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Abstract 
In the present paper, we established two unified algorithms. The first algorithm is for the trans-
formations between J2000.0 Keplerian orbital elements and B1950.0 elements, while the second 
is for the transformations between the equatorial orbital elements and the ecliptic orbital ele-
ments. Mathematica Modules of the algorithms are given together with some numerical applica-
tions. 
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1. Introduction 
Precession is a change in the orientation of the rotational axis of a rotating body. In astronomy, precession refers 
to any of several slow changes in an astronomical body’s rotational or orbital parameters, and especially to the 
Earth’s precession of the equinoxes. The shift in the position of the Earth’s axis and of the ecliptic caused by 
forces exerted by the Sun, Moon and planets not only causes a slight change in the angle between the equator 
and the ecliptic, but also a shift of the vernal equinox by about 1.5˚ per century (1’ per year). This effect is neg-
ligibly small for casual observing, but is an important correction for precise observations. To get accurate ob-
servations, the International Astronomical Union (IAU) 2000 recommended significant improvements in the de-
finition of the International Celestial Reference System (ICRS) [1]. It follows that changes in Earth’s orbital pa-
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rameters (e.g. orbital inclination, the angle between Earth’s rotation axis and its plane of orbit) is important to 
the study of Earth’s climate, in particular to the study of past ice ages. 

For precise calculations therefore, the equinox of the coordinate system used must be stated. The equinoxes 
most frequently used are the equinox of date, equinox J2000 and equinox B1950 [2] and [3]. “Equinox of the 
date” means that the values used are those for the equator, ecliptic, and vernal equinox for actual date under con- 
sideration. Such daily alteration of the coordinate system is sensible if one requires the coordinates of a planet, 
for example, for use in conjunction with the setting circles on an equatorial mounted telescope, or on a transit 
circle. Since the shift in the Earth’s axis, the orientation of the polar axis of a telescope will also alter. On the 
other hand, if one wants to study the actual spatial motion of a planet then it is better to use a fixed equinox, 
such as that for Julian Epoch J2000 (2000 January 1.5 = JD = 2451545.0), which was generally introduced in 
1984. Before that, the older equinox B1950 has been used for a long time, and was employed for many stellar 
catalogues and atlases (such as the SAO Star Catalog and Atlas Coell). The beginning of the Basselian year 
1950 (1950 Jan.0.9232 = JD 2433282.423). 

On the other hand, there are two standard reference planes to specify the orbits of celestial objects, the equatorial 
plane of the Earth and the ecliptic plane (the plane of Earth’s orbit around the Sun). However, due to precession, 
the equatorial and the ecliptic planes are slowly changing their positions relative to the background stars [4]. 

In this paper, we established two new unified computational algorithms each one is applicable to get epheme-
ris in both directions simultaneously. That is to mean it can be used as a switch between: 1) J2000.0 Keplerian 
orbital elements and B1950.0 elements and 2) between the equatorial orbital elements and the ecliptic orbital 
elements. Such artifices do not exist in any other numerical ephemeris methods. Furthermore, in our algorithms 
the number of the utilized equations was reduced via applying some mathematical operations, a matter, which 
facilitates the computations. Mathematica Modules for the two algorithms are also included. 

Finally, it should mentioned that, although all numerical ephemeris methods utilize the same equations, but  
their accuracy may be differ greatly depending on a) the computational package adopted for their evaluation; b) 
the form of the equations, such that, the more they are explicit, the more their satiability and accuracy will be. 

Due to the quite simple explicit forms of the reduced equations of our algorithms, and the usages of the most 
power full computational packages of Mathematica, consequently as regarding to that two points a & b, our al-
gorithms may be more accurate than that given by JPL system or other numerical ephemeris methods. 

2. Basic Formulations 
2.1. Duality of Theorems Relating to the Spherical Triangle 
The duality of theorems relating to the spherical triangle [5] was stated as: Any theorem relating the sides and 
angles of any spherical triangle will remain true when the angles are changed into the supplements of the cor-
responding sides and the sides into the supplements of the corresponding angles. 

2.2. Transformation Formulae between J2000.0 and B1950.0 Keplerian Elements 
Given the six orbital elements , , , , , and a e iτ ω Ω  in the B1950.0 reference system, one may compute the cor-
responding orbital elements for J2000.0-based system (dented by primes): 
• ,a a′ : Semi-major axes in B1950.0, J2000.0 systems. 
• ,e e′ : Eccentricities in B1950.0, J2000.0 systems. 
• ,τ τ ′ : Pre-center passage times in B1950.0, J2000.0 systems. 
• ,ω ω′ : Argument of pre-center in B1950.0, J2000.0 systems. 
• , ′Ω Ω : Longitude of the ascending node in B1950.0, J2000.0 systems. 
• ,I I ′ : Inclination in B1950.0, J2000.0 systems. 
where 0 360 ,  0 360  and 0 180Iω≤ ≤ ≤ Ω ≤ ≤ ≤     

 such that for direct motion I ranges from 0˚ to 90˚; for re-
trograde motion ranges from 90˚ to 180˚. Clearly, , ,a a e e τ τ′ ′ ′= = =  while the angles ( ), , , ,I Iω ω′ ′ ′Ω Ω  are 
computed from ( ), , , ,I Iω ω′ ′ ′Ω Ω  as will be shown soon. 

Figure 1 represents the relationship between B1950.0 and J2000.0 reference frames and the orbital plane. The 
numerical values for the angles , ,L L J′  [6] are 4 .50001688, 5 .19856209 and 0 .00651966.L L J′ = = =    
These values were computed using the values of ε  as  

( ) ( )23 .44578787 B1950.0 and 23 .43929111 J 2000.0ε ε= =  . 
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Figure 1. The relation between the reference systems 
B1950.0, J2000.0 and the orbital plane.              

2.2.1. The Basic Equations for the Transformation 
Applying the duality property (see Section 2.1) to the spherical triangle ABC of Figure 1, we get 

( )to 180 180 ,L I I′ ′+ Ω→ − − =                               (1.1) 

( )to 180 ,I L′ ′→ − +Ω                                      (1.2) 

to 180 ,L I′ ′ ′+ Ω → −                                       (1.3) 
to 180 ,Jω ω′− → −                                        (1.4) 

toI L′→ +Ω .                                            (1.5) 
From the spherical triangle ABC of Figure 1 we get 

( ) ( )sin sin sin sin ,I L Jω ω′ ′− = +Ω                                         (2.1) 

( ) ( ) ( ) ( ) ( )sin cos cos sin sin cos cos ,L I L L Iω ω ω ω′ ′ ′ ′ ′ ′ ′+ Ω = +Ω − + +Ω −          (2.2) 

( ) ( ) ( ) ( ) ( )cos cos cos sin sin cos ,L L L Iω ω ω ω′ ′ ′ ′ ′ ′ ′+ Ω = − +Ω − − +Ω              (2.3) 

( ) ( )sin sin sin sin ,L I I L′ ′ ′+ Ω = +Ω                                         (2.4) 

( ) ( ) ( ) ( ) ( )sin cos cos sin sin cos cos .L J L L Iω ω ω ω′ ′ ′ ′ ′ ′ ′+ Ω = − +Ω + − +Ω          (2.5) 

Clearly the right hand side of each of the Equations (2) contained mixture of the unknown quantities (dented 
by primes) and known quantities (without primes) e.g.  and ω ω′ , while their left hand sides are known quanti-
ties. To overcome this difficulty, we have to apply the transformation rules of Equations (1) to Equations (2) and 
we get for the transformation from , ,  to , ,I Iω ω′ ′ ′Ω Ω  the formulae: 

( ) ( )sin sin sin sin ,I L Jω ω′ ′− = +Ω                                  (3.1) 

( ) ( )sin cos cos sin sin cos cos ,I L I J I J L′ ′ ′+ Ω = + +Ω                   (3.2) 

( )cos cos cos sin sin cos ,I J I J I L′ = − +Ω                             (3.3) 

( ) ( )sin sin sin sin ,L I I L′ ′ ′+ Ω = +Ω                                  (3.4) 

( ) ( )sin sin cos sin sin cos cos .I J I J I Lω ω′ ′− = + +Ω                    (3.5) 

2.2.2. The Basic Equations for the Transformation ′ ′ ′, ,I Ω ω  to , ,I Ω ω  
By the same way as above, we get for the transformation from , ,  to , ,I Iω ω′ ′ ′Ω Ω  the formulae: 



M. A. Sharaf et al. 
 

 
601 

( ) ( )sin sin sin sin ,I L Jω ω′ ′ ′− = +Ω                                   (4.1) 

( ) ( )sin cos cos sin sin cos cos ,I J I J I Lω ω′ ′ ′ ′ ′− = − +Ω                   (4.2) 

( )cos cos cos sin sin cos ,I I J I J L′ ′ ′ ′= + +Ω                             (4.3) 

( ) ( )sin sin sin sin ,I L I L′ ′ ′+ Ω = +Ω                                   (4.4) 

( ) ( )sin cos cos sin sin cos cos .I L I J I J L′ ′ ′ ′+ Ω = − + +Ω                   (4.5) 

3. Unified Transformation Formula for J2000.0 and B1950.0 Keplerian Elements 
For practical applications, we can unified the two sets of Equations (1) and (2) as: 

4sin 1.137895329 10 ,S J −= = ×                               (5.1) 

cos 0.999999993,C J= =                                   (5.2) 

( )0sin ,X S ν= +Ω                                        (5.3) 

( )0 0 0sin cos cos ,Y C I S Iη ν= + +Ω                          (5.4) 

( )0 0 0cos sin cos ,Z C I S Iη ν= − +Ω                          (5.5) 

( )0 0sin sin ,Q I ν= +Ω                                     (5.6) 

( )0 0 0cos sin cos .T S I C Iη ν= + +Ω                           (5.7) 

where 
• 0 0 0, ,I ωΩ , the given elements. 
• , ,I ω′ ′ ′Ω , the required elements. 
• η, an integer takes the values 1+  or 1−  such that: 
• 1η = + , for the transformation from the Keplerian orbital elements ( )0 0 0, ,I ωΩ  with respect to reference 

system B1950.0 to the Keplerian orbital elements ( )1 1 1, ,I ωΩ  with respect to reference system J2000.0. 
• 1η = − , for the transformation from the Keplerian orbital elements ( )0 0 0, ,I ωΩ  with respect to reference 

system J2000.0 to the Keplerian orbital elements ( )1 1 1, ,I ωΩ  with respect to reference system B1950.0. 
•  if 1,   if 1 where &L L L Lν η ν η′ ′= = = = − , have the previous numerical values. 
• The unified formulae for the required elements 1 1 1, ,I ωΩ  in terms of the given elements 0 0 0, ,I ωΩ  are: 

( )1
1 0 tan ,X Yω ω −= +                                     (6.1) 

( )1 2 2
1 tan ,I X Y Z−= +                                  (6.2) 

( )1
1 tan ,H Q T−Ω = − +                                    (6.3) 

( ) ( ){ } 2.H L L L L η′ ′= + + −                               (6.4) 

4. Transformation Formulae between Equatorial and Ecliptic Orbital Elements 
Let the equatorial orbital elements of celestial body, be denoted by , ,i ωΩ  and its corresponding ecliptic ele-
ments be , ,i ωΩ  (Figure 2 and Figure 3). The rest of the elements ( ), ,e aτ , which determine the orbit of the 
body, do not change by changing the coordinates systems. 

From the spherical triangle γNL we get: 

sin sin sin sin ,i iΩ = Ω                                      (7.1) 

sin cos cos sin sin cos cos ,i i iε εΩ = + Ω                        (7.2) 

cos cos cos sin sin cos ,i i iε ε= − Ω                            (7.3) 
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elements of celestial body.            

 
( )sin sin sin sin ,i ω ω ε− = Ω                                   (7.4) 

( )sin cos cos sin sin cos cosi i iω ω ε ε− = + Ω .                     (7.5) 

Equations (7) are to be used to obtain , ,i ωΩ  from , ,i ωΩ . 
Also 

sin sin sin sin ,i iΩ = Ω                                        (8.1) 

sin cos cos sin sin cos cos ,i i iε εΩ = − + Ω                         (8.2) 

cos cos cos sin sin cos ,i i iε ε= + Ω                              (8.3) 

( )sin sin sin sin ,i ω ω ε− = Ω                                    (8.4) 

( )sin cos cos sin sin cos cosi i iω ω ε ε− = − Ω .                    (8.5) 

5. Unified Transformation Formulae for Equatorial and Ecliptic Orbital Elements 
For practical applications, we can unify the two sets of Equations (7) and (8) as: 

1 1 0 0sin sin sin sin ,i i XΩ = Ω =                                 (9.1) 

1 1 0 0 0sin cos sin cos cos cos sin ,i i i Yε η εΩ = Ω + =                  (9.2) 

1 0 0 0cos cos cos sin sin cos ,i i i Zε η ε= − Ω =                       (9.3) 

( )1 1 0 0sin sin sin sin ,i Qη ω ω ε− = Ω =                           (9.4) 

( )1 1 0 0 0 0sin cos cos sin sin cos cosi i i Tη ω ω ε η ε− = + Ω = .          (9.5) 
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where 
• 0 0 0, ,i ωΩ , the given elements. 
• 1 1 1, ,i ωΩ , the required elements. 
• η, an integer takes the values 1+  or 1−  such that: 
• 1η = + , for the transformation from the ecliptic orbital elements ( )0 0 0, ,i ωΩ  to equatorial orbital elements 

( )1 1 1, ,i ωΩ . 
• 1η = − , for the transformation from the equatorial orbital elements ( )0 0 0, ,i ωΩ  to the ecliptic orbital ele-

ments ( )1 1 1, ,i ωΩ . 
Since the right hand side of each of the above equations is known (note ε  is known angle), consequently we 

can get ( )1 1 1, ,i ωΩ  from 

{ }1 2 2
1 tan ,i X Y Z−= +                              (10.1) 

{ }1
1 tan ,X Y−Ω =                                   (10.2) 

{ }1
1 0 tan Q Tω ω η −= + .                             (10.3) 

6. Computational Developments of J2000.0 and B1950.0 Keplerian Elements 
Transformations 

6.1. Mathematica Module: KeplerB1950TJ2000 
• Purpose 

Transfer the Keplerian orbital elements with respect to reference system B1950.0 to the Keplerian orbital 
elements with respect to reference system J2000.0 and vice versa. 
• Input 

0 0 0, ,i ωΩ  (in radian), η. 
• Output 
• 1 1 1, ,i ωΩ  (in radian). 
• User defined procedures 

Module: arctan (Appendix A). 
Module: angle (Appendix A). 

• Module list 
4KeplerB1950TJ2000[I0_,Ω0_, 0_] : Module[{ 1.137895329 10 , 0.999999993,

4.50001688 Pi /180,LD 5.19856209 pi /180}, Which[ 0, ,
0, LD]; sin[ Ω0];

sin[I0] cos[I0] cos[ Ω0];
cos[I0]

s c L
L

X s Y
c s Z
c

ω
η ν η

ν ν
η ν
η

−= = × =
= × = × > =
< = = × +
= × + × × × +
= × −

2 2

sin[I0] cos[ Ω0]; sin[I0] sin[ Ω0];
Cos[I0] Sin[I0] Cos[ Ω0]; 1

angle[ 0 arctan[ , ]];T1 arctan[Sqrt[
(( LD) (LD ) ) / 2;Ω1 angle[ arct

],
an[ , ]];

;
]

]

s Q T
s c

X Y H
L L H Q T

X Y Z

ν ν
η ν ω

ω η
η

× × × + = × +
= × × + × × +

= + × =
= −

+
+ + − × = +

 

6.2. Numerical Examples 
Table 1 gives the transformations of the orbital Kepler elements 1950.0 to the corresponding elements J2000.0 
and vice versa as computed from the above Module. 

7. Computational Developments of Equatorial and Ecliptic Orbital Elements 
Transformations 

7.1. Mathematica Module: TranElements 
• Module list 
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TranElements[I0_,Ω0_, 0_, _] : Module[{ 23.4457889 Pi /180}, sin[I0] sin[Ω0];
sin[I0] cos[Ω0] cos[ ] cos[I0] sin[ ];
cos[I0] cos[ ] sin[I0] sin[ ] cos[Ω0]; sin[Ω0] sin[ ];
cos[ ] sin[I0] sin

X Y
Z
Q T

ω η ε
ε η ε

ε η ε ε
ε η

= = × = ×
= × × + × ×
= × − × × × = ×
= × + ×

2 2

[ ] cos[I0] cos[Ω0]; I1

arctan[Sqrt[ ], ];Ω1 arctan[ , ]; 1
angle[ 0 arctan[ , ]]; ]

X Y X Y
Q T

ε

ω
ω η

× ×

= + =
= + ×

 

7.2. Numerical Examples 
Table 2 gives the transformations of the ecliptic orbital elements to the equatorial orbital elements and vice versa. 
 
Table 1. The transformations of the orbital Kepler elements 1950.0 to the corresponding elements J2000.0 and vice versa.    

No. I˚ J2000.0 Ω˚ J2000.0 ω˚ J2000.0 I˚ B1950.0 Ω˚ B1950.0 ω˚ B1950.0 
1 141.138 110.746 71.4059 141.135 110.054 71.4153 
2 100.297 185.304 238.78 100.290 184.606 238.779 
3 80.6362 231.315 114.576 80.6326 230.618 114.571 
4 112.57 53.6981 238.119 112.574 53.0019 238.125 
5 170.961 241.272 274.229 170.958 240.536 274.191 
6 139.921 179.841 171.182 139.915 179.142 171.182 
7 42.5016 186.461 244.876 42.4952 185.764 244.874 
8 96.6903 5.46674 252.29 96.6967 4.76833 252.291 
9 135.857 59.4065 121.267 135.86 58.7139 121.275 

10 86.4451 99.7851 160.631 86.4434 99.0862 160.637 
11 25.1243 299.08 227.031 25.1279 298.393 227.018 
12 99.5601 283.186 343.918 99.562 282.486 343.912 
13 101.079 281.101 306.966 101.08 280.401 306.959 
14 19.8767 29.158 308.421 19.8821 28.4495 308.431 
15 7.01984 144.568 74.358 7.01425 143.842 74.3855 
16 99.5299 336.251 107.795 99.5361 335.552 107.793 
17 166.572 177.496 257.746 166.565 176.796 257.745 
18 149.27 239.537 264.687 149.268 238.829 264.676 
19 48.5783 130.501 55.3847 48.5737 129.798 55.3908 
20 50.5978 2.61207 221.655 50.6043 1.91287 221.565 

 
Table 2. Transformations of the ecliptic orbital elements to the equatorial orbital elements and vice versa.                 

No. i˚ Ecliptic Ω˚ Ecliptic ω˚ Ecliptic i˚ Equatorial Ω˚ Equatorial ω˚ Equatorial 
1 7.60859 245.396 293.823 21.3627 340.702 197.087 
2 16.3726 238.797 186.535 20.2256 315.781 106.671 
3 65.1561 257.05 285.847 62.2011 268.744 259.849 
4 14.4351 171.36 182.167 9.41361 13.2365 340.731 
5 26.0028 24.8475 261.4 48.2195 14.3028 274.357 
6 32.4876 334.77 149.96 54.5113 343.669 137.938 
7 66.4539 188.537 66.7897 43.3465 191.435 61.8535 
8 158.761 143.292 346.835 137.694 161.233 7.52689 
9 54.892 179.516 114.373 31.4475 179.242 114.742 

10 92.4622 103.489 352.182 86.9441 103.369 14.9784 
11 156.25 250.335 104.782 141.796 217.824 67.4984 
12 55.6292 144.095 322.863 38.3768 128.768 344.94 
13 46.5676 26.1908 352.194 68.2823 20.2131 3.08979 
14 31.078 297.183 169.174 46.2172 320.504 139.818 
15 99.8029 85.0414 331.311 100.958 89.3931 355.124 
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In concluding, the present paper introduced two unified and simple algorithms that are capable of executing 
calculations in both directions and in one program run to the 1) transformations between J2000.0 Keplerian or-
bital elements and B1950.0 elements and 2) transformations between the equatorial orbital elements and the ec-
liptic orbital elements. The algorithms are elaborated using Mathematica package, which is qualified for accu-
rate computations. The proposed algorithms are checked by numerical examples given in Table 1 and Table 2. 
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Appendix A: The User Defined Procedures 
A-1 User defined procedure: angle 

Mathematica Module: angle 
• Purpose 

To reduce the angle x in radian to the interval [ ]0,2π  
• Input 

The value of x 
• Output 

The angle [ ]0,2πx∈  
• User defined procedures 

None 
• Module list 

angle x_ : Module, Mod x, 2 
• Notes 

1. The above procedure is valid for positive as well as for negative angles. 
2. For all values 2x nx= ±  where n is positive integer number, the reduced angle is equal to zero. 
3. The given angle x and the reduced angle are the same if [ ]0,2πx∈ . 
A-2 User defined procedure: Arctan (y/x) 
When the inverse function of “tan” is taken an ambiguity arises which has to be cleared up. The angle 

( )1tan y x−  lies in the first quadrant if 0, 0x y> > , in the second quadrant if 0, 0x y< > , in the third qua-
drant if 0, 0x y> < , finally in the fourth quadrant if 0, 0x y< < . To obtain the correct quadrant, add or sub-
tract 2π  or π  from the angle ( )1tan y x− . 

Mathematica Module: arctan 
• Purpose 

To find the correct quadrant of the angle ( )1tan y x−  in radian. 
• Input 

Y, x 
• Output 

The angle ( )1tan y x−  in radian. 
• User defined procedures 

None 
• Module list 

arctan[ _, _] : Module[{ , }, [π]; Which[ ! 0, ArcTan[Abs[ / ]] / / ,
0, 2]; Which[ 0 & & 0, Sign[ ], 0 & & 0, ,
0 & & 0, , 0 & & 0, 2 ]];

angle[ _] : Module[ ,Mod[ ,2{} π]];

y x p z p N x z y x N
x z pl x y z y x y z p
x y z p x y z p

x x

= = = =
= = >= >= × < >= − ×
< < + >= < − + ×

= ×

 

• Notes 
The usage of the Mathematica built in ArcTan[y/x] and the function arctan[y, x] of the above procedure for 

calculating the angle ( )1tan y x−  are illustrated as follows. 
• If L y x=  is negative, the computer cannot determine the source of this negative sign, is it from the deno-

minator or from the numerator, so it evaluates ArcTan[|L|] an then multiply the result by (−1). For exam-
ples: 

• [ ] [ ]ArcTan 4 10 ArcTan 4 10 0.3805 21.801r− = − = − = − , while arctan[4, −10] of the above procedure gives 
2.7611 158.199r =  . 

• [ ] [ ]ArcTan 17 4 ArcTan 17 4 1.3397 76.759r− = − = − = − , while arctan[−17, 4] of the above procedure gives 
4.9435 283.242r = . 

• If L y x=  is positive, the computer cannot determine the source of this positive sign, is it because both 
denominator and numerator are positive, or both are negative, so it evaluates ArcTan[L]. For example: 

• [ ] [ ]ArcTan 15 6 ArcTan 15 6 1.1903 68.198r− − = = = , while arctan[−15, −6] of the above procedure gives 
4.3319 248.199r =  

The only case in which ArcTan[y/x] = arctan[y, x] is when 0, 0x y> > . 
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