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Abstract 
In this paper, we will try to find a universal theoretical model and approximate solutions which 
can be applied to both mode shape and normal shape actuators and sensors, and which can be 
predicted the gain of the first three modes of the mode shape and normal shape actuators and 
sensors, finally through computer simulation analysis to validate. In order to prove the feasibility 
of the theory and as well as convenient to use on the electro-mechanical engineering, we will try to 
simplify the three-dimension structure problem into an one-dimension structure problem. Fur-
thermore we will design one kind of bimorph type piezoelectric cantilever beam, so that it can be 
used as with the actuator and sensor simultaneously, but also conducive to the theory and simula-
tion analysis. As for the simulation analysis, we will use the ANSYS code. 
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1. Introduction 
Due to the piezoelectric materials (such as PZT or PVDF) have the advantages of fast response and high actuat-
ing force, so they are very suitable made for sensors and actuators to sense and control the vibration of the flexi-
ble structures, especially to sense or control the low frequency vibration, because the high-frequency vibration is 
very easy to be absorbed by the structure itself. So that the most piezoelectric sensors and actuators are used to 
sense and control the low frequency vibration of flexible structures. And since the design concept and theory of 
the modal sensors and actuators have been proposed by C.K., Lee [1] [2], making them to sense and control the 
low frequency vibration of flexible structures are more rapid, sensitive, precise, accurate and efficient. In which 
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the main design concepts and methods of the modal sensors and actuators are based on the coating of the effec-
tive electrode surface and changing of the polarization direction with specific modal or mode shape, shown as 
Figure 1. As for the theoretical model, it is entirely based on the mode shape functions or spatial distribution 
methods. It is successfully pulled out the transverse vibration displacement of the coupling multi-modal by the 
mode shape functions or spatial distribution methods. Next, it uses the coating methods or the functions of ef-
fective electrode surface to sense or control the low frequency vibration of the flexible structures. Since the re-
levant theoretical analysis, computer simulation and experimental eleven were uncovered or presented [3]-[9]. In 
addition, the theoretical model of modal or mode shape actuator is also applied to the different types of piezoe-
lectric transformers, thereby to enhance their step-up ratio and conversion efficiency [10] [11].  

However, the theoretical model is only applicable to modal sensors and actuators, but it can’t be applied on 
the normal shape sensors and actuators. If the theoretical model of modal sensors and actuators used in the nor-
mal shape sensors and actuators, we could not find the correct approximate solution. That is, so far, we still can’t 
find one kind of universal equation to simultaneously describe or predict the behavioral of the mode shape and 
normal shape sensors and actuators, or to compare the gain or to distinguish the difference between the mode 
shape and normal shape sensors and actuators from past studies.  
 

 
Figure 1. (a) The side view of the polarization direction of the bimorph piezoelectric cantilever beam; (b) The top view of 
the effective electrode surface of mode shape 1; (c) The side view of the mode shape 1; (d) The top view of the effective 
electrode surface of mode shape 2; (e) The side view of the mode shape 2; (f) The top view of the effective electrode surface 
of mode shape 3; (g) The side view of the mode shape 3.                                                              
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In this paper, we will try from the original actuator and sensor equation, and electromechanical boundary 
conditions to find one kind of universal theoretical model and reasonable approximate solutions to compare the 
gain and difference between the mode shape and normal shape sensors and actuators. Furthermore we will also 
through the analysis results of computer simulation to verify the correctness and feasibility of the universal 
theoretical model and approximate solutions.  

2. Actuator Equation 
In order to understand the differences between the mode shape and normal shape actuators and sensors, we just 
start from the one-dimension actuator equation of bimorph type piezoelectric cantilever beam. The main contri-
bution of this equation comes from the bending effect, so the membrane effect can be completely ignored. 
Therefore, the equation can be simplified to as follows [12]: 

( ) ( )2 2
1

2 2

, ,M x t w x t
h

x t
ρ

∂ ∂
=

∂ ∂
.                                    (1) 

where the moment M1 can be divided into two terms of the mechanical 1
MM  and electrical moment 1

EM  as 
follow: 

( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1 11 32

,
, , ,M E w x t

M x t M x t M x t D t FP x
x

∂
= + = − +Π

∂
.                        (2) 

As for the constants in the above Equations (1) and (2) can be defined as follow:  

( ) ( )3 3
11 11 1

1

1
3

n

k kk
k

D c z z −
=

 = − ∑ .                                     (3) 

( )
1

n

k k
k

h hρ ρ
=

= ∑ .                                        (4) 

1k k kh z z −= − .                                         (5) 

wherein above the symbols of c11, D11, h, w, t, x, z and ρ  are defined as the Young’s modulus, bending stiff-
ness constant per unit width, thickness, transverse displacement, time, longitudinal coordinate, transverse coor-
dinate and density. 

Furthermore the electrical moment 1
EM  of Equation (2) can be divided into two terms of time domain and 

space domain as follow: 

( ) ( )0 0
3 31 3 3 31 3
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2 e 2 e ,  1,  2, , ,  1i i

n n
j t j t

k kk k
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  Π = = Π = = ∞ = −   ∑ ∑  .                  (6) 

And 

( ) ( ) ( )22 2

2 2
n n

n nMS
n

x xlFP x
x x
φ φ

µ
λ

∂ ∂ 
= =     ∂ ∂ 

.                        (7) 

wherein above the symbols of FPn, l, ( )2π , , andi i n n nfω λ µ φ  are defined as the function of effective electrode 
surface of the nth mode shape, length, natural angular velocity (natural frequency), mode shape eigenvalues, 
mode shape constant and mode shape function. 

Let Equations (2)-(7) substituted into Equation (1), and after finishing, we can get a non-homogeneous partial 
differential equation of motion with transverse displacement of mode shape actuator as follows: 

( ) ( ) ( ) ( )4 2 4
3

4 2 4
11 11

, , n n

MS

w x t w x t t xh
D Dx t x

µ φρ ∂ ∂ Π ∂
+ = 

∂ ∂ ∂  
.                         (8) 

When the surface is uniformly coated and normal polarization with the bimorph type piezoelectric cantilever 
beam, that is, the function of effective electrode surface of Equation (7) can be redefined as: 

( ) Constantn NSNS
FP x C= =   .                                       (9) 
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Then, the second derivative of electrical moment becomes zero. 

( ) ( ) ( )2 2
1

32 2

,
0

E

NS

M x t FP x
t

x x
 ∂ ∂

= Π = 
∂ ∂  

                                (10) 

So for the normal shape actuator, Equation (8) can be simplified as: 

( ) ( )4 2

4 2
11

, ,
0

NS

w x t w x th
Dx t
ρ ∂ ∂

+ = 
∂ ∂  

.                                (11) 

In order for the mode shape and normal shape actuator equations can be applied to structures of different 
lengths, we can try to make Equation (8) and Equation (11) become the dimensionless equations: 

( ) ( ) ( ) ( )4 2 44
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And  
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where the dimensionless mode shape constant can be redefined as: 

2

1
n

n

µ
λ

= .                                             (14) 

where the solution form of Equation (12) and Equation (13) can be expressed as: 

( ) ( ) ( ), , ,h p MS
w x t w x t w x t = +  .                                     (15) 

And 

( ) ( ), ,h NS
w x t w x t=   .                                        (16) 

Furthermore let the homogeneous solution of Equation (16) and Equation (17) are assumed to be as follows: 

( ) ( ), e ij t
h hw x t W x ω= .                                           (17) 

As for the particular solution of Equation (15) is assumed to be as follows: 

( ) ( ), e ij t
p n nw x t A x ωφ= .                                       (18) 

where the symbols of  and n hA W  are defined as the undetermined coefficient and dimensionless homogeneous 
transverse displacement.  

We can take Equation (17) into Equation (12) and Equation (13), then after finishing, we can get a dimen-
sionless homogeneous four-order ordinary differential equation, as: 

( ) ( )
4

4
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d
0,  1, 2, ,
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W x i

x
λ− = = ∞ .                                (19) 

where the dimensionless natural eigenvalue of mode shape is defined as: 

( )
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44
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i
i i

hl
l

D
ρ ω

λ λ= = .                                    (20) 

And the ith natural resonance frequency of piezoelectric beam multilayer or mode shape or normal shape actu-
ator can be derived by Equation (20), as: 

2
11

22π
i

i
Df

hl
λ

ρ
= .                                           (21) 

We can further get a dimensionless homogeneous solution from Equation (19) 
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( ) 1 2 3 4, sinh cosh sin cosh i i i iW x t C x C x C x C xλ λ λ λ= + + + .                      (22) 

In addition, we can take Equation (18) into Equation (12), so get the undetermined coefficient as: 
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.                                (23) 

where the relationship of the fourth-order differential function and zero-order function is: 

( ) ( )
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.                                            (24) 

So Equation (23) can be rewritten as: 
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λ λ φ λ φ
Π

− = .                                (25) 

Thus we can get the solution of the undetermined coefficient. 
4 2
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4 4 2 2
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n n n n
n
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λ µ ω µ
λ λ ω ω

Π Π
= =

− −
.                                (26) 

where 4 4
n iλ λ≠  or 2 2

n iω ω≠  in normal or natural state. 
At this point, we can find the general solution of mode shape and normal shape actuator, as: 

( ) ( )1 2 3 4, sinh cosh sin cos e ij t
MS i i i i n nw x t C x C x C x C x A x ωλ λ λ λ φ = + + + +  .          (27) 

And 
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NS i i i iw x t C x C x C x C x ωλ λ λ λ = + + +  .                (28) 

Next, we can find the special solutions of the bimorph type piezoelectric cantilever beam from the electro- 
mechanical boundary conditions as follow: 

( ) ( ) ( ) ( ) ( ) ( )1 1

11 111 1

, ,
0, 0, 0;  1, ;  1,

E E

x x MS

M x t M x t
w t w t w t w t

D D x
= =

 ∂
′ ′′ ′′= = = = 

∂  
.              (29) 
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where the dimensionless mode shape function of mode shape actuator under clamped-free boundary conditions 
as: 

( ) ( )cosh cos sinh sinn n n n n nx x x x xφ λ λ σ λ λ= − − − .                     (33) 

And the dimensionless eigenvalues nλ  and parameters nσ  of mode shape can be obtained from the follow-
ing transcendental equation and formula: 
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cosh cos 1 0n nλ λ + = .                                      (34) 

And 
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n
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.                                     (35) 

According to the electro-mechanical and clamped-free boundary conditions, we can determine the constants 
of Equation (27) and Equation (28), as follow:  
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where the constants of mode shape actuator are defined as 
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And 

( )
4

3
2 3 4 4

11

1 1n n
n

i n i MS

B
D
µ λ

φ
λ λ λ

  Π ′′′= −  
−   

.                                (39) 

where the second-order and third-order derivative mode shape function on the free boundary as follow: 

( ) ( )21 cosh cos sinh sinn n n n n n nMS MS
φ λ λ λ σ λ λ ′′  = + − +    .                    (40) 

And 

( ) ( )31 sinh sin cosh cosn n n n n n nMS MS
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As for the constants of normal shape actuator were defined as 
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And 

[ ]2 0 NSB = .                                          (43) 

which let 2NSC =  for the function of the effective electrode surface of normal shape actuator. 
Until now, we can get a dimensionless general solution of the mode shape and normal shape actuator as fol-

low: 
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And 
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(45) 
Due to the high frequency vibrations can easily be absorbed by the structure itself, so we are only interested in 

low-frequency vibration. And in order to understand the difference between the mode shape and normal shape 
actuators, we analyzed only for the first three resonant modes of the structures. And according to Equation (34) 
and Equation (35), we can get the eigenvalues and parameters of the first three modes, shown as Table 1. As the 
same time, we can get the dimensionless mode shape functions of the first three resonant modes by Equation (33) 
and Table 1, shown as Figure 2. And we can also get the dimensionless function of the effective electrode sur-
face of first three modes when let Equation (33) take into Equation (7), shown as Figure 3. In addition, we can  
 

 
Figure 2. The dimensionless mode shape function of the first 
three modes of mode shape actuator relative to the unit length 
of structure when i = n.                                  

 

 
Figure 3. The dimensionless function of the effective elec-
trode surface of the first three modes of mode shape actuator 
relative to the unit length of structure when i = n.                

 
Table 1. The eigenvalues and parameters of the first three modes of mode shape actuator under clamped-free boundary con-
ditions.                                                                                                     

Mode nλ  nσ  

1 1.8751 0.7341 

2 4.6941 1.0185 

3 7.8548 0.9992 
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get a dimensionless transverse displacement of the mode shape and normal shape piezoelectric stator under 
steady state and the same driving conditions as shown in Figure 2.  

Another according to Equation (40) and Equation (41), we can get the second and third derivative of mode 
shape function of the first three modes of mode shape actuator relative to the unit length of structure, shown as 
Figure 4 & Figure 5. And we can further that ( ) ( )1 1 0n nφ φ′′ ′′′= =  of the first three modes of mode shape actua-
tor at free end. Therefore in, we can let Equation (44) further simplified as follows: 

( ) ( ) ( )
4

3
4 4 2

11

, e ei ij t j tn
nMS MS

n i n MS

w x t W x x
D

ω ωλ
φ

λ λ λ
 Π = =       − 

.                    (46) 

So far, Equation (46) of mode shape actuator appeared to be consistent with the particular solution of pre-
viously papers [1] [10] [11].  

Furthermore, we can make Equation (45) of normal shape actuator simplifies to 

( ) ( )
( ) ( )

( )
3

2
11

cosh cos
, e e

1 cosh cos
i ii i ij t j t
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i i i NS

x
w x t W x
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   = =     +  

.                    (47) 

where the dimensionless mode shape function of normal shape actuator is defined as 

( ) ( )cosh cos sinh sin ;  where  in normal state.i i i i i ix x x x x i nφ λ λ σ λ λ= − − − ≠           (48) 

And the dimensionless parameters iσ  of normal shape actuator is defined as 

sinh sin
;  where  in normal state.

cosh cos
i i

i
i i

i n
λ λ

σ
λ λ
−

= ≠
+

                          (49) 

According to Equation (46) and Equation (47), we can get the ratio of dimensionless transverse displacement 
 

 
Figure 4. The second derivative of mode shape function of 
the first three modes of mode shape actuator relative to the 
unit length of structure when i = n.                           

 

 
Figure 5. The third derivative of mode shape function of the 
first three modes of mode shape actuator relative to the unit 
length of structure when i = n.                             
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of mode shape and normal shape actuator under conditions of steady state, constant driving voltage and the same 
bending stiffness constant per unit width as follows: 

( ) ( ) ( )
( )
( ) ( )

4

2 4 4 2

cosh cos1: :
1 cosh cos

i in
i i n iMS NS

n n i i i iMS NS

W W x x
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 +      =      − +    
.           (50) 

In order to facilitate understanding of the difference between mode shape and normal shape actuator, we can  
set the above ratio at the free end, that is, ( ) ( ) ( ) ( )

1 1
1   and 1n n i ix x

x xφ φ φ φ
= =
= = , shown as Figure 2. There- 

fore Equation (50) can again be expressed as 
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.            (51) 

3. Sensor Equation 
For the bimorph type piezoelectric cantilever beam under condition of constant electric potential, the sensor or 
current equation per unit length and width of the mode shape and normal shape sensor can be expressed as [12]: 

( )
31

31 20
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x t
∂

= − =
∂ ∂∫ .                                 (52) 

And we can further take Equation (46) and Equation (47) into Equation (52) respectively, let Equation (52) be 
divided into two types of sensor or current equations as follow: 
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where the first derivative of dimensionless mode shape function of the first three modes can be obtained from 
clamped-free boundary conditions, or known from Figure 6. Therefore the ratio of dimensionless current of the 
mode shape and normal shape sensor dependent of eigenvalues under conditions of clamped-free, steady state, 
the same driving voltage and bending stiffness constant per unit width as follows: 

( ) ( ) ( ) ( )
4

4 4

cosh cos1 1: 1 : 1
1 cosh cos

n i i
MS i NS i n i

n i i in i NSMS

I I
λ λ λ

λ λ φ φ
λ λ λ λλ λ

      +′ ′=       +−         
.             (55) 

where the first derivative of dimensionless mode shape function of the mode shape and normal shape sensor can  
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Figure 6. The first derivative of dimensionless mode shape 
function of the first three modes relative to the unit length of 
structure when i = n.                                         

 
be expressed as follow:  

( ) ( ){ }1 sinh sin (cosh cos ) ;  0 0n n n n n n n n MS
φ λ λ λ σ λ λ φ′ ′ = + − − =  .            (56) 

And 

( ) ( ){ }1 sinh sin (cosh cos ) ;  0 0i i i i i i i i NS
φ λ λ λ σ λ λ φ′ ′ = + − − =  .               (57) 

Since the current is proportional to voltage under condition of the same load RL, So Equation (55) can also be 
expressed the ratio of dimensionless voltage of the mode shape and normal shape sensor as follows: 

( ) ( ) ( ) ( )
4

4 4

cosh cos1 1: 1 : 1
1 cosh cos

n i i
MS i NS i n i

n i i in i NSMS

V V
λ λ λ

λ λ φ φ
λ λ λ λλ λ

      +′ ′=       +−         
.            (58) 

4. Case Study: Theory and Simulation Analysis 
In order to understand the differences between mode shape and normal shape actuators and sensors by theory 
and simulation analysis, we specially design a series of one-dimension bimorph type piezoelectric cantilever 
beams, including the mode shape and normal shape actuators and sensors, shown as Figure 7. Wherein the size 
and physical properties of the one-dimension bimorph type piezoelectric cantilever beam can refer to Table 2. In 
addition, we will use the ANSYS code to simulate analysis the mode shape and normal shape actuators and 
sensors. Where we have chosen the element type is the scalar tetragonal 98 of couple field. Furthermore we will 
do the most sophisticated cutting of mesh, so that the analysis of the results can be quickly converged. As for the 
analysis types, we were selected the modal, static and steady state.  

Wherein the step of theoretical analysis is as follows: 
(1-1) Using different frequency spacing ( )1 Hz,  10 Hz and 100 Hzif∆ =  to analyze the dimensionless 

transverse displacement and current or voltage of the first three modes of the mode shape and normal shape ac-
tuators and sensors from Equations (46) and (47) and Equations (52) and (53). 

(1-2) Selecting the minimum frequency spacing ( )1 Hzif∆ =  to analyze the ratio of the dimensionless 
transverse displacement and current or voltage and the mode shape function of the first three modes of the mode 
shape and normal shape actuators and sensors from Equation (50) and Equation (58). 

As for the step of simulation analysis is as follows: 
(2-1) Modeling of the mode shape and normal shape actuators and sensors respectively, including select ele-

ment type, enter the physical properties, as well as coordinate system conversion, as shown Figure 8. 
(2-2) Meshing of the mode shape and normal shape actuators and sensors respectively, including select the 

most sophisticated cutting of mesh or select the smart size 1, as shown Figure 9. 
(2-3) Solving of the mode shape and normal shape actuators and sensors respectively, including setting boun-

dary conditions of electro-mechanical, as shown Figure 10. All of which driving voltage on the effective elec-
trode surface is 1.0 V. 

(2-4) Post-processing of the mode shape and normal shape actuators and sensors respectively, includes 
processing the first three modes, the maximum deformation or electric potential, as shown Figures 11-13. 
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Figure 7. The schematic diagram of the mode shape and normal shape actuators and sensors.                

 
Table 2. The size and physical properties of one-dimension bimorph type piezoelectric cantilever beam.                        

Physical Name Physical Quantities 

Size of Single Layer ( )L W H× ×  50 mm 6 mm 0.7 mm× ×  

Relative Permittivity ( )11ε  1730  

Piezoelectric Stress Constants ( )31e  ( )5.3 N V m− ⋅  

Young’s Modulus ( )11c  120 GPa  

Density ( )ρ  ( )37600 kg m  

Poisson Ratio ( )ν  0.0  

5. Results and Discussion 
According to the results of theory analysis, we found: 
1) Under condition of the frequency spacing of 100 Hz, the maximum dimensionless transverse displacement of 

the second modal of the normal shape and mode shape actuators is smaller than the first and the third mod-
als’, as shown in Table 3 and Figure 14-(a-3). In addition, the maximum dimensionless voltage of the nor-
mal shape and mode shape sensors is proportional to the modal, as shown in Table 3 and Figure 14-(b-1). 

2) Under condition of the frequency spacing of 10 Hz, the maximum dimensionless transverse displacement of 
the normal shape actuators is inversely proportional to the modal, as shown in Table 4 and Figure 14-(a-2). 
Furthermore, the maximum dimensionless transverse displacement of the second modal of the mode shape 
actuator is smaller than the first and the third modals’, as shown in Table 4 and Figure 14-(a-2). As for the 
normal shape and mode shape sensors, the maximum dimensionless voltage is proportional to the modal un- 
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(a)                                                       (b) 

 
(c)                                                       (d) 

Figure 8. Modeling and setting physical properties of the mode shape and normal shape actuators and sensors. (a) The nor-
mal shape actuator and sensor; (b) The mode shape 1 actuator and sensor; (c) The mode shape 2 actuator and sensor; (d) The 
mode shape 3 actuator and sensor.                                                                            
 
Table 3. The maximum dimensionless transverse displacement and voltage of the first three modes of the mode shape and 
normal shape actuators and sensors under condition of the frequency spacing of 100 Hz.                               

Mode 
Actuators Sensors 

NSA (m/m) MS1A (m/m) MS2A (m/m) MS3A (m/m) NSS (V/V) MS1S (V/V) MS2S (V/V) MS3S (V/V) 

1 2.20 2.39 0.09 0.03 8.62 6.17 2.11 2.01 

2 1.79 0.01 2.14 0.04 40.25 0.04 48.08 2.31 

3 6.86 0.00 0.01 13.30 422.45 0.00 0.30 820.33 

 
Table 4. The maximum dimensionless transverse displacement and voltage of the first three modes of the mode shape and 
normal shape actuators and sensors under condition of the frequency spacing of 10 Hz.                                

Mode 
Actuators Sensors 

NSA (m/m) MS1A (m/m) MS2A (m/m) MS3A (m/m) NSS (V/V) MS1S (V/V) MS2S (V/V) MS3S (V/V) 

1 217.08 188.79 0.09 0.03 487.88 764.39 2.09 2.01 

2 33.59 0.01 37.77 0.04 739.25 0.04 848.82 2.29 

3 21.85 0.00 0.01 44.32 1348.82 0.00 0.30 2374.72 
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(a)                                                       (b) 

 
(c)                                                       (d) 

Figure 9. Meshing the mode shape and normal shape actuators and sensors. (a) The normal shape actuator and sensor; (b) 
The mode shape 1 actuator and sensor; (c) The mode shape 2 actuator and sensor; (d) The mode shape 3 actuator and sensor.   
 

der condition of the frequency spacing of 10 Hz, as shown in Table 4 and Figure 14-(b-2). 
3) Under condition of the frequency spacing of 1 Hz, the maximum dimensionless transverse displacement of 

the second modal of the normal shape and mode shape actuators is larger than the first and the third modals’, 
as shown in Table 5 and Figure 14-(a-1). As for the maximum dimensionless voltage of the normal shape 
and mode shape is proportional to the modal under condition of the frequency spacing of 1 Hz, as shown in 
Table 5 and Figure 14-(b-1). 

4) Overall, in addition to the modal 1 or the first modal and under condition of the frequency spacing of 100 Hz, 
the gain or ratio of the second and third modal of the mode shape actuators and sensors are better than nor-
mal shape actuators and sensors, as shown in Table 6. 

5) In terms of the resonance frequency, the approximate solutions through theoretical derivation are consistent 
with the analysis results by computer simulations, as shown in Table 7. 

6) Under conditions of the simulation analysis of static, steady state and modal types, the first modal of the 
normal shape and mode shape actuators and sensors are the same gain or ratio, as shown in Table 8, Table 9 
and Figure 15. 

7) Furthermore, the gain or ratio of the second and third modal of the mode shape actuators and sensors are 
better than the normal shape actuators and sensors, as shown in Table 8, Table 9 and Figure 15. 

6. Conclusion 
According to the results of the theory and simulation analysis, on the whole, we found the first modal of the  
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(a)                                                       (b) 

 
(c)                                                       (d) 

Figure 10. Solving Process_ Setting boundary conditions of electro-mechanical the mode shape and normal shape actuators 
and sensors. (a) The normal shape actuator and sensor; (b) The mode shape 1 actuator and sensor; (c) The mode shape 2 ac-
tuator and sensor; (d) The mode shape 3 actuator and sensor.                                                         
 
Table 5. The maximum dimensionless transverse displacement and voltage of the first three modes of the mode shape and 
normal shape actuators and sensors under condition of the minimum frequency spacing (Δfi = 1 Hz).                     

Mode 
Actuators Sensors 

NSA (m/m) MS1A (m/m) MS2A (m/m) MS3A (m/m) NSS (V/V) MS1S (V/V) MS2S (V/V) MS3S (V/V) 

1 256.00 222.94 0.09 0.03 898.94 576.12 2.09 2.01 

2 301.21 0.01 350.85 0.04 6637.87 0.04 7885.37 2.29 

3 138.78 0.00 0.01 333.99 8562.97 0.00 0.30 20606.27 

 
Table 6. The gain or ratio of dimensionless transverse displacement and voltage of the mode shape and normal shape actua-
tors and sensors relative to the frequency under condition of different frequency spacing (Δfi = 1 Hz, 10 Hz & 100 Hz).       

Frequency Spacing 
Actuators Sensors 

MS1A.NS1A  
(m/m) 

MS2A.NS2A  
(m/m) 

MS3A.NS3A  
(m/m) 

MS1S.NS1S 
(V/V) 

MS2S.NS2S 
(V/V) 

MS3S.NS3S 
(V/V) 

1 Hz 0.87 1.16 2.40 0.64 1.19 2.41 

10 Hz 0.87 1.12 2.03 0.64 1.15 2.03 

100 Hz 1.08 1.20 1.94 0.72 1.20 1.94 
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Figure 11. Post-processing the first three modes and the maximum deformation of the mode shape and normal shape actuators and 
sensors. (a) The first three modes of the normal shape actuator and sensor; (b) The first three modes of the mode shape 1 actuator and 
sensor; (c) The first three modes of the mode shape 2 actuator and sensor; (d) The first three modes of the mode shape 3 actuator and 
sensor (analysis type: modal).                                                                                     
 

normal shape and mode shape actuators and sensors are the same gain. Or in other words, the design concept of 
the first modal of mode shape actuator or sensor is not necessarily better than of the first modal of normal shape 
actuator or sensor, or even worse. However, the gain of the second and third modal of the mode shape actuators  
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Figure 12. Post-processing the first three modes and the maximum electric potential of the mode shape and normal shape actuators 
and sensors. (a) The first three modes of the normal shape actuator and sensor; (b) The first three modes of the mode shape 1 actuator 
and sensor; (c) The first three modes of the mode shape 2 actuator and sensor; (d) The first three modes of the mode shape 3 actuator 
and sensor (analysis type: modal).                                                                                     
 

and sensors are better than the normal shape actuators and sensors under any operating states. Most importantly, 
we have to find a universal theoretical model and approximate solutions in this paper, which can predict the gain 
of the first three modes of normal shape and mode shape actuators and sensors, and through the analysis results  
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(a)                                                       (b) 

 
(c)                                                       (d) 

Figure 13. Post-processing the electric potential output state of the mode shape and normal shape actuators and sensors. (a) 
The normal shape actuator and sensor; (b) The mode shape 1 actuator and sensor; (c) The mode shape 2 actuator and sensor; 
(d) The mode shape 3 actuator and sensor (analysis type: steady state).                                              
 
Table 7. The resonance frequency and the ratio of resonance frequency of the first three modes of the mode shape and nor-
mal shape actuators and sensors by theory and simulation analysis (analysis type: modal).                               

Mode Theory (Hz) NS (Hz) MS1 (Hz) MS2 (Hz) MS3 (Hz) NS Theory MS1 Theory MS2 Theory MS3 Theory 

1 359 359 359 360 360 1.000 1.000 1.003 1.003 

2 2253 2245 2247 2247 2247 1.001 0.999 0.999 0.999 

3 6308 6256 6267 6262 6264 0.992 0.994 0.993 0.993 

 
Table 8. The maximum deformation and the ratio of maximum deformation of the mode shape and normal shape actuators 
by simulation analysis (analysis type: static & steady state).                                                           

Analysis Type NSA (m) MS1A (m) MS2A (m) MS3A (m) MS1A.NSA (m/m) MS2A.NSA (m/m) MS3A.NSA (m/m) 

Static & Steady State 5.18E−14 −1.52E−13 −9.57E−11 −1.74E−10 2.93 1846.88 3353.80 



J. M. Jou 
 

 
201 

 

Figure 14. (a-1)-(a-3) The dimensionless transverse displacement ( )W  of the mode shape and normal shape actuators rela-

tive to the frequency under condition of different frequency spacing; (b-1)-(b-3) The dimensionless current ( )I  or voltage 

( )V  of the mode shape and normal shape sensors relative to the frequency under condition of different frequency spacing.    
 
Table 9. The maximum sensing or output voltage and the ratio of maximum sensing or output voltage of the first three mod-
es of the mode shape and normal shape sensors by simulation analysis (analysis type: modal).                           

Mode NSS (V) MS1S (V) MS2S (V) MS3S (V) MS1S:NSS (V/V) MS2S:NSS (V/V) MS3S:NSS (V/V) 

1 9 45 643 686 4.82 68.70 73.37 

2 330 1506 25131 26925 4.56 76.13 81.56 

3 2325 11946 194692 209525 5.14 83.75 90.13 
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Figure 15. (a-1)-(a-3) The maximum dimensionless transverse displacement ( )W  of the first three modes of the mode 

shape and normal shape actuators relative to the dimensionless length under condition of different frequency spacing; 
(b-1)-(b-3) The maximum dimensionless current ( )I  or voltage ( )V  of the first three modes of the mode shape and nor-

mal shape sensors relative to the dimensionless length under condition of different frequency spacing.                             
 
of computer simulation to confirm. 
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