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Abstract 
This paper develops a parameter-expanded Monte Carlo EM (PX-MCEM) algorithm to perform 
maximum likelihood estimation in a multivariate sample selection model. In contrast to the cur- 
rent methods of estimation, the proposed algorithm does not directly depend on the observed-da- 
ta likelihood, the evaluation of which requires intractable multivariate integrations over normal 
densities. Moreover, the algorithm is simple to implement and involves only quantities that are 
easy to simulate or have closed form expressions. 
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1. Introduction 
Sample selection models, pioneered in [1]-[3], are indispensable to researchers who use observational data for 
statistical inference. Among the many variants of these types of models, there is a growing interest in multiva- 
riate sample selection models. These are used to model a system of two or more seemingly unrelated equations, 
where the outcome variable for each equation may be non-randomly missing or censored according to its own 
stochastic selection variable. Applications range from modeling systems of demand equations [4] [5] to house- 
hold vehicle usage [6]-[8]. A common specification is to assume a correlated multivariate normal distribution 
underlying both the outcomes of interest and the latent variables in the system. 

There are two dominant approaches in the current literature to estimate these models. One approach is to use 
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maximum likelihood (ML) estimation. However, as noted in the literature, a major hurdle in evaluating the like- 
lihood is that it requires computations of multivariate integrals over normal densities, which do not generally 
have closed form solutions. [9] discusses the ML estimation of these models and proposes to use the popular 
Geweke, Hajivassiliou, and Keane (GHK) algorithm to approximate these integrals in a simulated ML frame- 
work. While this strategy works reasonably well, the GHK algorithm can be difficult to implement. Another 
popular approach is to use two-step estimation (see [10] for a survey). In general, there is a tradeoff in the statis-
tical properties and the computational simplicity for these estimators. If efficiency and consistency are of pri- 
mary concern, then ML estimation should be preferred over two-step estimation. 

The objective of this paper is to develop a simple ML estimation algorithm for a commonly used multivariate 
sample selection model. In particular, this paper develops a parameter-expanded Monte Carlo expectation 
maximization (PX-MCEM) algorithm that differs from [9] in a few important ways. First, the PX-MCEM algo- 
rithm does not use the observed-data likelihood directly, so it avoids the aforementioned integrations. Second, 
the proposed iterative algorithm does not require the evaluations of gradients or Hessians, which become increa- 
singly difficult to evaluate with more parameters and equations. Third, the algorithm is straightforward to im-
plement. It only depends on quantities that are either easy to simulate or have closed form expressions. This last 
point is especially appealing when estimating the covariance matrix parameter since there are non-standard re-
strictions imposed onto it for identification. 

This paper is organized as follows. The multivariate sample selection model (MSSM) is formulated in Section 
2. Section 3 begins with a brief overview of the EM algorithm for the MSSM and continues with the develop- 
ment of the PX-MCEM algorithm. Methods to obtain the standard errors are discussed. Section 4 offers some 
concluding remarks. 

2. Multivariate Sample Selection Model 
The MSSM is  

, , ,i j i j j i jy x β∗ ′= +                                           (1) 

, , ,i j i j j i js w γ ν∗ ′= +                                          (2) 

( ), , 0i j i js s∗= >                                           (3) 

, ,
,

,

if  1
missing if  0

i j i j
i j

i j

y s
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∗ ==  =
                                 (4) 

for observations 1, ,i N=  , and equations 1, ,j J=  . In the previous expressions, ,i jy∗  is the continuous 
outcome of interest for observation i  and equation j . Using similar indexing notation, ,i js∗  is the latent  
variable underlying the binary selection variable ( ), , 0i j i js s∗= > , where ( )A  denotes an indicator function  

that equals 1  if event A  is true and 0 otherwise. Sample selection is incorporated by assuming that ,i jy∗  is  

missing when , 0i js = . Otherwise, ,i jy∗  is observed and equal to ,i jy . For later use, define ( ),1 ,, ,i i i Js s s ′=   

and ( ),1 ,, ,i i i Js s s∗ ∗ ∗ ′=  , where the prime symbol in is , is∗ , and in the rest of this paper is used to denote matrix  

transpose. 
Furthermore, ,i jx  and ,i jw  are column vectors of exogenous covariates, and jβ  and jγ  are conforming  

vectors of parameters. Define ( )1 2, , , Jβ β β β
′′ ′ ′=   and ( )1 2, , ,

J
γ γ γ γ

′′ ′ ′=  . For identification, ,i jw  must  

contain at least one exogenous covariate that does not overlap with ,i jx  (refer to [11] for these exclusion res-  

trictions). The unobserved errors ( ),1 ,2 ,, , ,i i i i J
′=      and ( ),1 ,2 ,, , ,i i i i Jν ν ν ν ′=   are jointly distributed as a  

J2 -dimensional multivariate normal with a mean vector of zeros and an unknown covariance matrix of Ω . 

Formally, ( ) ( )2, 0,
iid

i i Jν
′′ ′ ∼ Ω   with  
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The submatrix ννΩ  is restricted to be in correlation form to identify the parameters corresponding to the latent 
variables [9]. The other elements of Ω  are restricted such that the matrix is symmetric and positive definite.  

The covariates and binary selection variables are always observed. Without loss of generality, assume that the 
outcomes for any observation i  are only missing for the first im  equations, where 0 im J≤ ≤ . Define  

( ),obs , 1 ,, ,
ii i m i Jy y y+

′=  , and let { }obs ,obs 1
,

N
i i i

y y s
=

=  denote the observed data. The observed-data likelihood 

derived from (1) through (5) is denoted as ( )obs , ,f y β γ Ω . See [9] for an exact expression of this likelihood. 

3. Estimation  
3.1. Overview of the EM Algorithm 
The PX-MCEM algorithm is based on the EM algorithm of [12]. The basic idea behind the EM algorithm is to 
first augment obsy  with a set of “missing data” misy  such that the observed-data likelihood is preserved when 
the missing data are integrated out of the complete-data likelihood. Formally, the missing data must satisfy  

( ) ( )obs mis obs, , , , ,f y f y yβ γ β γ Ω = Ω  ,                          (6) 

where ( )mis obs, , ,f y y β γ Ω  is the complete-data likelihood to be defined later. 

The EM algorithm then proceeds iteratively between an expectation step (E-step) and a maximization step 
(M-step) as follows. In iteration ( )1t +  of the algorithm, compute in the E-step  

( ) ( ) ( )( ) ( )( )mis obs, , , , log , , ,t t tQ f y yβ γ β γ β γ Ω Ω = Ω  ,                  (7) 

where the expectation is taken with respect to the conditional predictive distribution for the missing data,  
( ) ( ) ( )( )mis obs, , ,t t ty yπ β γ Ω , and in the M-step, find  

( ) ( ) ( )( )
, ,

arg max , , , ,t t tQ
β γ

β γ β γ
Ω

Ω Ω .                             (8) 

Denote the maximal values as ( )1tβ + , ( )1tγ + , and ( )1t+Ω , and continue on with the algorithm until convergence. 
The final maximal values are at least local maxima of the observed-data likelihood function. 

For the MSSM, misy  consists of all the missing outcomes and latent variables. Specifically,  

{ }mis ,mis 1
,

N

i i i
y y s∗

=
= , where ( ),mis ,1 ,= , ,

ii i i my y y∗ ∗ ′
 . Furthermore, denote ( ),com ,mis ,obs= , ,i i i iy y y s∗

′′′ ′  as the vector  

of complete data, iX  as a block-diagonal matrix with the rows of covariates corresponding to the elements of 
,comiy  on its block diagonals, and ( )= ,θ β γ ′′ ′ . The complete-data likelihood for the MSSM is given by  

( ) ( ) ( )mis obs ,com ,com
1

, , , , ,
N

i i i
i

f y y f y p s yβ γ β γ
=

Ω = Ω∏                    (9) 

with ( ) ( ),com 2 ,com, , ,i J i if y y Xβ γ φ θΩ = Ω  which is a density function for a 2J -dimensional multivariate  

normal with mean iX θ  and covariance Ω , and  

( ) ( ) ( ) ( ) ( ){ },com , , , ,
1

1 0 0 0
J

i i i j i j i j i j
j

p s y s s s s∗ ∗

=

= = > + = ≤∏     .              (10) 

Equation (10) is a degenerate density since conditioning on is∗  in ,comiy  determines is  from (3). Note that 
the observed-data likelihood from [9] is obtained when misy  is integrated out of (9), hence the condition in (6) 
holds.  
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3.2. PX-MCEM Algorithm  
The standard EM algorithm using (7) and (8) is difficult to implement for the MSSM as the E-step and M-step 
are intractable. The PX-MCEM algorithm addresses this issue by modifying the E-step in two ways and leads to 
an M-step that can be evaluated with closed form quantities. Stated succinctly, the PX-MCEM algorithm is as 
follows. 

1. Initialize ( )0β , ( )0γ , ( )0Ω , and the number of Gibbs sampling draws G . 
At iteration 1t + :  
2. Draw G  sets of missing data, denoted by ( ) ( )1

mis mis, , Gy y , from ( ) ( ) ( )( )mis obsπ , , ,t t ty y β γ Ω  using Gibbs 
sampling.  

3. PX-MC E-step: Estimate ( ) ( ) ( )( ), , , ,t t tQ α δ β γΣ Ω  as  

( ) ( ) ( )( ) ( )( )( )mis obs
1

1, , , , log , , ,
G

t t t g
G

g
Q f y y

G
α δ β γ α δ

=

Σ Ω = Σ∑ .                  (11) 

4. PX-MC M-step: Maximize ( ) ( ) ( )( ), , , ,t t t
GQ α δ β γΣ Ω  with iterative generalized least squares (IGLS) to  

obtain the maximizing parameters ( )1tα + , ( )1tδ + , and ( )1t+Σ .  
5. Reduction step: Apply reduction functions to ( )1tα + , ( )1tδ + , and ( )1t+Σ  to obtain ( )1tβ + , ( )1tγ + , and 
( )1t+Ω .  
6. Repeat Steps 2 through 5 until convergence. The converged values are the ML estimates β̂ , γ̂ , and Ω̂ . 
Each step is described in more detail in the subsequent sections.  

3.2.1. PX-MC E-Step 
Following [13], the first modification is to expand the parameter space of the complete-data likelihood function 
from ( ), ,β γ Ω  to ( ), ,α δ Σ . The expanded parameters play similar roles as the original parameters, however 
Σ  is expanded into a standard covariance matrix without the correlation restrictions. The parameter-expanded 
complete-data likelihood function is  

( ) ( ) ( )mis obs ,com ,com
1

, , , , ,
N

i i i
i

f y y f y p s yα δ α δ
=

Σ = Σ∏                       (12) 

with ( ) ( ),com 2 ,com, , ,i J i if y y Xα δ φΣ = Θ Σ , where ( ),α δ ′′ ′Θ = , and ( )1 , , Jα α α
′′ ′=   and ( )1 , , Jδ δ δ

′′ ′=    

are defined analogously to β  and γ . The advantage of using (12) instead of (9) is that Σ  is easier to work 
with in the PX-MC M-step. 

Second, instead of computing ( ) ( ) ( )( ) ( )( )mis obs, , , , log , , ,t t tQ f y yα δ β γ α δ Σ Ω = Σ   analytically, it is 

approximated as (11) with Monte Carlo methods and Gibbs sampling. To draw from  
( ) ( ) ( )( )mis obs , , ,t t ty yπ β γ Ω , simply draw ,misiy  and is∗  from the conditional distribution  

( ) ( ) ( )( ),mis ,obs, , , , ,t t t
i i i iy s y sπ β γ∗ Ω  for 1, ,i N=  . From (9), we have that  

( ) ( ) ( )( ) ( ) ( )( ) ( ),mis ,obs 2 ,com ,com, , , , , ,t t t t t
i i i i J i i i iy s y s y X p s yπ β γ φ θ∗ Ω ∝ Ω ,            (13) 

where ( ) ( ) ( )( ),t t tθ β γ
′′ ′= . For the missing outcomes, it is easy to see from (13) that  

( )
( ) ( ) ( )

( ) ( )( )2
, ,obs 1,mis , ,, , , , , , ,t t t

i j i i ii j i j j i j jy y s y s β γ µ σ∗ ∗
− − −Ω                    (14) 

for 1, , ij m=  , where ( ),misi jy −  is equivalent to ,misiy  with ,i jy∗  removed, and ( ),i j jµ −  and ( )
2
,i j jσ −  are 

respectively the conditional mean and variance of ,i jy∗  given all other elements in ,comiy  from  
( ) ( )( )2 ,com ,t t

J i iy Xφ θ Ω . 

Similarly, for the latent variables,  
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( )
( ) ( ) ( )

( ) ( )( ),

2
, ,mis ,obs, , ,, , , , , , ,

i j

t t t
i j i i i Bi j i j j i j js s y y s β γ λ ω∗ ∗

− − −Ω                   (15) 

for 1, ,j J=  , where ( )2,A a b  denotes a univariate normal distribution with mean a  and variance 2b  

truncated to the region A . In (15), ( ),i js∗ −  is is∗  with ,i js∗  removed, ,i jB  is the interval ( ],0−∞  if , 0i js =  

and ( )0,+∞  otherwise, and ( ),i j jλ −  and ( )
2
,i j jω −  are respectively the conditional mean and variance of ,i js∗  

given all other elements of ,comiy  from ( ) ( )( )2 ,com ,t t
J i iy Xφ θ Ω . 

The Gibbs sampler recursively samples from the full conditional distributions in (14) and (15) in the usual 
way. After a sufficient burn-in period, the last G  draws are used in (11).  

3.2.2. PX-MC M-Step and Reduction Step 
By recognizing that (11) is proportional to the log-likelihood function of a seemingly unrelated regression model 
with NG  observations and 2J  equations, the maximization can be performed with IGLS. IGLS utilizes the 
quantities  

( )
1

1 1
,com

1 1 1 1

G N G N
g

i i i i
g i g i

X X X y
−

− −

= = = =

   ′ ′Θ = Σ Σ   
   
∑∑ ∑∑                            (16) 

and  

( )( ) ( )( ),com ,com
1 1

1 G N
g g

i i i i
g i

y X y X
NG = =

′Σ = − Θ − Θ∑∑   ,                        (17) 

where ( )
,com
g

iy  is equivalent to ,comiy  with ( )
,mis
g

iy  and ( )g
is∗ . First evaluate (16) with 1−Σ  removed, which 

amounts to estimating Θ  equation by equation, and then evaluate (17) based on Θ . Proceed by iterating (16)  
and (17) recursively until convergence. Denote the converged values as ( )1tα + , ( )1tδ + , and ( )1t+Σ . 

In the reduction step, set ( ) ( )1 1t tβ α+ += , ( ) ( )1 1t t
j j J jdγ δ+ +

+=  ( )1 j J≤ ≤ , and ( ) ( )1 11 1t tD D+ +− −Ω = Σ , where 

( )1 2diag 1, ,1, , ,J JD d d+=    is a 2 2J J×  diagonal matrix with the first J  diagonals equal to 1 and the re-  
maining J  diagonals equal to the square root of the last J  diagonals of ( )1t+Σ . The previous transformations 
are referred to as the reduction functions, and they are needed because (12) is used instead of (9) in the 
algorithm [13].  

3.3. Standard Errors  
The observed information matrix is  

( )( ) ( )( )2
mis obs mis obslog , , , log , , ,f y y f y yβ γ β γ   ∂ Ω ∂ Ω   − −   ′∂Ψ∂Ψ ∂Ψ      

  ,            (18) 

where ( ), ,β γ ′′ ′ ′Ψ = Ξ , and Ξ  is a column vector denoting the unique elements in Ω . Evaluate (18) at the 

ML estimates, and take the expectation and variance with respect to ( )mis obs
ˆ ˆˆ, , ,y yπ β γ Ω . These moments are  

estimated by taking additional draws from the Gibbs sampler and constructing their Monte Carlo analogs. The 
standard errors are the square roots of the diagonals of the inverse estimated quantity in (18).  

4. Concluding Remarks 
A new and simple ML estimation algorithm is developed for multivariate sample selection models. Roughly 
speaking, the implementation of this algorithm only involves iteratively drawing sets of missing data from well- 
known distributions and using IGLS on the complete data, both of which are inexpensive to perform. By using 
parameter expansion and Monte Carlo methods, the algorithm only depends on quantities with closed form 
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expressions, even when estimating the covariance matrix parameter with correlation restrictions. This algorithm 
is readily extendable to other types of selection models, including extensions to various types of outcome and 
selection variables with an underlying normal structure, and modifications to time-series or panel data.  
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