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Abstract 
In this article, affine-quadratic control problems are studied. Error bounds are derived for the dif- 
ference between the performance indices corresponding to the optimal and a class of suboptimal 
controls. In particular, it is shown that the performance of these suboptimal controls is close to 
that of the optimal control whenever the error in estimating the costate initial condition is small. 
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1. Introduction 
One of the most active areas in control theory is optimal control and methods to find them [1]-[3]. It has a wide 
range of practical applications in engineering (Aerospace, Chemical, Mechanical, Electrical), science (Physics, 
Biology), and economics (see e.g. [4]-[7]). Optimal control theory has been developed for linear systems ([1] [2] 
[8]) and explicit formulae for computing optimal control inputs are available. However, control of nonlinear 
systems is much more challenging and obtaining formulae for optimal controls seems in general not possible. 
This motivated researchers to study various classes of nonlinear control problems separately, and affine-qudratic 
problems is one such class. In a recent paper [9], the optimal control for affine-quadratic problems is obtained in 
terms of the associated costate. But, in practice, it is difficult to compute the costate (at each time t ) as the 
knowledge of its terminal condition is required.  

In this article, we study the affine-quadratic control problem given by ((1), (2)). We note that a method for 
finding the initial condition for the costate is recently proposed [10]. This allows one to compute the initial 
costate (at 0t = ) exactly or approximately. This approximation of the initial costate and the explicit formula for 
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optimal control (as in [11]) are shown, in this article, which give rise to suboptimal controls of practical 
importance. More precisely, our main theorem (Theorem 2) provides an upper bound for the difference in 
performance between these suboptimal and optimal control.  

The article is organized as follows. In Section 2, the affine-quadratic control problem is described. We also 
explain how to obtain the optimal control in terms of costate. The main (Theorem 2) is proved in Section 3. This 
theorem provides a method to obtain the costate (without the knowledge of its terminal value) which results in 
an explicit formula and performance bounds for a class of suboptimal controls.  
Notation: For ( )1 2, , , n

nx x x x= ∈  , ( ) n n
ijA a ×= ∈ , and 1 p≤ < ∞ , we use the notation  

( )
1

1
pn p

iipx x
=

= ∑ , { }1 2max , , , nx x x x
∞
=  , ( )1 1max n

i n ijjA a≤ ≤ =
= ∑ . 

2. Problem Description 
We consider the affine control system  

( ) ( )( ) ( )( ) ( ) ( ) 0;    0 ,     0x t f x t g x t u t x x t T= + = ≤ ≤ ,                      (1) 

with the quadratic cost functional  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0

1 1,  d
2 2

T
J x u x T Sx T x t Qx t u t Ru t t′ ′ ′⋅ = + +∫ .                (2) 

Here ( ) nx t ∈  is the state vector, ( ) mu t ∈  is the control vector, : n nf →  ,  

[ ]1 2, , , : n n m
mg g g g ×= →   , n nS ×∈ , n nQ ×∈ , m mR ×∈ , and ' denotes transposition.  

Throughout this paper, it is assumed that ,  S Q  are positive semidefinite, R  is positive definite, the 
functions ,  f g  are continuously differentiable with bounded derivatives, the control input ( )u ⋅  is chosen  
from the admissible control space [ ]( )1 0, ; mL T=  . 

Under these assumptions, for each admissible control ( )u ⋅ ∈  there exist a unique solution (trajectory) of  

the control system (1) denoted by ( )0;u t xφ .  
The value function of the control problem given by (1), (2), is defined as  

( )
( )

( )( )0 0inf ,
u

V x J x u
⋅ ∈

= ⋅


. 

A control input ( )u∗ ⋅ ∈  is optimal (for ( )0x ) if  

( )( ) ( )0 0,J x u V x∗ ⋅ = . 

Similarly a control input ( )u ⋅  is  -optimal (for ( )0x ) if  

( )( ) ( )0 0,J x u V x ε⋅ ≤ + . 

Given 0x , the optimal control problem is to find a control ( )u∗ ⋅  which minimizes the cost functional  
( )( )0 ,J x u ⋅ . The Hamiltonian associated with the optimal control problem (1), (2), is given as  

( ) ( ) ( ) ( )( )1, ,
2

H x u x Qx u Ru f x g x uλ λ′ ′ ′= + + + ,                    (3) 

where nλ ∈  is the adjoint vector.  
To derive an expression for the optimal control ( )u∗ ⋅  (for ( )0x ), it is convenient to introduce the adjoint  

system:  

( ) ( ) ( ) ( )( ) ( ) ( ), , ; ,     0Ht x t u t t T Sx T t T
x

λ λ λ∗ ∗ ∗ ∗ ∗ ∗∂
= − = ≤ ≤

∂
 .                  (4) 
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Here ( ) ( )0;
u

x t t xφ ∗
∗ = . We now state the Pontryagin’s Minimum Principle (PMP) for the affine-quadratic  

control system (1), (2), which provides a set of necessary conditions for ( )u∗ ⋅  to be optimal [12].  
Theorem 1 [PMP] Let 0

nx ∈ , ( )u∗ ⋅ ∈ , and ( ) ( )0;
u

x t t xφ ∗
∗ = . Also let ( )tλ∗  be the adjoint vector  

corresponding to ( )u t∗  and 0x , as given by the Equation (4). Then for a control input ( )u∗ ⋅  to be optimal  

for ( )0x , it is necessary that the map  

( ) ( )( ), ,u H x t u tλ∗ ∗→ , 

attains minimum at ( )u u t∗= , for a.e. 0 t T≤ ≤ .  

Corollary 1 Let 0
nx ∈ , ( )u∗ ⋅ ∈ , and ( ) ( )0;

u
x t t xφ ∗
∗ = . Also let ( )tλ∗  be the adjoint vector  

corresponding to ( )u t∗  and 0x , as given by the Equation (4). Then the optimal control (for ( )0x ) is  

( ) ( )( ) ( )1u t R g x t tλ∗ − ∗ ∗′= − .                              (5) 

Proof. The proof follows immediately from the above theorem. □ 
Now to obtain ( )tλ∗  (in (5)) in terms of ( )x t∗ , we solve the coupled systems given in (1) and (4)  

together with the initial conditions ( ) 00x x∗ =  and ( ) 00λ λ∗ =  respectively. 

In general, solving this coupled system and finding a closed form solution ( )tλ∗  is very difficult. However  

it may be easier to find 0λ  approximately. Such an approximation 0̂λ  will lead to the associated adjoint state  

( )ˆ tλ  and admissible control ( ) ( )( ) ( )1 ˆˆ ˆu t R g x t tλ− ′= − . In the next section, we provide bounds for the  

difference between the performance indices corresponding to ( )u∗ ⋅  and ( )û ⋅ . 

3. Performance of Suboptimal Controllers 
In this section, we prove the main result.  

Theorem 2 Consider the affine-quadratic control problem (1), (2). Let 0
nx ∈ , ( )u∗ ⋅  be the optimal  

control as given in (5), ( ) ( )0;
u

x t t xφ ∗
∗ = , and ( )λ∗ ⋅  be the adjoint vector corresponding to ( )u∗ ⋅  and 0x .  

Also let ( )û ⋅  be a suboptimal control and ( ) ( )( )ˆˆ ,x λ⋅ ⋅  be the solution of the coupled system ((1), (4)) with  

initial condition ( )0 0̂,x λ . Then  

( )( ) ( )( ) 2
0 0 1 1 1 1 2 2 1 2

1ˆ, ,
2

J x u J x u n S k n Q k T nC k T nK k T∗ ⋅ − ⋅ ≤ + + +    , 

where  

( ) ( )

( ) ( )

( ) ( ){ }
( ) ( ){ }

1
0

2
0

1 0

2 0

ˆ: sup ,

ˆ :  sup ,

ˆ: sup max , ,

ˆ :  sup max , .

t T

t T

t T

t T

x t x t

t t

k x t x t

k t t

λ λ

λ λ

∗

∞≤ ≤

∗

∞≤ ≤

∗
∞∞≤ ≤

∗

∞≤ ≤ ∞

= −

= −

=

=




 

The constant C  depends only on the matrix function g  and the constant K  depends only on its gra- 
dient.  

Proof. Note that  



A. Sharma, A. J. Shaiju 
 

 
233 

( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

0 0

0 0

ˆ, ,

1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ  d  d  .
2 2 2 2

T T

J x u J x u

x T Sx T x t Qx t u t Ru t t x T Sx T x t Qx t u t Ru t t

∗

∗ ∗ ∗ ∗ ∗ ∗

⋅ − ⋅ =

   ′ ′ ′ ′ ′ ′+ + − + +   
   ∫ ∫

 

(6) 
From R.H.S. of (6), we first consider the term  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
0 0

1 1ˆ ˆ ˆ ˆd d
2 2

T T
x t Qx t x t Qx t t x t Qx t x t Qx t t∗ ∗ ∗ ∗′ ′′ ′− ≤ −∫ ∫ . 

By adding and subtracting ( ) ( )x̂ t Qx t∗′  inside the integral, we get  

( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ) ( ) ( )( ){ }
( ) ( ) ( ) ( ) ( ) ( )( )

0

0 0

20 02 22

1 ˆ ˆ  d
2

1 1ˆ ˆ ˆ     d  d
2 2
1 1ˆ ˆ ˆ      d   d
2 2

                                                                           

T

T T

T T

x t Qx t x t Qx t t

x t x t Qx t t x t Q x t x t t

x t x t Qx t t x t Q x t x t t

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

′ ′−

′ ′ ′≤ − + −

′ ′ ′≤ − + −

∫

∫ ∫

∫ ∫
( )

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( )

0 0

2

1 0

using Cauchy-Schwarz inequality

ˆ ˆ ˆ      d   d
2 2

                                                              using     for all   

     d
2 2

T T

n

T

n nx t x t Qx t t x t Q x t x t t

x n x x

n nQ x t t Q

∗ ∗ ∗

∞∞ ∞∞

∞

∗

∞

′ ′ ′≤ − + −

≤ ∈

≤ +

∫ ∫

∫



 ( )1 0

1 1 1 1

1 1

ˆ  d

    
2 2

    .

T
x t t

n nQ k T Q k T

n Q k T

∞
′

≤ +

=

∫

 



 

Therefore  

( ) ( ) ( ) ( )( ) 1 10

1 ˆ ˆ  d   
2

T
x t Qx t x t Qx t t n Q k T∗ ∗′ ′− ≤∫  .                      (7) 

From R.H.S. of (6), we next consider the term  

( ) ( ) ( ) ( )1 ˆ ˆ  
2

x T Sx T x T Sx T∗ ∗′ ′− . 

In a similar manner (as for (7)), we have  

( ) ( ) ( ) ( ) 1 1
1 ˆ ˆ   
2

x T Sx T x T Sx T n S k∗ ∗′ ′− ≤  .                        (8) 

From R.H.S. of (6), we next consider the term  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
0 0

1 1ˆ ˆ ˆ ˆd d
2 2

T T
u t Ru t u t Ru t t u t Ru t u t Ru t t∗ ∗ ∗ ∗′ ′′ ′− ≤ −∫ ∫ . 

Let us have  

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 1 1

ˆ ˆ

ˆ ˆˆ ˆ   .

u t Ru t u t Ru t

R g x t t R R g x t t R g x t t R R g x t tλ λ λ λ

∗ ∗

− ∗ ∗ − ∗ ∗ − −

′ ′−

′′′ ′ ′ ′= − − − − −
 

In the above term, put the n n×  matrix ( )( )( ) ( )( )1g x t R g x t∗ − ∗′ ′  as ( )( )h x t∗  and the n n×  matrix  
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( )( )( ) ( )( )1ˆ ˆg x t R g x t− ′ ′  as ( )( )ˆh x t  for each 0 t T≤ ≤ . Then we have, 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

ˆ ˆ

ˆ ˆˆ 

ˆ ˆ ˆ ˆˆ 

ˆ                                                  by adding and subtracting the term 

ˆ 

u t Ru t u t Ru t

t h x t t t h x t t

t h x t t t t h x t t t h x t t

t h x t t

t h x t t

λ λ λ λ

λ λ λ λ λ λ λ

λ λ

λ λ

∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗

∗ ∗ ∗

′ ′−

′′= −

′′ ′= − + −

 ′
 
 

′= − ( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( ) ( )( ) ( )( )

ˆ ˆ ˆˆ ˆ

ˆˆ                                                  again by adding and subtracting the term 

ˆ ˆ ˆˆ 

t t h x t h x t t t t h x t t

t h x t t

t h x t t t t h x t h x t t t t

λ λ λ λ λ λ

λ λ

λ λ λ λ λ λ λ

∗ ∗ ∗

∗

∗ ∗ ∗ ∗ ∗ ∗

 ′′ ′+ − + − 
 

 ′
 
 

 ′′ ′ ′≤ − + − + − 
 

( )( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( )

222 2

2
2

ˆˆ

ˆ ˆˆ  

ˆ ˆˆ               ,     using Cauchy-Schwarz inequality .

h x t t

t h x t t t t h x t h x t t

t t h x t t

λ

λ λ λ λ λ

λ λ λ

∗ ∗ ∗ ∗ ∗

∗

′ ′≤ − + −

′′+ −  

Now using assumption on the matrix function g , we have that the matrix function h  is continuously 
differentiable and has bounded derivatives. Therefore  

( )( ) ( )( ) ( )( ) ( )( )

( ) ( )
( )( )

0

1

1

ˆ ˆmax

ˆ                                max  ,     where sup

                                ,     max

ij iji j

ij
ij ij t Ti j

iji j

h x t h x t h x t h x t

h x t
k x t x t k

x

K K k

∗ ∗

∗
≤ ≤∞

 
− = − 

 
  ∂   ≤ − =      ∂     

 
≤ =  

 

∑

∑

∑ .

 

Using this and following the procedure as for the inequality (7), we get  

( ) ( ) ( ) ( )

( )( )( )

2
2 2 1 2ˆ ˆ 2 ,

               where non-negative real no.  is the bound for the matrix .

u t Ru t u t Ru t nC k nK k

C h x t

∗ ∗′ ′− ≤ + 
 

Therefore  

( ) ( ) ( ) ( )( ) 2
2 2 1 20

1 1ˆ ˆ d
2 2

T
u t Ru t u t Ru t t nC k T nK k T∗ ∗′ ′− ≤ +∫   .                   (9) 

Hence the result follows by the inequalities (7), (8), and (9). □ 
Remark 3 It follows from the previous theorem that ( )( ) ( )( )0 0ˆ, ,J x u J x u∗⋅ → ⋅ , when ( ) ( )1 2, 0,0→  .  

This implies that ( ) ( )( ) ( )1 ˆˆ ˆu R g x λ− ′⋅ = − ⋅ ⋅  is a good suboptimal control when 0̂λ  is a good approximation of  

0λ . We emphasize the fact that ( )ˆ tλ  (and hence ( )û t ) can be computed at each time t  as 0̂λ  is known.  
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