            (26) 

Since x is feasible for (NVOP) and Qµ ∗∈ , therefore ( ) 0t g xµ− ≥ . Further, intl K∈  so that 

( )t
t

l g x K
l
µ

λ
− ∈ .                                  (27) 

Adding (26) and (27), we get 

( ) ( ){ } ( ) ( ){ } intt t
t t

l lf y g y f x g x K
l l
µ µ

λ λ
 

+ − + ∈  
. 

That is, 

( ) ( ), , , , intx y Kλ µ λ µ− − ∈  L L . 

As ( )., ,λ µL  is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω , we have for all 
( ) ( )1, , , ,t

mC C C y λ µ= ∈∂ L  
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( ) ( ), ; , int
k

F x y C x y Kρ ω+ ∈− . 

Since, { }\ 0Kλ ∗∈ , we get 

( ) ( ), ; , 0
kt tF x y C x yλ λ ρ ω+ < , 

or 

( ) ( )
1

, ; , 0
m kt

i i
i

F x y C x yλ λ ρ ω
=

+ <∑ , 

so that 

( ) ( ), ; , 0
kt tF x y C x yλ λ ρ ω+ < .                            (28) 

Now, since ( ), ,y λ µ  is feasible for (NVUD), 

( )( ) ( )

( )

( )

1 1

1

0

1                                 

                                 

                                 

t
t t t t

t

m m
t

i i i it
i i

m
ti

i i t
i

lf g y f g y
l

f l g y
l
l

f g y
l

λλ µ λ µ
λ

λ λ µ
λ

λ µ
λ

= =

=

 
∈∂ + = ∂ + 

 
 = ∂ + 
 
  = ∂ +  

  

∑ ∑

∑

( )

( )
1

                                 , , .

m
ti

i i t
i

t

l
f g y

l

y

λ µ
λ

λ µ λ
=

 ⊆ ∂ + 
 

= ∂

∑

L

 

Therefore, there exists ( )ˆ , ,C y λ µ∈∂L  such that ˆ 0tCλ = . Substituting in (28) and then using (1), we get 

( ), 0
kt x yλ ρ ω < , 

which is a contradiction, as { }\ 0 ,  K Kλ ρ∗∈ ∈  and norm is a non-negative function. 
Case (ii): Let 1δ = , then we have to prove that 

( ) ( ) intf y f x K− ∉ . 

Let if possible, 

( ) ( ) intf y f x K− ∈ . 

Since f is K-nonsmooth ( ),F ρ -pseudoconvex type II of order k with respect to ω  at y on 0S , we have 

( ) ( ){ }, ; , int
k

F x y A x y Kρ ω− + ∈ . 

As { }\ 0Kλ ∗∈ , we get 

( ) ( ), ; , 0
kt tF x y A x yλ λ ρ ω+ < .                            (29) 

Since x is feasible for (NVOP) and ( ), ,y λ µ  is feasible for (NVUD), we have 

( ) ( ){ } 0t g x g yµ − ≤ .                                 (30) 

If 0µ ≠ , (30) implies ( ) ( ) intg x g y Q− ∉ . 
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As g is Q-nonsmooth ( ),F σ -quasiconvex type I of order k with respect to ω  at y on 0S , we get 

( ) ( ){ }, ; ,
k

F x y B x y Qσ ω− + ∈ . 

Since *Q , we have 

( ) ( ), ; , 0
kt tF x y B x yµ µ σ ω+ ≤ .                            (31) 

If 0µ = , then also (31) holds. 
Since ( ), ,y λ µ  is feasible for (NVUD), by Remark 3.1, there exist ( )A f y∈∂  and ( )B g y∈∂  such that 

(22) holds. 
Adding (29) and (31), we get 

( ) ( ) ( ) ( ), ; , ; , 0
kt t t tF x y A F x y B x yλ µ λ ρ µ σ ω+ + + < , 

or 

( ) ( ) ( ) ( )
1 1

, ; , ; , 0
pm kt t

i i j j
i j

F x y A F x y B x yλ µ λ ρ µ σ ω
= =

+ + + <∑ ∑ . 

Using sublinearity of F with the fact that 0λ >  and 0µ ≥  and then using (22) and (1), we obtain 

( ) ( ), 0
kt t x yλ ρ µ σ ω+ < . 

This contradicts the assumption that 0t tλ ρ µ σ+ ≥ , hence the result. 
Theorem 4.3. (Strong Duality) Let x  be a weak minimizer of order k with respect to ω  for (NVOP) with 

nS = R , at which Slater-type cone constraint qualification holds. Then there exist { }\ 0 ,  K Qλ µ∗ ∗∈ ∈  such 
that ( ), ,x λ µ  is feasible for (NVUD). Further, if the conditions of Weak Duality Theorem 4.1 (Theorem 4.2) 
hold for all feasible x for (NVOP) and all feasible ( ), ,y λ µ  for (NVUD), then x  is a weak maximizer of or-
der k with respect to ω  for (NVUD). 

Proof: As x  is a weak minimizer of order k with respect to ω  for (NVOP), by Theorem 3.2 there exist 
{ }\ 0 ,  K Qλ µ∗ ∗∈ ∈  such that 

( )( )0 t tf g xλ µ∈∂ + ,                                 (32) 

( ) 0t g xµ = .                                     (33) 

Since { }0,1δ ∈ , Equations (32) and (33) can be written as 

( )( )0 t tf g xλ µ∈∂ + , 

( ) 0t g xδµ = . 

Thus, ( ), ,x λ µ  is a feasible solution for (NVUD). Further, if ( ), ,x λ µ  is not a weak maximizer of order k 
with respect to ω  for (NVUD), then for any intKβ ∈ , there exists a feasible solution ( ), ,y λ µ  of (NVUD) 
such that 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 , int ,
kt t

t t

l lf y g y f x g x y x K
l l

δ µ δ µ β ω
λ λ

   + − − + − − ∈   
   

 

or, 

( ) ( ) ( ) ( ) ( )1 , int .
kt

t

lf y g y f x y x K
l

δ µ β ω
λ

+ − − − ∈  
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Since, ( )int ,  , int
k

K y x Kβ β ω∈ ∈ , so that we have 

( ) ( ) ( ) ( )1 int ,t
t

lf y g y f x K
l

δ µ
λ

+ − − ∈  

which contradicts Theorem 4.1 (Theorem 4.2). Hence ( ), ,x λ µ  is a weak maximizer of order k with respect to 
ω  for (NVUD). 

5. Conclusion  
In this paper, we introduced the concept of a higher-order (weak) minimizer for a nonsmooth vector optimiza-
tion problem over cones. Furthermore, to study the new solution concept, we defined new generalized classes of 
cone-nonsmooth (F, ρ)-convex functions and established several sufficient optimality and duality results using 
these classes. The results obtained in this paper will be helpful in studying the stability and convergence analysis 
of iterative procedures for various optimization problems. 
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