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Abstract 
In this paper, we consider the problem of variable selection and model detection in additive mod-
els with longitudinal data. Our approach is based on spline approximation for the components 
aided by two Smoothly Clipped Absolute Deviation (SCAD) penalty terms. It can perform model 
selection (finding both zero and linear components) and estimation simultaneously. With appro-
priate selection of the tuning parameters, we show that the proposed procedure is consistent in 
both variable selection and linear components selection. Besides, being theoretically justified, the 
proposed method is easy to understand and straightforward to implement. Extensive simulation 
studies as well as a real dataset are used to illustrate the performances. 
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1. Introduction 
Longitudinal data arise frequently in biological and economic applications. The challenge in analyzing 
longitudinal data is that the likelihood function is difficult to specify or formulate for non-normal responses with 
large cluster size. To allow richer and more flexible model structures, an effective semi-parametric regression 
tool is the additive model introduced by [1], which stipulates that  
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where Y  is a varaible of interest and ( ) ( )( )1 , ,
TdX X X=   is a vector of predictor variables, µ  is a      
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unknown constant, and ( ) ( )( )1
d l

llm X m X
=

= ∑  are unknown nonparametric functions. As in most work on 

nonparametric smoothing, estimation of the non-parametric functions ( ) ( )( )1
d l

llm X m X
=

= ∑  is conducted on a 

compact support. Without loss of generality, let the compact set be [ ]0,1 d=X  and also impose the condition 
( )( ) 0l

lE m X  =   which is required for identifiability of model (1.1), 1, ,l d=  . We propose a penalized  

method for variable selection and model detection in model (1.1) and show that the proposed method can 
correctly select the nonzero components with probability approaching one as the sample size goes to infinity. 

Statistical inference of additive models with longitudinal data has also been considered by some authors. By 
extending the generalized estimating equations approach, [2] studied the estimation of additive model with 
longitudinal data. [3] focuses on a nonparametric additive time-varying regression model for longitudinal data. 
[4] considered the generalized additive model when responses from the same cluster are correlated. However, in 
semiparametric regression modeling, it is generally difficult to determine which covariates should enter as 
nonparametric components and which should enter as linear components. The commonly adopted strategy in 
practice is just to consider continuous entering as nonparametric components and discrete covariates entering as 
parametric. Traditional method uses hypothesis testing to identify the linear and zero component. But this might 
be cumbersome to perform in practice whether there are more than just a few predictor to test. [5] proposed a 
penalized procedure via the LASSO penalty; [6] presented a unified variable selection method via the adaptive 
LASSO. But these methods are for the varying coefficient models. [7] established a model selection and 
semiparametric estimation method for additive quantile regression models by two-fold penalty. To our know- 
ledge, the model selection and variable selection simultaneously with longitudinal data have not been investi- 
gated. We make several novel contributions: 1) We develop a new strategies for model selection and variable 
selection in additive model with longitudinal data; 2) We develop theoretical properties for our procedure. 

In the next section, we will propose the two-fold SCAD penalization procedure based on QIF and compu- 
tational algorithm; furthermore we present its theoretical properties. In particular, we show that the procedure 
can select the true model with probability approaching one, and show that newly proposed method estimates the 
non-zero function components in the model with the same optimal mean square convergence rate as the standard 
spline estimators. Simulation studies and an application of proposed methods in a real data example are included 
in Sections 3 and 4, respectively. Technical lemmas and proofs are given in Appendix. 

2. Methodology and Asymptotic Properties 
2.1. Additive Models with Two Fold Penalized Splines 

Consider a longitudinal study with n  subjects and in  observations over time for the ith subject ( )1, ,i n=   

for a total of 1
n

iiN n
=

= ∑  observation. Each observation consists of a response variable ijY  and a covariate  
vector d

ijX R∈  taken from the ith subject at time ijt . We assume that the full data set  

( ){ }, , 1, , , 1, ,ij ij iX Y i n j n= =   

is observed and can be modelled as  

( )( )
1

,    1, , , 1, , ,
d

l
ij l ij ij i

l
Y m X i n j nµ ε

=

= + + = =∑                           (2) 

where ijε  is random error with ( ) 0ij ijE Xε =  and 2
εσ . 

At the start of the analysis, we do not know which component functions in model (1.1) are linear or actually 

zero. We adopt the centered B-spline basis, where ( ) ( ){ }T
, :1 ,1s l lB x l d s J= ≤ ≤ ≤ ≤B X  is a basis system 

( ) ( ) ( ) ( ){ } ( ), 1, 1, 1, 1, ls l l s l l s l l l xB x K b x E b E b b+ +
 = −   and ( ) ( ) 1

d
l l

x x
=

= . Equally-spaced knots are used in this  

article for simplicity of proof. Other regular knot sequences can also be used, with similar asymptotic results. 
Suppose that ( )lm ⋅  can be approximated well by a spline function, so that  
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( )( ) ( )( ) ( )( ),
1

.
J

l l lsp
l l sl s l

s
m x m x B xβ

=

≈ = ∑                               (3) 

To simplify notation, we first assume equal cluster size in m= < ∞ , and let ( )T
1 , ,l l Jlβ β β=  ,  

{ }TT T
00 1 1

, , , d Jd
β β β β

+
=   be the collection of the coefficients in (2.3), and 00µ β= , denote  

( ) ( )( ) ( )( ){ }T

1, ,
1

, ,l l l
ij l ij J l ij

J
B X B X

×
=B   and ( ) ( ){ }

( )

T1 T T

1 1
1, , , d

ij ij ij Jd + ×
=B B B , then we have an approximation  

( ) T
ij ijmµ β+ =X B . We can also write the approximation of (2.1) in matrix notation as  

T ,i i iβ ε= +Y B                                        (4) 

where { } ( )

T
,1 1
, ,

i
i i im n Jd× +
=B B B , { }T

1 2, , ,i i i imY Y Y=Y   and { }T
1 2, , ,i i i imε ε ε ε=  . [8] introduced the QIF that 

approximates the inverse of R  by a linear combination of some basis matrixes, i.e.  
1

0 1 1 ,K Ka a a− ≈ + + +R I M M  

where I  is the identity and iM  are known symmetric basis matrices and 0 1, , , Ka a a  are unknown 
constants. The advantage of the QIF approach is that it does not require the estimation of the linear coefficients 

ia 's associated with the working correlation matrix, which are treated as nuisance parameters here.  

( ) ( )

{ }
{ }

{ }

T 1

T 1 2 1 2
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n n
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n i

i i

i i K i i i

n n
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β

−

− −

= =
− −

 −
 

− = =  
  − 

∑ ∑

B A Y B
B A M A Y B

G g

B A M A Y B


                    (5) 

The vector ( )n βG  contains more estimating equations than parameters, but these estimating equations can 
be combined optimally using the generalised method of the moment. So according to [8], the QIF approach 
estimates β  by setting nG  as close to zero as possible, in the sense of minimizing the quadratic inference 
function ( )n βQ .  

( ) ( ) ( ) ( )T 1 ,n n n nnβ β β β−=Q G C G                               (6) 

where  

( ) ( ) ( )1

1

1 .
n

T
n i i

in
β β β−

=

= ∑C g g  

Our main goal is to find both zero components (i.e., 0jm ≡ ) and linear compoents (i.e., jm  is a linear  
function). The former can be achieved by shrinking sp

jm  to zero. For the latter, we want to shrink the second 

derivative ( )sp ''
jm  to zero instead. This suggests the following minimization problem  

( ) ( ) ( )( )1 2
1

ˆ arg min ,
d d

sp ''sp
n l l

l l l
n p m n p mλ λβ

β β
= =

= + +∑ ∑Q                      (7) 

where ( )
1

pλ ⋅  and ( )
2

pλ ⋅  are two penalties used to find zero and linear coefficients respectively, with two 

regularization parameters 1λ  and 2λ , and ( )T lsp
l lm β= B , ( ) { }T

1, 2, ,, , ,l
l l J lB B B=B  . Note that since  

( ) ( )( ) ( )( )22 Tˆ dlsp
l l kl kl k l k lk km B x B x xβ β β ′ ′′= = ∑ ∑∫B  and  

( ) ( ) ( ) ( ) ( ) ( )
2 2Tˆ d ,sp '' l '' ''

l l kl kl k l k l
k k

m B x B x xβ β β ′ ′
′

  = =   
  
∑ ∑∫B  

sp
lm  and ( )sp ''

lm  can be equivalently written as T

ll l l lβ β β=D D  and T

ll l l lβ β β=E E  respectively, 
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with ( ),k k ′  entry of lD  being ( ) ( )1

0
dkl k lB x B x x′∫ . 

2.2. Asymptotic Properties 

To study the rate of convergence for µ̂  and β̂ , we first introduce some notations and present regularity 
conditions. We assume equal cluster sizes ( )in m= < ∞ , and ( ), , 1, ,i iY X i n=   are i.i.d. from ( ),Y X  with 

( )T
1, ,i i imY Y=Y  , and ( )TT

1 , , T
i i imX X=X  . For convenience, we assume that ( )jm ⋅  is truly nonparametric  

for 11 j d≤ ≤ , is linear for 1 1 21d j d d s+ ≤ ≤ + = , and is zero for djs ≤≤+1 . The asymptotic result still 
hold for data with unequal cluster sizes im  using a cluster-specific transformation as discuss in [4]. For any 
matrix A , A  denotes the modulus of the largest singular value of A . To prove the theoretical arguments, 
we need the following assumptions: 

(A1) The covariates { }TT T
1 , ,i i imX X=X   are compactly supported, and without loss of generality, we 

assume that each T
ijX  has support [ ]0,1 dχ = . The density of T

ijX , denoted by ( )jf x , is absolutely conti- 

nuous and there exist constants 1C  and 2C  such that ( )1 20 min jC f Cχ∈< ≤ ≤ < ∞x x  for all 1, ,j m=  . 

(A2) Let ( )e Y mµ= − − X . Then TEeeΣ =  is positive definite and for some 0δ > , 2E e δ+ < +∞ .   

(A3) For each 1, ,l d=  , ( )lm ⋅  has r  continuous derivatives for some 2r ≥ .  

(A4) ( )

T 1 2 1 2
1

0
T 1 2 1 2

1lim .
i i i i

n n

i i K i i

E J
n

β

− −

→∞
− −

 
 

= = 
 
 

B A M A B
G

B A M A B


                                             (8) 

(A5) Let ( )TT T
0 , , k=M M M . Assume the modular of the singular value of M  is bounded away from 0 

and infinity.  
(A6) The matrix A  defined in Theorem 3 is positive definite.  
Theorem 1. Suppose that the regularity conditions A1-A5 hold and the number of knots ( )( )1 2 1r

pK O n += , 

1 2, 0λ λ → . Then there exists a local minimizer of (2.7) such that  
( )( )2 1

0ˆ ,r r
pO nµ µ − +− =  

( ) ( ){ } ( )( )2 2 2 1

1 1 1

1 ˆmax .
imn

r r
l l pl d i j

m x m x O n
n

− +

≤ ≤ = =

− =∑∑  

For 1im m= = , it reduces to a special case where the responses are i.i.d. The rate of convergence given here 
is the same optimal rate as that obtain for polynomial spline regression for independent data [9] [10]. The main 
advantage of the QIF approach is that it incorporates within-cluster correlation by optimally combing estimating 
equations without estimating the correlation parameters. the estimator of two fold penalized QIF achieve the 
same rate of convergence as un-penalized estimator. Furthermore, we prove that the penalized estimators 
{ }

1
ˆ d

l l
β

=
 in Theorem 1 possess the sparsity property, ˆ 0lm =  almost surely for 1, ,l s d= +  . The sparsity 

property ensures that the proposed model selection is consistent, that is, it selects the correct variables with 
probability tending to 1 as the sample size goes to infinity. 

Theorem 2. Under the same assumptions of Theorem 1, and if the tuning parameter ( ) { }2 1
1 2min ,r rn λ λ+ → ∞ . 

Then with probability approaching 1. 
a) ˆ 0, 1jm s j d≡ + ≤ ≤  
b) ˆ jm  is a linear function for 1 1d j s+ ≤ ≤  
Theorem 2 also implies that above additive model selection possesses the consistency property. The results in 

Theorems 2 are similar to semiparametric estimation of additive quantile regression model in [7]. However, the 
theoretical proof is very different from the penalized quantile loss function due to the two fold penalty and 
longitudinal data. 
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Finally, in the same spirit of that [11], we come to the question of whether the SIC can identify the true model 
in our setting.  

Theorem 3. Suppose that the regularity conditions A1-A5 hold and the number of knots ( )( )1 2 1r
pK O n +=   

as assumed in Theorem 1, The parameters 1̂λ  and 2λ̂  selected by SIC can select the true model with pro- 
bability tending to 1. 

3. Simulation Study 
In this section, we conducted Monte Carlo studies for the following longitudinal data and additive model. the 
continuous responses { }ijY  are generated from  

( )( )
1

,  1, , ,  1, ,5
d

l
ij l ij ij

l
Y m X n jε

=

= + =∑                           (9) 

where 10d =  and the number of clusters 100,250,500n = . The additive functions are  

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2
1 2 3 4 55sin 2π 2 sin 2π , 8 0.5 , 2 , ,m x x x m x x m x x m x x m x x= − = − = = = − . Thus the last 5 

variables in this model are null variables and do not contribute the model. The covariates ( ) ( )( )T1 10, ,ij ij ijX X=X   

are generated independently from uniform. The error ( )T
1 6, ,i i iε ε ε=   follows a multivariate normal distribu-  

tion with mean 0, a common marginal variance 2 1σ = , it has first-order autoregressive (AR-1) and an com- 
pound symmetry (CS) correlation (i.e. exchangeable correlation) structure with different within correlation 
coefficient, and consider 0.8ρ =  and 0.3ρ =  representing a strong and weak within correlation structure.  

The predictors ( ) ( )( )T1 10, ,ij ij ijX X=X   are generated by ( ) ( )( )l l
ij ijX Z= Φ , ( ) ( )( ) ( )1 , , 0,l

ij ij ijZ Z N= ΣZ   ,  

1, , , 1, ,i n j m= =  , where Φ  is the standard normal c.d.f. and ( ) ( )
T1 d dd dr r×Σ = − +I 1 1 . The parameter 

( )0 1r r≤ <  controls the correlation between ( ) ( ),1l
ijZ l d≤ ≤ . 

To illustrate the effect on estimation efficiency, we compare the penalized QIF approach in [4] (PQIF) and an 
Oracle model (ORACLE). here the full model consists of all ten variable, and oracle model only contains the 
first five relevant variables and we know it’s a partial additive model. The oracle model is only available in 
simulation studies where the true information is known. In all simulation, the number of replications is 100 and 
the result are summarized in Table 1 and Table 2. In Table 1, the model selection result for both our procedure  

 
Table 1. The estimation results for our estimator (TFPQIF) and sparse additive estimator (PQIF) and ORACLE esitmator.     

n Correlation Method µ  
1m  2m  3m  4m  5m  

100 CS PQIF 0.32 0.42 0.3 0.29 0.31 0.26 
  TFPQIF 0.3 0.46 0.28 0.25 0.23 0.22 
  ORACLE 0.14 0.14 0.15 0.15 0.13 0.12 
 AR(1) PQIF 0.36 0.39 0.32 0.3 0.29 0.25 
  TFPQIF 0.29 0.39 0.35 0.2 0.25 0.22 
  ORACLE 0.13 0.15 0.22 0.14 0.12 0.1 

250 CS PQIF 0.25 0.29 0.25 0.24 0.19 0.15 
  TFPQIF 0.22 0.31 0.26 0.14 0.16 0.15 
  ORACLE 0.12 0.11 0.19 0.097 0.098 0.09 
 AR(1) PQIF 0.28 0.24 0.31 0.33 0.28 0.19 
  TFPQIF 0.20 0.2 0.27 0.24 0.14 0.15 
  ORACLE 0.1 0.11 0.13 0.21 0.1 0.096 

500 CS PQIF 0.15 0.14 0.25 0.23 0.2 0.17 
  TFPQIF 0.15 0.3 0.26 0.11 0.12 0.1 
  ORACLE 0.09 0.13 0.12 0.07 0.07 0.07 
 AR(1) PQIF 0.18 0.3 0.26 0.13 0.12 0.14 
  TFPQIF 0.16 0.23 0.25 0.09 0.09 0.09 
  ORACLE 0.08 0.13 0.12 0.077 0.081 0.07 
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Table 2. Model selction results for our estimator (TFPQIF) and sparse additive estimator (PQIF) and ORACLE esitmator.    

0λ  1λ  
CS AR(1) 

NCC NNT NLC NLT NCC NNT NLC NLT 
100 PQIF 5.96 2 0 0 5.83 2 0 0 

 TFPQIF 2.64 2 2.58 2.36 2.52 2 2.63 2.46 
 ORACLE 2 2 3 3 2 2 3 3 

250 PQIF 5.63 2 0 0 5.45 2 0 0 
 TFPQIF 2.34 2 2.66 2.65 2.41 2 2.59 2.5 
 ORACLE 2 2 3 3 2 2 3 3 

500 PQIF 5.35 2 0 0 5.2 2 0 0 
 TFPQIF 2.04 2 2.93 2.93 2.1 2 2.89 2.86 
 ORACLE 2 2 3 3 2 2 3 3 

 
with the one penalty QIF when the error are Gaussian, and we also list the oracle model as a benchmark, the 
oracle model is only available in simulation studies where the true information is known in Table 1, in which 
the column labeled “NNC” presents the average number of nonparametric components selected, the column 
“NNT” depicts the average number of nonparametric components selected that are truly nonparametric (truly 
nonzero for one penalty QIF), “NLC” presents the average number of linear components, “NLT” depicts the 
average number of linear components selected that are truly linear. 

In Table 2, we conduct some simulations to evaluate finite sample performance of the proposed method. Let 

( )ˆ km ⋅  be the estimator of a nonparametric function ( )km ⋅  and { } 1

M
s s

u
=

 be the grid points, the performance of  
estimator ( )ˆ jm ⋅  will be assessed by using the square root of average square errors(RASE), we compare the 
performance of above estimators. On the nonparametric coponents, the errors for estimators with a single 
penalty and our procedure are similar, and both are qualitatively close to those of the oracle estimator. However, 
for the parametric components, our estimator is obviously more efficient,leading to about 40% - 50% reduction 
in RASE.  

( ) ( )
1 2

2

1 1

1 ˆ .
M d

k s k s
s k

RASE m u m u
M = =

  = −   
∑∑  

4. Real Data Analysis 
In this subsection, we analyze data from the Multi-Center AIDS Cohort Study. The dataset contains the human 
immunodeficiency virus, HIV, status of 283 homosexual men who were infected with HIV during the follow-up 
period between 1984 and 1991. All individuals were scheduled to have their measurements made during semi- 
annual visits. Here , 1, , , 1, ,ij it i n j m= =   denotes the time length in years between seroconversion and the 
j-th measurement of the i-th individual after the infection. [12] analyzed the dataset using partial linear models. 
The primary interest was to describe the trend of the mean CD4 percentage depletion over time and to evaluate 
the effects of cigarette smoking, pre-HIV infection CD4 percentage, and age at infection on the mean CD4 cell 
percentage after the infection. 

In our analysis, the response variable is the CD4 cell percentage of a subject at distinct time points after HIV 
infection. We take four covariates for this study: 1X , the CD4 cell percentage level before HIV infection; and 

2X , age at HIV infection; 3X  the individual’s smoking status, which takes binary values 1 or 0, according to 
whether a individual is a smoker or nonsmoker; ijT  denote 1, , , 1, ,i n j m= =  , denotes the time length in 
years between seroconversion and the j -th measurement of the i -th individual after the infection. We construct 
the following additive model;  

( )( ) ( )( ) ( ) ( )2 3
1 2 3 01 .ij

ij ij ij ij ijY m X m X m T Xµ β= + + + + +   

the partially linear additive models instead of additive model because of the binaray variable ( )3X , but we not 
select the linear component. using our procedure, we wang to ensure which is linear component and which is 
zero in the non-parametirc function. For implement our procedure, linear transformation be used to the variable 

( ) ( )1 2, ,X X T . The result of our procedure select the 1m  is zero function and select the 2m  is a linear function, 
3m  is a non-parametric. As shown in Figure 1, we see that the mean baseline CD4 percentage of the population  
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Figure 1. The estimator of ( )3m x .                                                 

 
depletes rather quickly at the beginning of HIV infection, but the rate of depletion appears to be slowing down at 
four years after the infection. This result is the same as before [13]. 

5. Concluding Remark 
In summary, we present a two-fold penalty variable selection procedure in this paper, which can select linear 
component and significant covariate and estimate unknown coefficient function simultaneously. The simulation 
study shows that the proposed model selection method is consistent with both variable selection and linear 
components selection. Besides, being theoretically justified, the proposed method is easy to understand and 
straightforward to implement. Further study of the problem is how to use the multi-fold penalty to solve the 
model selection and variable selection in generalized additive partial linear models with longitudinal data. 
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Appendix: Proofs of Theorems  
For convenience and simplicity, let C  denote a positive constant that may be different at each appearance 
throughout this paper. Before we prove our main theorems, we list some regularity conditions that are used in 
this paper. 

Lemma 1. Under the conditions (A1)-(A6), minimizing the no penalty QIF ( )arg min nβ
β β= Q . Then 

2
2 1

0 ,
r

rO nµ µ
−

+
 

− =   
 

  ( ) ( ){ } ( )( )2 2 2 1
1 11

1max .n m r ri
l ij l ij pi jl d

m x m x O n
n

− +
= =≤ ≤

− =∑ ∑   

Proof: According to [14], for each 1, ,l d=  , we can get 
1

d
llm mµ

=
= +∑  satisfying the condition (4). 

There exists a constant 0C >  and a spline function nm∈ G , such that rm m CK −
∞

− ≤ . Using the triangular 

in equality ( ) ( ){ } ( )( ){ } ( )22 0 2
1 1 1 1

1 2 .i in m n m r
l ij l ij l ij l li j i jm x m x x O K

n n
β β −

= = = =
− ≤ − +∑ ∑ ∑ ∑ B 

  Therefore, it is su- 

fficient to show that ( ) ( )( ){ } ( )220 0 1
1 1

1 .in m
l l l l ij l l pi jn

x O n K
n

β β β β −
= =

− = − =∑ ∑B B   According to [8] entail 

that for any 0> . exists sufficiently large 0C > . such that ∞→n  
( ) ( )

( ) ( )
1 20 0inf 1 ,
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C K n
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β β

β β
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B   Furthermore, for each 1, ,l d=  . There exists a constant 0C > . 
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Proof of Theorem 1. Let  

( ) ( ) ( ) ( )1 2
1 1

d d

n n j j
j j

n p m n p mλ λβ β
= =

′′= + +∑ ∑L Q    

be the object function in (2.7), where T

j
j j j jβ β β=

D
D  and T

j
j j j jβ β β=

E
E , as a special case of no 

penalty QIF. Let ( )arg min nβ
β β= Q , and T

j jm β= B 

 , well known result is ( ) ( )T
0 pn

O K nβ β− =B  , we 

want to show that for large n  and any 0ε > , there exist a constant C  large enough such that  
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As a result, this implies that ( )n ⋅L  has a local minimum in the ball ( ){ }T:β β β−B  . Thus,  

( ) ( )T 11pn
O nKβ β −− =B  . Further, the triangular inequality gives ( )( )1 2T 1ˆ .r

pn
m O nK Kβ

−− −− = +B  

To show (A1), For convenience, we assume that jm  is truly nonparametric for 11 j d≤ ≤  is linear for 

1 1 21d j s d d+ ≤ ≤ = +  and zero for 1s j d+ ≤ ≤ .  
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Since 0
ˆ

j j n
β β− . Since ( )1 2, 1oλ λ = . We have 
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 . If 1 2i s d d≤ = + , 
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similarly, 
2 2
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j j
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By the definition of SCAD penalty function, removing the regularizing terms in (A2)  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }T T1 1 1
2n n j n j n poβ β β β β β β β β β− = − + − − +Q Q Q Q                   (A3) 

with nQ  and nQ  being the gradient vector and hessian matrix nQ , respectively. Following [8], and Lemma 

A1 in supplement, for any β  with ( ) ( ) 1 2T 1

n
C nKβ β
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where nG  is the first order derivative of nG . Therefore, by choosing C  large enough, the second term on 
(A3) dominates its first term. therefore (A1) holds when C and n are large enough. This completes the proof of 
Theorem 1.  

Proof of Theorem 2. We only show part (b), as an illustration and part (a) is similar. Suppose for some 
1d j s< ≤ , T ˆ

j jB β  does not represent a linear function. Define ˆ
jβ   to be the same as β̂  except that ˆ

jβ  is 
replaced by its projection onto the subspace { T:j j jBβ β  represents a linear function}, we have  
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As in the proof of Theorem 1, we have 
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probability tending to 1. by the definition of SCAD penalty. ( )Tˆ ˆ ˆ ˆ ,j j p j j jO Kβ β β β− = E   
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enough, the second term on the right had side of (A4) dominates its first term.   
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Proof of Theorem 3. For any regularization parameters ( )1 2,λ λ λ= , we denote the estimator of two fold 
penalty ˆ

λβ , and denote by β̂  the minimizer when the optimal sequence of regularization parameters is 
chosen. There are four separate cases to consider 

CASE 1: j jB λβ  represents a linear component for some 1j d≤ . Similar to the proof of Theorems 1 and 2, 
we have  
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CASE 2: ˆ

jλβ  is zero for some 1 j s≤ ≤ . The proof is very similar with CASE 1 and therefore omitted. 
CASE 3: ˆ

j jβB  represents a nonlinear component for some 1d j s< ≤ . Here when considering CASE 3, we 
implicity exclude all previous cases that no underfitting cases. β

~
 is the estimator of minimizing the no penalty  
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Q Q   with probability tending to 1.  

CASE 4: ˆ
jλβ  is nonzero for j s≥ . The case is similar to case 3. Thus the proof is omitted. 
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