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Abstract 
The De Broglie’s approach to the quantum theory, when combined with the conservation rule of 
momentum, allows one to calculate the velocity of the electron transition from a quantum state n 
to its neighbouring state as a function of n. The paper shows, for the case of the harmonic oscilla-
tor taken as an example, that the De Broglie’s dependence of the transition velocity on n is equal to 
the n-dependence of that velocity calculated with the aid of the uncertainty principle for the ener-
gy and time. In the next step the minimal distance parameter provided by the uncertainty prin-
ciple is applied in calculating the magnetic moment of the electron which effectuates its orbital 
motion in the magnetic field. This application gives readily the electron spin magnetic moment as 
well as the quantum of the magnetic flux known in superconductors as its result. 
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1. Introduction 
The paper has as its aim to approach two rather different problems, both on the basis of the uncertainty principle 
for energy and time. The first is connected with the speed of transition between two different (neighbouring) 
quantum levels of the harmonic oscillator. The approach is based on the fact that in the oscillator case a space 

http://www.scirp.org/journal/jmp
http://dx.doi.org/10.4236/jmp.2014.518198
http://dx.doi.org/10.4236/jmp.2014.518198
http://www.scirp.org/
mailto:olsz@ichf.edu.pl
http://creativecommons.org/licenses/by/4.0/


S. Olszewski 
 

 
2023 

difference characteristic for two quantum levels can be easily calculated on a semiclassical footing, so in order 
to obtain the speed of transition only the corresponding time interval t∆  is required. This interval is provided 
by the uncertainty principle which couples t∆  with the corresponding energy change E∆ . The result obtained 
for the seeked velocity of transition is in a satisfactory agreement with a corresponding difference of the De 
Broglie velocities connected with the same transition. 

The second problem is directed to the calculation of the electron magnetic moment. Classically this moment is 
an effect of the angular momentum of the electron particle moving along the orbit induced by the magnetic field. 
In fact the magnetic moment differs from the angular momentum only by a constant multiplier. But the 
uncertainty principle provides us with the result that not every size of parameters describing the classical particle 
motion in the magnetic field is acceptable. First the minimal intervals in space and time which should not be 
violated in course of the motion are presented. An application of one of these intervals, namely the spatial one, 
to calculation of the magnetic moment of the orbiting electron gives readily the spin magnetic moment of that 
electron. 

2. De Broglie’s Transition Velocity between the Quantum Levels and Its  
Alternative Calculation 

Before the outspring of the wave mechanics the De Broglie’s velocities of the wave packets were applied in 
calculating the action function entering the Sommerfeld rule defining the quantum levels of the old quantum 
theory [1]-[5]. This calculation was represented by the formula: 

( ) ( )
2 22

0 0
1 2 1 22 2

1 .
1 1

m c T m v T
n

h h
β

β β
= =

− −
                           (1) 

Here 0m  is the rest mass of the electron, c  is the speed of light, T  is the time period of the moving 
body—say an oscillator—along a closed orbit, h  is the Planck constant, v  is the velocity of the wave packet, 
β  is the ratio  

v
c

β =                                         (2) 

and n  is the index of a quantum state. 
By neglecting the radical expression in the denominator of (1), which for small v  is close to unity, we obtain 

in (1) the formula  
2 2

0 0m v T m v
n

h ω
= =


                                  (1a) 

or 
2

0m v n ω=                                          (3) 
on condition we put 

2π
T

ω =                                            (4) 

for the expression of the circular frequency, and 

.
2π
h

=                                            (5) 

Formula (3) is an expression for the double kinetic energy of the harmonic oscillator calculated at position x  
where the oscillator potential energy is zero, so the oscillator has only its velocity v . For a linear oscillator 
having momentum xp  a full expression for energy is  

2 2 2
0

02 2
xp m x

E
m

ω
= +                                  (6) 

therefore a situation of the vanishing potential energy in (6) is attained at  
0.x =                                             (7) 
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An advantage of the De Broglie’s treatment is that it applies the notion of the wave packet velocity which can 
be next identified with the speed of a particle, for example an electron particle; see e.g. [6]. 

In general the velocity observable in quantum systems is seldom discussed, though it can be of use when the 
electron transition between two quantum states takes place. A difficulty in calculating the transition speed 
between two quantum states is due to the fact that in principle we have no suitable formalism to that purpose. 
For example, in the framework of the old quantum theory, we can rather easily define the position change, say  

x∆                                             (8) 
of some special point of a system having the space coordinate x , when this change is connected with the 
change of a quantum state, but a stumbling block is to calculate the time interval  

t∆                                             (9) 
associated with the interval (8). For an oscillator an easily accessible change of x  is the change of the 
oscillator amplitude  

maxx                                           (10) 

due to the change of the quantum state n of the oscillator. The amplitude (10) is readily obtained from (6) 
because at the turning points of the oscillator we have 

0xp =                                         (11) 
so 

1 2

max 2
0

2
.nE

x x
m ω

 
= = ± 

 
                               (12) 

Here nE  is the oscillator energy in state n :  
.nE n ω=                                        (6a) 

This formula is simplified to that applied in the old quantum theory, so the quantum-mechanical correction 
1/2 to n  is neglected. 

The first aim of the present paper is to calculate t∆  on the basis of the uncertainty principle which couples 
the energy change E∆  due to an electron transition with the transition time interval (9). The principle is 
represented by the formula [7]-[10] 

( )22 2
02m c E t∆ ∆ >                                  (13) 

which—in calculating t∆ —is approximated by  

( )22 2
02 .m c E t∆ ∆ ≈                                 (13a) 

The accuracy of (13a) increases as much as the speed of the examined transition approaches the velocity c . 
The aim of the first part of the paper is to compare the transition velocity obtained from the uncertainty principle 
with that derived with the aid of the formalism given by De Broglie.  

3. Speed of Transitions between Quantum States Calculated on the Basis of (1a)  
and (13a) 

For an individual quantum state n  the Formula (1a) gives 
1 2

0
n

nv v
m
ω 

= =  
 

                                   (14) 

so for 1n =  we have 
1 2

1
0

.v
m
ω 

=  
 

                                     (14a) 

The central oscillator point (7) in which only the kinetic energy does not vanish repeats for all quantum states, 
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but the oscillator velocities will differ at that point according to (14) [we neglect here the result that in fact (3) 
gives a double kinetic energy at point (7)]. Since the motion across (7) is performed along the same direction for 
all n , it is natural to assume the conservation of momentum at that point. In effect the difference of v  between 
states n  and 1n +  can be identified with the transition speed between n  and 1n + . Therefore we obtain for 
that speed the difference  

( )
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        (15) 

The approximation entering the last steps of (15) holds for large n . 
The formalism of calculating the transition speed on the basis of (13a) requires some more manipulations. The 

aim is to obtain the transition velocity in terms of the formula  

maxx
t

∆
∆

                                     (16) 

where from (12) and (6a) 
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                       (17) 

On the other hand, the interval t∆  calculated from the uncertainty principle expressed in (13a) is  
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∆ = =
∆
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                                 (18) 

because 

( )1 .E n nω ω ω∆ = + − =                                      (19) 

In effect of (17) and (18), the transition velocity (16) between 1n +  and n  becomes  
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The both formulae, (15) and (20), become identical on condition the constant c  is replaced by a half of the 
constant 1v  given in (14a). 

The problem of the difference of transition speeds considered separately for the case of emission or 
absorption of energy is here neglected: in fact we can substitute only positive, or absolute, E∆  into (13a) in 
order to obtain real t∆ . Nevertheless a formal distinction between the emission and absorption of energy by the 
oscillator is possible; see Ref. [11].  

4. Discussion on the Speed of the Transition Wave 
It can be noted that the square value of the speed entering (1a) is modified in (1) by the factor  

( )1 22

1 .
1 β−

                                        (21) 

Therefore in order to obtain with the aid of (21) roughly a full agreeement between the De Broglie velocity 
(15) and that of (20) we should solve the equation 
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Equations (2) and (22) give 
1 22 2
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1 2
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which is equivalent to the bi-quadratic equation 

4 2 2 4
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This gives 
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or 

1 0.97v c≅                                     (24) 

from which and from (14a) we obtain the following requirement for the frequency ω :  
2 2

0 1 00.94 .m v m c ω≅ =                                    (25) 

5. Magnetic Moment of an Electron Moving on an Orbit in a Constant Magnetic  
Field and Its Value Attained at the Extremal (Minimal) Radius Size Supplied by  
the Principle of Uncertainty 

In examining the uncertainty principle for energy and time [see (13a)] two parameters concerning respectively a 
minimal space distance between two particles  

0
0

x
m c

∆ =
                                          (26) 

and a minimal time interval between two events  

0 2
0

t
m c

∆ =
                                         (27) 

could be derived [10]. Similar parameters characteristic for the distance in space and time, equal respectively to  

0
0

hx
m c

∆ =                                         (26a) 

and 

0 2
0

ht
m c

∆ =                                        (27a) 

have been proposed at a time of the outspring of quantum mechanics [5] [12]-[14]. The Formula (26a) is better 
known as the Compton wave length of the electron (equal to 102.42 10−×  cm) [6]. The (26a) and (27a) differ 
from (26) and (27) solely by the factor of 2π . 

The task undertaken in the present paper is to apply a minimal distance (26) to calculate the magnetic moment 
m  of an electron orbiting in a constant magnetic field. This moment is defined classically by the angular 
momentum l  of the particle multiplied by a constant factor 02e m c  [15]  

[ ]0
0 0

.
2 2

e e m
m c m c

= = ×m l r v                                 (28) 
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Upon the action of a constant magnetic field having the induction B  any electron is assumed to perform a 
constant orbital motion along a circle having the radius  

vr ⊥=
Ω

                                          (29) 

where v⊥  is the electron velocity on the orbit (being transversal to the direction of the magnetic field) and  

0

eB
m c

Ω =                                          (30) 

is the circular frequency of the motion. In the first step our task is to calculate a critical (maximal) value of B  
at which the motion can be performed. This B  is obtained if we note that the orbital velocity cannot exceed c, 
so we have the upper limit  

v c⊥ =                                            (31) 

and the smallest orbital radius r  should be equal to (26). In this way we obtain from (29)-(31) combined with 
(26) the condition for the critical B : 

( ) 2
0 0

0

.c
c c

c m c m c
r

m c eB eB
= = =
                                 (32) 

A solution of (32) yields 
2 3
0 .c

m c
eB eB= =



                                    (33) 

The next step is to calculate the electron angular momentum with the use of (26) and (33). For a circular orbit 
cr r=  and cB B=  this gives 

2 22
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0 0 0 0 2 2
0 0 0

.ceB m c
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m c m c m c⊥

 
= = Ω = = = 
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 
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

                 (34) 

A final step is to substitute the result of (34) into the expression for the electron magnetic moment. We obtain  

0 0

.
2 2

e el
m c m c

= = m                                  (35) 

The result in (35) is equal precisely to the magnetic moment of the electron considered as a spin magnetic 
moment; see [6] and [16]. A characteristic point is that no quantization process has been used in calculations: the 
result is based solely on the uncertainty principle (13a) and classical electrodynamics. 

Let us note that cB  obtained in (33) causes a critical circulation frequency ω  of the size:  
2

20 10

0

7.8 10  s .c
c

eB m c
m c

−Ω = = ≅ ×


                          (36) 

6. Remarks on the Spin Magnetic Moment 
A rather natural step can be an application of the uncertainty principle to other kinds of matter than electrons. 
Here one has to be cautious because 0m  in the Formula (13a) ceases to be the electron mass. Another point is 
the calculation of E∆ : for example for the nuclear matter and its reactions the change of the mass should be 
taken into account [17] [18]. 

For electrons, however, an application of the critical interval (26) can be done also in case of the electrostatics. 
This leads to a critical (maximal) strength cE  of the electric field acting on an electron via the Coulomb 
interaction force:  

( )22 2
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2 2 2

0

.c c
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em ce eF eE
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= = = =
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                        (37) 
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For electrons the force cF  obtained in this way is equal to only  
150 dyne.cF ≅                                       (37a) 

Both forces ceE  and ceB  [see (37) and (33)] depend strongly on 0m . For example they increase dramati- 
cally with a substitution of the electron mass by the proton mass. On the other hand, the ratio of the forces (37) 
and (33) becomes a well-known constant  

2 2 2 2
0
2 2 3

0

1
137

c

c

eE e m c e
eB cm c

= = ≅




                        (38) 

independent of the particle mass 0m . 
An interesting situation gives a coupling of the radius cr  considered in (32) with the magnetic induction 

represented by cB . A product of the elementary planar surface  
2

2

0

= π = πc cS r
m c

 
 
 

                                 (39) 

and cB  in (33) gives  

( )2 22 3 2
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2
0

2π
π .

24πc c c

cm c h chB S
e m c eh e

 
Φ = = = = 

 





                   (40) 

This is a quantum of the magnetic flux which is well-known in the theory of superconductors, see e.g. [19].  

7. Summary 
In the paper two rather different effects have been examined in reference to the uncertainty principle for energy 
and time. 

The first one concerns the change of speed of the De Broglie wave in case of transition from a quantum state 
n  to a neighbouring state. The transition speed obtained from the uncertainty principle has the same functional 
dependence on n  as the speed calculated from the De Broglie theory. 

Another calculation considers the spin magnetic moment of the electron which in quantum mechanics is 
conventionally obtained in course of solving the Dirac’s equation; see e.g. [6]. We show that the same result for 
the spin magnetic moment can be attained by combining the uncertainty principle with the classical electromag- 
netic theory. Here a critical (minimal) length of the orbit radius cr  derived from the uncertainty principle is 
combined with a critical (maximal) accessible strength cB  of the magnetic induction. The cB  parameter is 
calculated on the basis of electrodynamics supplemented by the relativistic theory. 

A by-product of this calculation is a quantum of the magnetic flux well-known in the theory of super- 
conductors; see (40). It is obtained by multiplication of the induction cB  entering (33) and elementary surface 

cS —due to the quantum distance (26)—represented in (39). This result implies that  
2 3
0

c
m c

B
e

=


                                      (41) 

from (33), as well as cS  in (39), can be considered as the quanta of the magnetic induction and the surface area, 
respectively. A similar quantum concerning the intensity of the electric field can be obtained from (37):  

( )2
0
2 .c

e m c
E =



                                   (42) 

The ratio of cE  and cB  provides us with the fine-structure constant (38) well known from the atomic 
theory; see e.g. [6]. 

The semi-classical model of a spinning electron developed in the present paper is as follows. The electron is 
gyrating with a speed close to c  along a circular orbit of the radius cr  defined by the distance (26) [see also 
(32)] which is derived from the uncertainty principle; see (13a) and [10]. The distance (26) is shorter by the 
factor of ( ) 12π −  than the Compton length presented in (26a). It gives 
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10
0

0

0.39 10  cmcx r
m c

−∆ = = = ×
                             (43) 

which is shorter by many times than the first radius of the Bohr orbit in the hydrogen atom equal to 0.53 × 10−8 
cm, but larger—also by many times—than the classical radius of the electron particle equal to [15]:  

2
12

2
0

0.28 10  cm.e
m c

−≈ ×                                  (44) 

The circulation of the spinning electron is corresponding to the presence of the magnetic field cB  in (41) and 
has the frequency (36) equal to about 21 110  s− . 

The magnetic moment obtained due to the circulation is equal to the Bohr magneton [see (35)]. The lowering 
of the magnetic interaction energy being an effect of creation of a spinning electron system is  

2
00.5 .cB m c− = −m                                   (45) 
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