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Abstract 
Theoretical results related to properties of a regularized recursive algorithm for estimation of a 
high dimensional vector of parameters are presented and proved. The recursive character of the 
procedure is proposed to overcome the difficulties with high dimension of the observation vector 
in computation of a statistical regularized estimator. As to deal with high dimension of the vector 
of unknown parameters, the regularization is introduced by specifying a priori non-negative co-
variance structure for the vector of estimated parameters. Numerical example with Monte-Carlo 
simulation for a low-dimensional system as well as the state/parameter estimation in a very high 
dimensional oceanic model is presented to demonstrate the efficiency of the proposed approach. 
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1. Introduction 
In [1] a statistical regularized estimator is proposed for an optimal linear estimator of unknown vector in a linear 
model with arbitrary non-negative covariance structure  

z Hx v= +                                         (1) 
where z  is the p-vector observation, H  is the ( )p n×  observation matrix, x  is the n-vector of unknown 
parameters to be estimated, v  is the p-vector representing the observation error. 

It is assumed 
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( ) ( )T0,     E v E vv V= =                                   (2) 

( ) ( ) ( )T T,     ,     ,     :E x x E ee M E ev N e x x= = = = −                        (3) 

where ( )E ⋅  is the mathematical expectation operator. Throughout this paper let p , n  be any positive inte- 

gers, the covariance matrix of the joint vector ( )TT T,v e v=  may be singular (and hence the model (1)-(3) is 
called a linear model with arbitrary non-negative covariance structure). 

No particular assumption is made regarding the probability density function of v  and p , n  are any posi-
tive integers. 

In [1] the optimal linear estimator for the unknown vector x  in the model (1)-(3) is defined as 

( ),T T
1 1 1 1ˆ ,     ,     x Gz G H I V V V V I H H

++ + = = − = −                         (4) 

where TV  is the transpose of V , H +  denotes the pseudo-inversion of H  . 
As in practice all the matrices ,  ,  ,  H M N R  and the observation vector z  are given only approximately, 

instead of data set ( ), , , ,D H M N R z=  we are given their δ -approximations 

( ), , , ,D H M N R zδ δ δ δ δ δ=                                   (5) 

hence the resulting estimate ( )ˆ ˆ δx x Dδ = . 
As shown in [1], there are situations when the error ˆ ˆ:e x xδ= −  between the “true” estimate x̂  and its per-

turbed x̂δ  may be very large even for small data error δ . The regularization procedure has been proposed in 
[1] to overcome this difficulty. 

In this paper we are interested in obtaining a simple recursive algorithm for computation of x̂  subject to the 
situation when n  or p  or/and n , p  may be very high.  

This problem is very important for many practical applications. As example, consider data assimilation prob-
lems in meteorology and oceanography [2]. For typical data set in oceanography, at each assimilation instant we 
have the observation vector with 4 510 10p ≈ − , 6 710 10n ≈ − . Under such conditions it is unimaginable to 
compute the estimate (4) using standard numerical methods. We will show that there exists a simple algorithm to 
overcome these difficulties by exploiting a recursive character of the algorithm with an appropriate regulariza-
tion in the form of the priori covariance matrix M  for the vector of unknown parameters x . 

2. Simple Recursive Method for Estimating the Vector of Parameters 
2.1. Problem Statement: Free-Noise Observations 
First consider the model (1) and assume that 0v = . We have then the system of linear equations 

,     ,     p nz Hx z R x R= ∈ ∈                                 (6) 

and pz R∈  for the noise-free observations z . 
Suppose that the system (6) is compatible, i.e. there exists 0x  such that 0Hx z≡ . In what follows let  

( )T
1, , pz z z=  , ( )TT T

1 , , pH h h=  , i.e. iz  is the thi  component of z , ih  is the thi  row-vector of H .  

The problem is to obtain a simple recursive procedure to compute a solution of the system (6) when the dimen-
sion of z  is very high. 

2.2. Iterative Procedure 
To find a solution to Equation (6), let us introduce the following system of recursive equations 

[ ]1 1 1 1 0,     ,     0, ,i i i i i ix x K z h x x x i p+ + + += + − = =                       (7a) 

T T
1 1 1 1 1 1i i i i i iK M h h M h

+

+ + + + + + =                                 (7b) 

1 1 1 0,     0,1, ,    is giveni i i i iM M K h M i M+ + += − =                       (7c) 

Mention that the system is compatible if [ ]z R H∈  where [ ]R H  is a linear space spanned by the columns 
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of H . Throughout of the paper, for definiteness, let 0ih ≠ , 1, ,i p=  . 
Theorem 1. Suppose the system (6) is compatible. Then for any finite x  and symmetric positive definitive 

(SPD) matrix 0M  we have pHx z= . 
In order to prove Theorem 1 we need  
Lemma 1. The following equalities hold 

0,     1, ,i jh M i j= = 
                                  (8) 

Proof. By induction. We have for 1j = ,  

1 1 1 0 1 1 1 0 0h M h M h K h M= − =  

since T T
1 1 1 0 1 1 0 1 1h K h M h h M h= = .  

Let the statement be true for some 1 l p< < . We show now that it is true also for 1l + . As the statement is 
true for l , it implies 0i lh M = , 1, ,i l=  . We have to prove 

1 0,     1, , 1i lh M i l+ = = +  

Substituting 1 1 1l l l l lM M K h M+ + += −  into 1i lh M + , taking into account the form of 1lK +  one sees that as 
0i lh M = , 1, ,i l=   it implies 1 0i lh M + = , 1, , 1i l= +  (End of Proof). 

Lemma 2. The following equalities hold 
,     1, ,i j ih x z i j= = 

                                  (9) 

Proof. By induction. We have for 1j = , ( )1 1 1 0 1 1 1 0h x h x K z h x = + −  . As 1 1 1h K = , it is evident that 

1 1 1h x z= . 
Let the statement be true for some 1 l p< < . We show now that it is true also for 1l + . As the statement is 

true for l , it implies i l ih x z= , 1, ,i l=  . We have to prove 1i l ih x z+ = , 1, , 1i l= + . From the definition of 
1lx + , 

( ) ( )1 1 1 1 1 1 1i l i l l l l l i i l l l lh x h x K z h x z h K z h x+ + + + + + + = + − = + −   

However from Lemma 1, as 1 0i lh M + = , [ ]T
1 1 1 1 1 1 0i l i l l l l lh K h M h M h M +
+ + + + + += =  for all 1i l≤ + . (End of 

Proof). 
Proof of Theorem 1. 
Theorem follows from Lemma 2 since under the conditions of Theorem, from Equation (9) for j p=  it fol-

lows i p ih x z= , 1, ,i p=   or pHx z= . (End of Proof). 
Corollary 1. Suppose the rows of T T

1 1: , ,
Tl

lH h h =    are linearly independent. Then under conditions of 

Theorem 1, [ ]rank lM n l= − . 
Proof. By induction. The fact that for 1l = , 1 1 0h M =  implies at least the null subspace of 1M  has one 

nonzero element hence ( )1dim 1R M n≤ −   . We show now that it is impossible that ( )1dim 1R M n< −   . 

Suppose that ( )1dim R M n n′≤ −   , 2,3,n′ =   For simplicity, let 2n′ = . It means that there exist 2n −  
linearly independent vectors 1 2, , na a −  such that any element from the subspace ( )1R M  can be represented 
on the basis of these 2n −  elements. As to the matrix  

T T
1 0 1 1 0 1 0 1:M M h h M h M h

+
 ∆ =    

its subspace ( )1R M∆  has the dimension 1 hence any element from ( )1R M∆  can be represented on the basis 
of some vector 1b . Thus any element from the subspace ( )1R M ′  with 1 1 1:M M M′ = + ∆  can be represented as 
a linear combination of 1n −  elements 1 2 1, , ,na a b− . On the other hand, as 1 1 0M M M+ ∆ =  is non-singular, 
any element of ( )0R M  must be represented as a linear combination of n  linearly independent vectors. It 
contradicts the fact that any element from ( )1R M ′  could be written as a linear combination of 1n −  linearly  
independent elements. We conclude that it is impossible ( )1dim 1R M n< −    hence ( )1dim 1R M n= −   . 

The same argument is true for 3, 4, ,n n′ =  . 
Suppose now Corollary is true for 1l ≥  and we have to prove that it holds for : 1l l= + . For  
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T T
1 1 1 1 1 1 1: ,     l l l l l l l l l l lM M h h M h M h M M M

+

+ + + + + + + ∆ = = − ∆   

we have ( )dim lR M n l  = −  , [ ]1dim 1lM +∆ = . From Lemma 1 it follows 1 0i lh M + = , 1, , 1i l= +  hence 
the null subspace [ ]1lN M +  has the dimension 1l +  (as all the rows of H  are linearly independent). It fol-
lows that the dimension of the subspace [ ]1lR M +  is at least less or equal to 1n l− − . 

By the same way as proved for 1l =  one can show that it is impossible ( )1dim 1lR M n l+  < − −   hence 

( )1dim 1lR M n l+  = − −   (End of Proof). 

Comment 1. By verifying the rank of lM , Corollary 1 allows us to check if the computer code is correct. In 
particular if H  is non-singular, at the end of the iterative procedure the matrix nM  should be zero. The re-
cursive Equations (7a)-(7c) then yield the unique solution of the equation z Hx=  after n  iterations. 

Using the result (8) in Lemma 1, it is easy to see that: 
Corollary 2. Suppose 1lh +  is linearly dependent on 1, , lh h . Then in (7), 1l lM M+ = . 
Corollary 3. Suppose 1, , lh h  are linearly independent, 1lh +  is linearly dependent on 1, , lh h . Then un-

der the conditions of Theorem 1, ( )1rank .lR M n l+  = −   
Corollary 3 follows from the fact that when 1lh +  is linearly dependent on 1, , lh h  from Corollary 2, 

1l lM M+ =  and hence by Corollary 1, ( )1rank lR M n l+  = −  . 
Comment 2. Equation (7c) for iM  is similar to that given in (3.14.1) in [3] since from Corollary 2 it follows 

automatically 1l lM M+ =  if 1lh +  is linearly dependent on 1, , lh h . Their difference is that in (7c) the initial 
0M  may be any SPD matrix whereas in (3.14.1) of [3] it is assumed 0M I= . 
In the next section we shall show that the fact 0M  may be any SPD matrix is important to obtain the optimal 

in mean squared estimator for x . 

3. Optimal Properties of the Solution of (7) 
3.1. Regularized Estimate 
Theorem 1 says only that Equations (7a)-(7c) give a solution to (1). We are going now to study the question on 
whether a solution of Equations (7a)-(7c) is optimal, and if yes, in what sense? Return to Equations (1)-(3) and 
assume that 0V = , 0N = . The optimal estimator (4) is then given in the form 

( )T Tx̂ x MH HMH z Hx
+

 = + −                                (10) 

where H +  is the pseudo-inversion of H . Consider first the equation 1 1z h x= . In this case, (10) yields the 
optimal estimator (obtained on the basis of the first observation)  

( )T T
1 1 1 1 1 1x̂ x Mh h Mh z h x

+
 = + −                               (11a) 

and one can prove also that the mean square error for 1̂x  is equal to 
T T

1 0 1 1 1 1M M Mh h Mh h M
+

 = −                                (11b) 

If we apply Equation (3.14.1) in [3], M I=  then instead of 1̂x  we have 

( ) ( )T T T T
1 1 1 1 1 1 1 1 1 1 1 1ˆ ,     x h h h z h z M I h h h h+′ ′= = = −                       (12) 

For simplicity, let 0x = . Comparing Equation (12) with Equation (11) shows that if 1̂x′  is the orthogonal 
projection of x  onto the subspace spanned by T

1h , the estimate 1̂x  belongs to the subspace spanned by M . 
Thus the algorithm (11) takes into account the fact that we known a priori x  belongs to the space [ ]R M . This 
fact is very important when the number of observations p  is much less than the number of the estimated pa-
rameters n  as it happens in oceanic data assimilation: today usually 4 510 10p = − , 6 710 10n = − . 

In [4] a similar question has been studied which concerns the choice of adequate structure for the Error Co-
variance Matrix (ECM) M . 

We prove now a more strong result saying that all the estimates ix , 1, 2,i =   are projected onto the space 
[ ]R M . 
Theorem 2. Consider the algorithm (7). Suppose x R M ∈   . Then all the estimates ix , 1, 2,i =   belong to 
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the space spanned by the columns of M , i.e. ix R M ∈   . 

Proof. For 1i =  the statement is evident as shown above. 
Suppose the statement is true for some i . We will show that it is true also for : 1i i= + . 
Really as ix R M ∈   , it is sufficient to show that 1 1 1 1 1, : .i i i i i iK R M z h xζ ζ+ + + + + ∈ = −   From ix R M ∈   , 

1i i i ix x K ζ−= + , as 1ix R M−  ∈    it follows that i iK R Mζ  ∈   . But T T
i i i i i i i iK M h h M hζ ζ

+
 =    hence the 

columns of iM  must belong to R M   . Again from the equation for 1iM +  in Equation (7) we have 

1iM R M+  ∈   . It proves 1 1i iK R Mζ+ +  ∈    since iM R M ∈    (End of proof).  

Theorem 2 says that by specifying 0M R M ∈    the algorithm (7) will produce the estimates belonging to 
the subspace R M   . Specification of the priori matrix M  plays the most important task if we want the algo-
rithm (7) to produce the estimate with high quality.  

Comment 3 
1) If x  does not belong to R M   , by considering :e x x= −  in place of x  Theorem 3 remains valid for 

the algorithm (7) written for e . In this case at the first iteration, as :e x x= −  represents the priori error for x , 
it is natural for the algorithm to seek the correction (i.e., the estimate for the error :e x x= − ) belonging to the 
space R M   . In what follows, unless otherwise stated, for simplicity we assume 0x = . 

2) Theorem 2 says that there is a possibility to regularize the estimate when the number of observations is less 
than the number of estimated parameters by choosing 0M M= . Thus the algorithm can be considered as that 
which finds the solution Hx z=  under the constraint x R M ∈   . In the procedure in Albert (1972) putting 

0M I=  means that there is no constraint on x  hence the best way to do is to project x  orthogonally onto 
subspace of TR H   . 

3.2. Minimal Variance Estimate 
Suppose x  is a random variable having the mean x  and covariance matrix M . We have then the following 
result. 

Theorem 3. Suppose x  is a random variable having the mean x  and the covariance matrix M . Then ix  
generated by the recursive Equation (7) is an unbiased and minimum variance estimate for x  in the class of all 
unbiased estimates linearly dependent on x  and 1, , iz z . 

Proof. Introduce for the system (6), 

( ) ( )TT T T
1 1 1 1 1: , , ,     : , ,i i

iz z z H h h= =                           (13) 

and the class of all estimates ix′  linearly dependent on x  and 1, , iz z . 

( ) 1, i
ix A B Ax Bz′ = +  

The condition for unbiasedness of ( ),ix A B′  is 

( ) ( )1, i
iE x A B E Ax Bz x′ = + =    

or 

( )1 ,  l nA BH x x x R+ = ∀ ∈  

from which follows 1
iA I BH= − . Substituting this relation into ( ) 1, i

ix A B Ax Bz′ = +  leads to 

( ) 1 1
i i

ix B x B z H x ′ = + −                                  (14) 

It means that all the estimate in Equation (14) is unbiased. 
Consider the minimization problem  

( ) ( ) ( )Ttrace argmin , :B iJ B E ee e x x B′= → = −  

We have 
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( ) ( ) ( ) TT ,T T ,T T
1 1 1 1 1 1 1 1
i i i i i i i iE ee E x x B z H x x x B z H x M MH B BH M BH MH B   = − − − − − − = − − +     

Taking the derivative of ( )J B  with respect to B  implies the following equation for finding B , 
,T ,T

1 1 1
i i iBH MH MH=  

from which follows one of the solutions  
,T ,T

0 1 1 1
i i iB MH H MH

+
 =    

If now instead of Equation (13) we consider the system 

( ) ( )T,T
1 1 1 1 1 1,    ,     0l l l i i iz H x v E v v I E v x xα  = + = − =                    (15) 

and repeat the same proof, one can show that the unbiased minimum variance estimate for x  is given by 

( ) ( ) 1 1ˆ i i
ix x K z H xα α  = + −                               (16a) 

( )
1,T ,T

1 1 1
i i iK MH H MH Iα α

−
 = +                            (16b) 

Using the properties of the pseudo-inverse (Theorem 3.8 [3]), one can prove that 

( )0 0lim K Bα α→ =                                   (17) 

Thus for a very small 0α >  the estimate ( )ˆix α  is unbiased minimum variance which can be made as close 
as possible to ( )0ix B′ . 

On the other hand, applying Lemma 1 in [5] for the case of uncorrelated sequence { }iv , one can show that 

( ) ( ) ( ) ( )1 1 1 1ˆ ˆ ˆi i i i i ix x k z h xα α α α+ + + += + −   ,                      (18a) 

( ) ( ) ( )T T
1 1 1 1 1 1i i i i i ik M h h M hα α α α+ + + + + + = +  ,                     (18b) 

( ) ( ) ( ) ( )1 1 1i i i i iM M k h Mα α α α+ + += −                          (18c) 

( )0M Mα =                                     (18d) 

Letting 0α →  one comes to ( )ˆi ix xα →  in (7) (End of proof). 

3.3. Noisy Observations 
The algorithm (18a)-(18d) thus yields an unbiased minimal variance (UMV) estimates for x  in the situation 
when α  represents the observation noise variance. We want to stress that these algorithms produce the UMV 
estimates only if M M=  where M  is the true covariance of the error :e x x= −  before arriving iz , 

1, 2,i =  . 

3.4. Very High Dimension of x : Simplified Algorithms 
In the field of data assimilation in meteorology and oceanography usually the state vector x  is of very high 
dimension, the orders of 6 710 10−  [2]. This happens because x  is a collection of several variables defined in 
the three dimensional grid. If the algorithm (7) allows to overcome the difficulties with the high dimension of 
the observation vector z  (each iteration involves one component of z ), due to high dimension of x  , it is 
impossible to handle Equation (7c) to evaluate the matrices iM  (with the number of elements 12 1410 10− ). 
This section is devoted to the question on how one can overcome such difficulties. 

Let us consider the eigen-decomposition for M  [6] 
TM UDU=                                      (19) 

In (19) the columns of U  are the eigenvectors of M  and D  is diagonal with the elements 
1 2 nλ λ λ≥ ≥ ≥  at the diagonal―the eigen-values of M . Let [ ]1 2,U U U= , [ ]1 2diag ,D D D= . If we put in 

the algorithms (7) or (18) T
1 1 1M U D U= , then the algorithm (7), for example, will yield the best estimate for x  
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projected in the subspace ( )1R U . Let ( )1 1U U m=  has the dimension n m× , m n≤ . Let  

( ) ( ) ( ) ( )T
1 1 1M m U m D m U m= . 

3.4.1. Main Theoretical Results 
Theorem 4 

Consider two algorithms of the type (7) subject to two matrices  

( ) ( ) ( ) ( )T ,     1, 2i i i i i i i iM M m U m D m U m i= = =  

where the columns of ( )i iU m  consist of im  leading eigenvectors of M , 1 2m m≤ . Then the following 
inequalities hold 

( ) ( ) ( ) ( )2 2
2 1 1 2 ˆ,     ,     ,     1, 2i iE e m E e m m m e m x m x i   ≤ ≤ = − =      

              (20) 

( )ˆ ix m  is the estimate produced by the algorithm (7) subject to ( ): iM M m= , where the strict inequality takes 
place if 

2
0mλ > . 

Proof 
Write the representation of x  in the terms of decomposition of M  on the basis of its eigenvectors (for 

simplicity, let 0x = ), 
1 2 1 2 T,     : ,     x UD y Ly L UD M UDU= = = =                         (21) 

where y  is of zero mean and has the covariance matrix I .  
Let ly  is a sample of y . Theorem 3 states that for all :l lx Ly= , the algorithm (7) will yield the estimate 

with the minimal variance. 
In what follows we introduce the notation:  

TM UDU= ―the true ECM of x ; 
( ) ( ) ( ) ( )TM m U m D m U m= ―a truncated covariance coming from M ;  

M ―the initialized ECM in the algorithm (7a)-(7c). 
The samples lx  of x  are coming from a variable having zero mean and covariance M . 

( )lx m ―sample coming from a variable having zero mean and covariance ( )M m . 
There are the following different cases 
1) M M= : By Theorem 3 the algorithm (7) will produce the estimates of minimal variance for all lx ; This 

is true also if Equation (7) is applied to ( )lx m . 
2) ( ) 1,    ,    0mM M m m n λ += < > : 
a) For samples belonging to ( )R U m   : The estimates will be of minimal variance. 

b) For samples belonging to ( )nR R U m    (i.e. belonging to nR  but not to ( )R U m   ): The estimates 
will not be of minimal variance. 

Thus in the mean sense 

( ) ( ) ( ) ( )2 2 ˆ,     ,    E e n E e m m n e m x m x   ≤ ≤ = −      
                   (22) 

3) Consider two initializations ( )1M M m=  and ( )2M M m= , 1 2m m n≤ ≤ , 
1 1 0mλ + > . In the same way 

we have 
a) ( )1M M m= : 
i) ( )1

lx R M m∈    : the estimates are of minimal variance; 

ii) ( )1
l nx R R M m∈    : the estimates are not of minimal variance. 

b) ( )2M M m= : The algorithm (7) will produce the estimates  
i) of minimal variance for ( )1

lx R M m∈    ; 

ii) of minimal variance for ( ) ( )2 1
lx R M m R M m∈        ; 
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iii) not of minimal variance for ( ) ( )2
lx R M n R M m∈        . 

Thus in the mean sense  

( ) ( ) ( ) ( )2 2
2 1 1 2 ˆ,     ,    ,    1, 2i iE e m E e m m m e m x m x i   ≤ ≤ = − =      

               (23) 

3.4.2. Simplified Algorithm 
Theorem 5 

Consider the algorithm (7) subject to ( ):M M m= , ( ) ( ) ( ) ( )TM m U m D m U m= , m n≤ .  
Then this algorithm can be rewritten in the form 

( ) ( ) ( )1 1 ,     1 m
i e ex U m x i x i R+ = + + ∈ ,                          (24a) 

( ) ( ) ( ) ( ) ( )1 01 1 1 ,     ,    0,1, ,e e e i e ex i x i K i z h i x i x x i p++ = + + − + = =                (24b) 

( ) ( ) ( ) ( ) ( ) ( )T T1 1 1 1 1 1e e e e e eK i M i h i h i M i h i
+

 + = + + + + +  ,                 (24c) 

( ) ( ) ( ) ( )11 ,     0e i eh i h U m M D m++ = =                          (24d) 

It is seen that in the algorithm (24a)-(24d), the estimate ( ) m
ex i R∈  belongs to the linear space of dimension 

m . In data assimilation, it happens that the dimension of x  may be very high but there is only some leading 
directions (leading eigenvectors of M  representing the directions of most rapid growth of estimation error) to 
be captured. Thus the algorithm (24a)-(24d) is quite adapted for solving such problems: first the initial covari-
ance M  is constructed from physical considerations or numerical model, and next to decompose it (numeri-
cally) to obtain an approximated decomposition 

( ) ( ) ( ) ( )T ,     M m U m D m U m m n=   

Mention that the version (24a)-(24d) is very closed to that studied in [7] for ensuring a stability of the filter. 

4. Numerical Example 
Consider the system (1) subject to the covariance M , 

0.85 0.525 0
0.525 0.5625 0

0 0 0.64
M

 
 =  
  

                                (25) 

Here we assume that the 1st and 3rd components of x  is observed, i.e. 
1 0 0

,      
0 0 1

z Hx H  
= =  

 
                                 (26) 

Numerical computation of eigendecomposition of TM UDU=  yields 

[ ]1 2 3

0.795 6.E 16 0.606
, , 0.6066 7.8E 16 0.795

1.4E 45 0.9999 4E 15
U u u u

− − 
 = = − − 
 − − − 

                       (27) 

( )diag 1.25,0.64,0.162D =                                 (28) 

The algorithm (24a)-(24d) is applied subject to three covariance matrices ( ) ( ) ( ) ( )TM M m U m D m U m= = , 
1, 2,3m = . They are denoted as ALG(m). 

In Figure 1 we show the numerical results obtained from the Monte-Carlo simulation. 
There are 100 samples simulating the true x  which are generated by a random generator distributed accord-

ing to the normal distribution ( ). / ,N x M . The curves in Figure 1 represent rms of the estimation error 
ˆe x x= −  obtained by different algorithms. Here the curves 1m = , 2m = , 3m =  correspond to the three al-

gorithms ALG(1), ALG(2), ALG(3). 
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Figure 1. Performance (rms) of the algorithm (24) subject to 
different projection subspaces.                               

 
The curve Id  denotes the 4th algorithm ALG (4) which is run subject to M I= ―identity matrix. This is 

equivalent to the orthogonal projection (using the pseudo-inversion of H ) of z  into the subspace TR H   . 
As seen from Figure 1, the estimation error is highest in ALG (1). There is practically no difference between 

ALG (2) and ALG (3) which are capable of decreasing considerably the estimation error (50%) compared to 
ALG (1). As to the ALG (4), its performance is situated between ALG (1) and ALG (2). This experiment con-
firms the theoretical results and demonstrates that if we are given a good priori information on the estimated pa-
rameters, there exists a simple way to improve the quality of the estimate by appropriately introducing the priori 
information in the form of the regularization matrix M . 

The results produced by ALG (1) and ALG (4) show also that when the priori information is insufficiently 
rich, the algorithm naturally produces the estimates of poor quality. In such situation, simple applying orthogo-
nal projection can yield a better result. For the present example, the reason is that using the 2nd mode 2u  al-
lows to capture the important information contained in the second observation 2v . Ignoring it (as does ALG (1)) 
is equivalent to ignoring the second observation 2z . As to the third mode 3u , it has a weak impact on the es-
timation since the corresponding eigenvalue 3λ is small. That explains why ALG (2) and ALG (3) have pro-
duced almost the same results. 

5. Experiment with Oceanic MICOM Model 
5.1. MICOM Model 
In this section we will show importance of the regularization factor in the form of the priori covariance M  in 
the design of a filter for systems of very high dimension. 

The numerical model used in this experiment is the MICOM (Miami Isopycnic Coordinate Ocean Model) 
which is exactly as that presented in [8]. We recall only that the model configuration is a domain situated in the 
North Atlantic from 30 N  to 60 N  and 80  W  to 44  W . The grid spacing is about 0.2  in longitude 
and in latitude, requiring the horizontal mesh 1, ,140i =  ; 1, ,180j =  . The distance between two points 

1 20 kmi ix x x+∆ = − ≈ , 1 20 kmi iy y y+∆ = − ≈ . The number of layers in the model 4vn = . We note that the 
state of the model ( ): , ,x h u v=  where ( ), ,h h i j l=  is the thickness of the thl  layer, ( ), ,u u i j l= , 

( ), ,v v i j l=  are two velocity components. The “true” ocean is simulated by running the model from “climatol-
ogy” during two years. Each ten days the sea-surface height (SSH) are stored at the grid points 

10,20, ,140oi =  ; 10,20, ,180oj =   which are considered as observations in the assimilation experiment. 
The sequence of true states will be available and allows us to compute the estimation errors. Thus the observa-
tion operator H  is constant at all assimilation instants. 

The assimilation experiment consists of using the SSH to correct the model solution, which is initialized by 
some arbitrarily chosen state resulting from the control run. 

5.2. Different Filters 
The different filters are implemented to estimate the oceanic circulation. It is well known that determining the 
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filter gain is one of the most important tasks in the design of a filter. As for the considered problem it is impossi-
ble to apply the standard Kalman filter [9] since in the present experiment, ( )610n O=  and the number of 
elements in the ECM is of order ( )2O n . At each assimilation instant, the estimate for the system state in all fil-
ters is computed in the form (10) with the corresponding ECM M . As the number of observations 252p =  is 
largely inferior to the dimension of the system state, the choice of M  as a regularization factor has a great im-
pact on the quality of the produced estimates. In this assimilation experiment the following filters will be em-
ployed. First the Prediction Error Filter (PEF) whose ECM is obtained on the basis of leading real Schur vectors 
[8]. Parallelly two other filters, one is the Cooper-Haines filter (CHF) [10] and another is an EnOI (Ensemble 
based Optimal Interpolation) filter [11] will be used. Mention that the ECM in the CHF is obtained on the basis 
of the principle of a vertical rearrangement of water parcels (see also [8]). The method conserves the water 
masses and maintains geostrophy. The main difference between PEF and EnOI is lying in the way to generate 
the ensembles of Prediction Error (PE) samples. In the PEF, the ensemble of PE samples is generated using the 
sampling procedure described in [8] (and it will be denoted as En(PEF)). As for the EnOI, the ensemble of 
background errors samples (the term used in [8]) and will be denoted by En(EnOI)) will be used. The elements 
of En(EnOI) are constructed according to the method in [11]. It consists of using 2-year mean of true states as 
the background field and the error samples are calculated as differences between individual 10-day true states 
during this period and the background. 

According to Corollary 4.1 in [4], using the hypothesis on separable vertical-horizontal structure for the ECM, 
we represent v hM M M= ⊗  where vM , hM  are the ECM of vertical and horizontal variables respectively. 
In the case of sea-surface height observations, from the representation v hM M M= ⊗ , the gain filter can be 
represented in the form 

[ ]T1 2 3 4,      , , ,v h vK K K K k k k k= ⊗ =  

where ⊗  denotes the Kronecker product. The gain vK allows the correction available at the surface to propa-
gate into all vertical subsurface layers. As to hK , it represents an operator of (horizontal) optimal interpolation 
which interpolates the observations over all horizontal grid points at the surface. Mention that the elements of 

vM  and the correlation length parameter in hM  are estimated by minimizing the mean distance between the 
data matrix dM  and M  using a simultaneous perturbation stochastic approximation algorithm [12]. The data 
matrix dM  is obtained from samples of the leading real Schur vectors as described in [8]. 

Figure 2 shows the estimated vertical coefficients lk , 1, 2,3, 4l =  obtained on the basis of the ECM 
spanned by the elements of En(PEF). It is seen that the estimates converge quite quickly. The estimated vertical 
gain coefficients [ ]T1 2 3 4, , ,vK k k k k=  computed on the basis of the ECM from two ensembles En(PEF), 
En(EnOI) at the iteration 72t =  are 

[ ]Tpef 144.59, 29.53, 34.44, 80.12vK = − − −                         (29a) 

[ ]Tenoi 34.04, 7.53, 3.3, 22.21vK = − − −                           (29b) 

We remark that all the gain coefficients in two filters are of identical sign but the elements of enoi
vK  are of 

much less magnitudes than that of pef
vK . It means that the EnOI will make less correction (compared to the PEF) 

to the forecast estimate. Two gains in (29a), (29b) will be used in the two filters PEF and EnOI to assimilate the 
observations. 

The vertical gain coefficients for the CHF are taken from [8] and are equal to 

[ ]Tchf 185.97,0,0, 184.97vK = −                               (30) 

5.3. Numerical Results 
In Figure 3 we show the instantaneous variances of the SSH innovation produced by three filters EnOI, CHF 
and PEF. It is seen that initialized by the same initial state, if the innovation variances in EnOI, CHF have a ten-
dency to increase, this error remains stable for the PEF during all assimilation period. At the end of assimilation, 
the PE in the CHF is more than two times greater than that produced by the PEF. The EnOI has produced poor 
estimates, with error about two times greater than the CHF has done.  

For the velocity estimates, the same tendency is observed as seen from Figure 4 for the surface velocity PE  
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Figure 2. Vertical gain coefficients obtained during 
application of the Sampling Procedure for layer thick-
ness correction during iterations.                     

 

 
Figure 3. Performance comparison of EnOI, CHF and 
PEF: Variance of SSH innovation resulting from the 
filters EnOI, CHF and PEF.                          

 

 
Figure 4. The prediction error variance of the u velocity 
component at the surface (cm/s) resulting from the EnOI, 
CHF and PEF.                                    

 
errors. These results prove that the choice of ECM as a regularization factor on the basis of members of the 
En(PEF) allows to much better approach the true system state compared to that based on the samples taken from 
En(EnOI) or to that constructed on the basis of the physical consideration as in the CHF. The reason is that the 
members of En(PEF) by construction [8] are samples of the directions along which the prediction error increases 



H. S. Hoang, R. Baraille   
 

 
932 

most rapidly. In other words, the correction in the PEF is designed to capture the principal important compo-
nents in the decomposion of the covariance of the prediction error. 

6. Conclusion 
We have presented some properties of an efficient recursive procedure for computation of a statistical regular-
ized estimator for the optimal linear estimator in a linear model with arbitrary non-negative covariance structure. 
The main objective of this paper is to obtain an algorithm which allows overcoming the difficulties concerned 
with high dimensions of the observation vector as well as that of the estimated vector of parameters. As it was 
seen, the recursive nature of the proposed algorithm allows dealing with high dimension of the observation vec-
tor. By initialization of the associated matrix equation by a low rank approximation covariance which accounts 
for only first leading components of the eigenvalue decomposition of the priori covariance matrix, the proposed 
algorithm permits to reduce greatly the number of estimated parameters in the algorithm. The efficiency of the 
proposed recursive procedure has been demonstrated by numerical experiments, with the systems of small and 
very high dimension. 
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