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Abstract 
In this paper, a kind of fire new nonlinear integrator and integral action is proposed. Consequently, 
a conventional Proportional Nonlinear Integral (P_NI) observer and two kinds of added-order P_NI 
observers are developed to deal with the uncertain nonlinear system. The conditions on the ob-
server gains to ensure the estimated error to be ultimate boundness, which shrinks to zero as the 
states and control inputs converge to the equilibrium point, are provided. This means that if the 
observed system is asymptotically stable, the estimated error dynamics is asymptotically stable, 
too. Moreover, the highlight point of this paper is that the design of nonlinear integral observer is 
achieved by linear system theory. Simulation results showed that under the normal and perturbed 
cases, the pure added-order P_NI observer can effectively deal with the uncertain nonlinearities 
on both the system dynamics and measured outputs. 
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1. Introduction 
State observer design plays an essential role in the design of control system. Compared with most type of ob-
servers, the Proportional and Integral (PI) observers as an extension of Luenberger’s observer [1] have attracted 
considerable attention over the past 30 years. By using the integral information as an additional degree of free-
dom, PI observers can significantly improve the estimation error dynamics. Thus, the design and application of 
PI observer remain an interesting research topic.  

The PI observer was first proposed by [2] for single input single output linear time-invariant system. After 
that, PI observers for linear multivariable time-varying system [3], linear systems with unknown input distur-

http://www.scirp.org/journal/ijmnta
http://dx.doi.org/10.4236/ijmnta.2014.35023
http://dx.doi.org/10.4236/ijmnta.2014.35023
http://www.scirp.org/
mailto:baishunliu@163.com
mailto:qdqtlxq@sina.com
mailto:jianhui_li@163.com
http://creativecommons.org/licenses/by/4.0/


B. S. Liu et al. 
 

 
211 

bances [4], linear uncertain system [5], descriptor system [6] [7], respectively, appeared. However, all of PI ob-
servers were designed by proportional to a linear integral of the output estimated error. Presently, P_NI observ-
ers have not been developed.  

The observers for nonlinear uncertain systems mainly focus on particular classes of nonlinear systems. For the 
class of Lipschitz nonlinear system, an observer [8] was proposed to permit the simultaneous estimation of the 
states and the unknown inputs. For a class of nonlinear systems with unknown inputs, the work of [9] has pro-
posed a high gain observer to estimate the states and unknown inputs. In [10], a robust unknown input observer 
for linear and nonlinear systems was proposed in LMI formulation. An unknown input observer for a class of 
nonlinear uncertain system, especially consider the linear uncertainties on output matrix, was proposed by [11] 
and the observer design problem was solved via strong conditions. Most of the observers above were only used 
to deal with the system, which measured output is a linear combination of the system state, but for the nonlinear 
case, there are only a few results [4] [5] [7] [9] to deal with the measurement disturbances. Specially, in [9], PI 
observer design was discussed for a system with constant measurement disturbances. An interesting reformula-
tion of PI observer was given by [5], but it is only valid for attenuating a certain bounded noise in a single output 
linear uncertain system. A proportional multiple integral observer for descriptor system was proposed by [7], 
which allows us to decouple or attenuate measurement output disturbances. However, to the best of our knowl-
edge, for the measured output with uncertain nonlinearities on the system states, there are no results. 

Therefore, in consideration of the recent progress in the integral control domain, the development of integral 
observer is so far behind. This point is easy to be seen in the literatures [12]-[18]. General integral control de-
signs based on linear system theory, sliding mode technique and feedback linearization technique were pre-
sented by [12]-[14], respectively. In references [15] and [16], general concave and convex integral control along 
with the bounded integral control actions were proposed, respectively. The method to construct general bounded 
integral control was presented by [17]. The generalization of integrator and integral control action appeared in 
[18]. All these nonlinear integral control strategies above stimulate us to develop the nonlinear integral observer 
and use it to deal with the system with uncertain nonlinearities that appear on both the system dynamics and 
measured outputs. 

Motivated by the cognitions above, this paper proposes a conventional P_NI observer and two kinds of 
added-order P_NI observers along with their design method, respectively. The main contributions are as follows: 
1) A kind of fire new nonlinear integrator and integral action is proposed; 2) The gap that there is not nonlinear 
integral observer is filled by presenting three kinds of nonlinear integral observers; 3) For the system with un-
certain nonlinearities that appear on both the system dynamics and measured outputs, two solutions, that is, 
mixed and pure added-order P_NI observers, are provided; 4) By linear system theory and Lyapunov method, 
the conditions on the observer gains to ensure the estimated error to be ultimate boundness, which shrinks to 
zero as the states and control inputs converge to the equilibrium point, are provided. This means that if the ob-
served system is asymptotically stable, the estimated error dynamics is asymptotically stable, too. Moreover, the 
highlight point of this paper is that the design of nonlinear integral observer is achieved by linear system theory.  

Throughout this paper, we use the notation ( )m Aλ  and ( )M Aλ  to indicate the smallest and largest eigen- 

values, respectively, of a symmetric positive define bounded matrix ( )A x , for any nx R∈ . The norm of vector  

x  is defined as Tx x x= , and that of matrix A  is defined as the corresponding induced norm  

( )T
MA A Aλ= .  

The remainder of the paper is organized as follows: Section 2 describes the system under consideration, as-
sumption and definition. Section 3 addresses the design of nonlinear integral observers. Simulations are pro-
vided in Section 4. Conclusions are presented in Section 5. 

2. Problem Formulation 
Consider the following observable nonlinear system,  

( )
( )

, ,
,

x Ax f x u w
y Cx h x w

 = +
 = +



                                   (1) 

where n
xx D R∈ ⊂  is the state, p

uu D R∈ ⊂  is the control input, p
yy D R∈ ⊂  is the measured output, 
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lw R∈  is a vector of unknown constant parameters and disturbances, A  and C  are all constant matrices.  
For convenience, we state all definitions, assumptions and theorems for the case when the equilibrium point is 

at the origin of nR , that is, 0x = . 
Assumption 1: No loss of generality, suppose that the function f  and h  satisfy the equation, 

( )
( )

00 0, ,
0 0,

f u w
h w

 =
 =

                                     (2) 

where 0u  is the steady-state control that is needed to maintain equilibrium at the origin of x . 
For the purpose of this paper, it is convenient to introduce the following definition.  
Definition 1: ( ), ,F a b xΦ Φ Φ  with 0aΦ > , 0bΦ > , and nx R∈  denotes the set of all continuous differen- 

tial increasing functions [17], ( ) ( ) ( ) ( ) T
1 1 2 2 n nx x x x Φ = Φ Φ Φ   such that ( )0 0Φ = ,  

( ) :i i i ix b x R x aΦ ΦΦ ≥ ∀ ∈ >  ( ) ( )d d 0 1,2, ,i i i ix x x R i nΦ > ∀ ∈ =   

where •  stands for the absolute value. 
Figure 1 depicts the example curves for one component of the function belonging to the function set FΦ . For 

instance, for all x R∈ , the functions, ( )arcsin h x , ( )tan h x , ax , 3ax bx+  ( 0a > , 0b > ), ( )sin h x , and 
so on, all belong to function set FΦ . 

3. Observer Design 
This section proposes three kinds of nonlinear integral observers, respectively. First, a conventional P_NI ob-
server is proposed to deal with the system without uncertainties in measured output; Second, a mixed added- 
order P_NI observer was developed for the system with the uncertain nonlinearities that appear on both the sys-
tem dynamics and measured outputs; Finally, a pure added-order P_NI observer is provided to simplify the de-
sign of mixed added-order P_NI observer. 

3.1. Conventional P_NI Observer  
For the system (1), a conventional P_NI observer can be designed as follows, 

( ) ( ) ( )
( )

( )( ) ( )

0

0
1

ˆ ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ,

ˆd d

yx Ax f x u w K y y K
y Cx h x w

y y

σ σ

σ σ σ
−

 = + + − + Φ = +


= Φ −





                       (3) 

where x̂  is the estimated state; ŵ  is the prescient constant parameters and/or disturbances; ŷ  is the esti- 
mated output; ( )Φ •  belongs to the function set FΦ ; ( )( ) ( )1 ˆd d )i i i i i iy yσ σ σ −= Φ − ; yK  and Kσ  are all  

gain matrices; ( )0 ˆ ˆ, ,f x u w  and ( )0 ˆ ˆ,h x w  are the nominal models of ( ), ,f x u w  and ( ),h x w , respectively. 
Here, ( )0 ˆ ˆ,h x w  needs to satisfy ( )0 ˆ0, 0h w = .  

Thus, the error dynamics can be obtained by subtracting (3) from (1),  

( ) ( ) ( )( ) ( ) ( )
( ) ( )

0 0ˆ ˆ, , ,

ˆ,
y y h f

h

e A K C e K K x x x x u u

Ce x x
σ σ σ δ δ

σ δ

 = − − Φ −Φ − + −

Φ = +





                    (4) 

where ˆe x x= −  is the estimation state error,  

( ) ( ) ( ) ( ) ( )0 0ˆ ˆ ˆ ˆ, , 0, , 0,h x x h x w h w h x w h wδ = − − + , 

( ) ( ) ( ) ( ) ( )0 0 0 0 0ˆ ˆ ˆ ˆ, , , , 0, , , , 0, ,f x x u u f x u w f u w f x u w f u wδ − = − − +  

and Kσ  is chosen to be nonsingular and large enough such that the equation, 

( ) ( )0 0 0 ˆ0, ,K f u wσ σΦ =                                   (5) 

holds as 0e = , 0e = , ˆ 0x = , ˆ 0x =  and 0u u=  of the error dynamics (4). 
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Figure 1. Example curves for one component of the function 
belonging to the function set FΦ .                          

 
Therefore, we ensure that there is a unique solution 0σ , and then ( )00,σ  is the unique equilibrium point of 

the system (4) in the domain of interest. At the equilibrium point, 0e = , 0e = , ˆ 0x = , ˆ 0x = , and 0u u= , ir-
respective of the value of 0u . 

Assumption 2: By Assumption 1 and the definitions of ( )ˆ,h x xδ  and ( )0ˆ, ,f x x u uδ − , it is reasonable to 
suppose them to satisfy, 

( )ˆ, x e
h h hx x x eδ γ γ≤ +                                   (6) 

( )0 0ˆ, , x e u
f f f fx x u u x e u uδ γ γ γ− ≤ + + −                         (7) 

where x
hγ , x

fγ , e
hγ , e

fγ  and u
fγ  are all positive constants. 

Now, the design task is to provide the conditions on the gains yK  and Kσ  such that ( )lim 0t e t→∞ = . In 
the absence of ( )0ˆ, ,f x x u uδ −  and ( )ˆ,h x xδ , the asymptotic stability of the error dynamics (4) can be 
achieved by designing the matrix  

0
yA K C K

C
σ− − 

Λ =  
 

 

is Hurwitz. 
By linear system theory, a quadratic Lyapunov function ( ) TV Pη η η=  can be obtained. Where P  is the  

solution of Lyapunov equation TP P QΛ +Λ = −  and ( ) ( ) T
0eη σ σ = Φ −Φ  . 

We use ( )V η  as a Lyapunov function candidate, and then the time derivative of ( )V η  along the trajecto-
ries of the error dynamics (4) is,  

( ) ( ) ( )
( )

T T T T T
0

T
0

ˆ, , ,

ˆ, , ,

y

y

V P P P P P K x x u u

K x x u u P

η η η η η η η η δ

δ η

= + = Λ + Λ + −

+ −



 

                 (8) 

where ( ) ( ) ( )
( )
0

0

ˆ ˆ, , ,
ˆ, , ,

ˆ,
f y h

y
h

x x u u K x x
K x x u u

x x
δ δ

δ
δ

 − −
− =  

 
. 

Now, using (2), (6) and (7), we have,  

( ) ( ) ( ) ( )0 0ˆ, , , , , , ,e e e u u x x x
y y h f f y h fK x x u u K e u u K xδ δ δδ γ γ γ γ γ γ γ γ− ≤ + − +             (9) 

Substituting (4) into (8), using the inequality (9), Lyapunov equation TP P QΛ +Λ = −  with Q I= , and  
e η≤ , obtain, 

( ) 2
0

x uV x u uη
η η ηη ρ η ρ η ρ η≤ − + + −                        (10) 
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where ( )2u u u
f Pη δρ γ γ= , ( )2 , ,x x x x

y h fK Pη δρ γ γ γ=  and ( )1 2 , ,e e e
y h fK Pη

η δρ γ γ γ= − . 

The first term in the right-hand side of the inequality (10) is negative define when, 

( )1 2 , , 0x e e
y h fK Pδγ γ γ− >                                  (11) 

Furthermore, if the following inequality, 

0
x ux u uη η

η
η

ρ ρ
η

θρ
+ −

≥                                  (12) 

holds, it can be verified, 

( ) ( ) 21V η
ηη θρ η≤ − −                                    (13) 

where 0 1θ< < . Thus, the trajectory of the error dynamics (4) reaches the set 

0
x ux u uη η

η
η

ρ ρ
η

θρ

 + − Ω = ≤ 
  

 

in finite time. The above argument shows that the error dynamics (4) is ultimate boundness with an ultimate  
bound that decreases as x  and 0u u−  reduce, that is, 0η →  as 0x →  and 0 0u u− → . In fact,  

0η →  means x̂ x→  and 0σ σ→ . This demonstrates that if the nonlinear system (1) is asymptotically 
stable, and then the error dynamics (4) is asymptotically stable, too. Moreover, a method for estimating the error 
boundness is provided here. This established the following theorem. 

Theorem 1: Under Assumption 1 and 2, if there exist the gain matrices yK  and Kσ  such that the follow-
ing inequality, 

( )( ) ( )0 0 ˆ0, ,m K a f u wσλ ΦΦ >                             (14) 

and the inequality (11) hold, and then the error dynamics (4) is ultimate boundness with an ultimate bound that 
decreases as x  and 0u u−  reduce, that is, x̂ x→  and 0σ σ→  as 0x →  and 0u u→ . 

Discussion 1: From the error dynamics (4), it is obvious that the observer (3) is only effective for the system  
with ( )ˆ, 0h x xδ = , that is, by increasing gain yK , the uncertain nonlinear action ( )0ˆ, ,f x x u uδ −  can be effe- 
ctively attenuated. However, when ( )ˆ, 0h x xδ ≠ , it results in a dilemma, that is, as follows: 1) By increasing the 
only unrestricted gain matrix Kσ , the stability of the error dynamics (4) could not be ensured though it can in-
crease the stability margin; 2) The uncertain nonlinear term ( )ˆ,h x xδ  in the error dynamics (4), will be ampli-
fied unavoidably if the gain yK  is high. Thus, the design of the conventional P_NI observer is not a trivial task 
because the only way to solve this dilemma is that the precision of model ( )0h •  has to be improved. This leads 
to another worse trouble. Therefore, a new observer is proposed to solve this trouble in the next subsection. 

3.2. Mixed Added-Order P_ NI Observer 
For making up the shortage of conventional P_NI observer and designing an added-order P_NI observer, the 
system (1) needs to be added order, which is motivated by the design idea presented by [5], as follows, 

( )
( )0

, ,
,

x Ax f x u w
x y Cx h x w

 = +
 = = +





                                    (15) 

By the augmented system (15), a mixed added-order P_NI observer can be given as, 

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( ) ( )( )

0 0 0

0 0 0 0

1
0 0

ˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ,

ˆ ˆd d

y x

x

y x

x Ax f x u w K y y K x x K

x y Cx h x w H x x

K y y K x x

σ

σ σ

σ

σ σ σ
−

 = + + − + − + Φ
 = = + + −


= Φ − + −







                  (16) 

where ( )( ) ( ) ( )( )1
0 0ˆ ˆd di i i i yi i i xi i ik y y k x xσ σσ σ σ

−
= Φ − + − , xK , yKσ , xKσ  and xH  are all the gain matrices  
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and the other symbols are the same as these defined in (3). 
By the same way as Subsection 3.1, the error dynamics can be obtained by subtracting (16) from (15), 

( ) ( ) ( ) ( )( )
( ) ( )

( )
( ) ( ) ( )

0 0

0

0 0

0

ˆ ˆ, , ,

ˆ,

ˆ,

y x y x

y h f

x h

y x y x y h

e A K C e K K H e K

K x x x x u u

e Ce H e x x

K Ce K K H e K x x

σ

σ σ σ σ

σ σ

δ δ

δ

σ δ

 = − − − − Φ −Φ

 − + −


= − +
Φ = + − +







                (17) 

where 0 0 0ˆe x x= − . 
Now, the design task is to provide the conditions on the gain matrices xK , yK , xH , Kσ , yKσ  and xKσ   

such that ( )lim 0t e t→∞ =  and ( )0lim 0t e t→∞ = . In the absence of the uncertain terms ( )0ˆ, ,f x x u uδ −  and  
( )ˆ,h x xδ , the asymptotic stability of the error dynamics (17) can be achieved by designing the matrix,  

( )
0
0

y x y x

a x

y x y x

A K C K K H K

C H
K C K K H

σ

σ σ σ

 − − − −
 

Λ = − 
 −  

 

is Hurwitz. 
Now, using (2), (6) and (7), we have,  

( ) ( ) ( )
( )

0 0ˆ, , , , , , ,

, , ,

e e e u u
y y y y h f f

x x x
y y h f

K K x x u u K K e u u

K K x

σ σ
δ δ

σ
δ

δ γ γ γ γ γ

γ γ γ

− ≤ + −

+
               (18) 

where  

( )
( ) ( )

( )
( )

0

0

ˆ ˆ, , ,
ˆ ˆ, , , , ,

ˆ,

f y h

y y h

y h

x x u u K x x
K K x x u u x x

K x x

σ

σ

δ δ
δ δ

δ

 − −
 − =  
  

 

By the same way as Subsection 3.1, we can obtain a quadratic Lyapunov function ( ) T
a a a a aV Pη η η= , and  

then using (18), if the following inequality, 

( )1 2 , , , 0e e e
y y h f aK K Pσ

δγ γ γ− >                            (19) 

holds, we have, 
0

x u

a

x u uη η
η
η

ρ ρ
η

θρ
+ −

≥                               (20) 

and then the time derivative of ( )a aV η  along the trajectories of the error dynamics (17) satisfies, 

( ) ( ) 21a a aV η
ηη θρ η≤ − −                                (21) 

where 0 1θ< < , ( ) ( )
0

T

0
T T

a e eη σ σ = Φ −Φ  ,  

( )2u u u
f aPη δρ γ γ= , ( )2 , , ,x x x x

y y h f aK K Pσ
η δρ γ γ γ= , 

( )1 2 , , ,e e e
y y h f aK K Pη σ

η δρ γ γ γ= −  

and aP  is the solution of T
a a a aP P IΛ +Λ = − .  

Thus, the trajectory of the error dynamics (17) reaches the set, 

0
x u

a a

x u uη η
η
η

ρ ρ
η

θρ

 + − Ω = ≤ 
  
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in finite time. As shown in Subsection 3.1, the following theorem can be established. 
Theorem 2: Under Assumption 1 and 2, if there exist the gain matrices xK , yK , xH , Kσ , yKσ  and xKσ  

such that the following inequality, 

( )( ) ( )0 0 ˆ0, ,m K a f u wσλ ΦΦ >                              (22) 

and the inequality (19) hold, and then the error dynamics (17) is ultimate boundness with an ultimate bound that  
decreases as x  and 0u u−  reduce, that is, 0 0x̂ x→ , x̂ x→  and 0σ σ→  as 0x →  and 0u u→ .  

Remark 1: It is obvious that the order of the system (15) and observer (16) are all added. This is why our ob-
server is called the added-order observer. In addition, the observer (16) is designed by using the estimated errors 

ˆy y−  and 0 0ˆx x− , that is the reason why the observer (16) is called mixed added-order observer. 
Discussion 2: From the error dynamics (17), it is easy to see that: 1) By increasing xK  and xKσ , we can at-

tenuate the actions ( )0ˆ, ,f x x u uδ −  and ( )ˆ,h x xδ  on e  and ( )σΦ , respectively; 2) By increasing xH , one 
is that the action ( )ˆ,h x xδ  on 0e  can be limited, another is that it counteracts the actions xK  on e  and xKσ  
on ( )σΦ , too; 3) Although yK  and yKσ  have all the actions to stabilize the error dynamics, they introduce 

( )ˆ,h x xδ  into the dynamics of e  and ( )σΦ , too. Thus, if yK  and yKσ  are moderate, xH  is large enough, 
and xK  and xKσ  are chosen such that x y xK K H  and x y xK K Hσ σ

 , then we can effectively attenuate the 
nonlinear actions ( )0ˆ, ,f x x u uδ −  and ( )ˆ,h x xδ  on the error dynamics. Consequently, we can ensure that the 
error is bounded. 

Obviously, the design method above is too complicated such that some sort of compromise is needed in prac-
tice. Therefore, a simplified observer will be proposed in the next subsection. 

3.3. Pure Added-Order P_ NI Observer 
Based on Discussion 2, it is obvious that only the actions of yK  and yKσ  have two kinds of complexion that 
is positive and negative. Therefore, if we remove them from the observer (16), a pure added-order nonlinear in-
tegral observer can be obtained as follows,  

( ) ( ) ( )
( ) ( )

( )( ) ( )

0 0 0

0 0 0 0

1
0 0

ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ,

ˆd d

x

x

x Ax f x u w K x x K

x y Cx h x w H x x

x x

σ σ

σ σ σ
−

 = + + − + Φ
 = = + + −


= Φ −







                   (23) 

where ( )( ) ( )1
0 0ˆd di i i i i ix xσ σ σ

−
= Φ − , xK , Kσ  and xH  are all the gain matrices and the other symbols  

are the same as these defined in (3). 
By the same way as Subsection 3.2, the error dynamics can be obtained by subtracting (23) from (15), 

( ) ( )( ) ( )
( )

( )

0 0 0

0 0

0

ˆ, ,

ˆ,
x f

x h

e Ae K e K x x u u

e Ce H e x x

e

σ σ σ δ

δ

σ

 = − − Φ −Φ + −
 = − +
Φ =







                (24) 

and then by letting 0y yK Kσ= =  in Subsection 3.2, a simpler theorem can be established. 
Theorem 3: Under Assumption 1 and 2, if there exist the gain matrices xK , xH  and Kσ  such that the 

following inequalities,  

( )( ) ( )0 0 ˆ0, ,m K a f u wσλ ΦΦ >                            (25) 

( )1 2 , 0e e e
h f aPδγ γ γ− >                              (26) 

hold, and then the error dynamics (24) is ultimate boundness with an ultimate bound that decreases as x  and  
0u u−  reduce, that is, 0 0x̂ x→ , x̂ x→  and 0σ σ→  as 0x →  and 0u u→ . 

Remark 2: It is easy to see that the observer (23) is designed only by the estimated error 0 0ˆx x− , that is the 
reason why the observer (23) is called pure added-order P_NI observer. 

Discussion 3: From the error dynamics (24) and demonstration above, it is obvious that: 1) xK , Kσ  and 
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xH  are all independent gain matrices; 2) The matrix aΛ  and the bound of the nonlinear actions (18) can all be  
simplified; 3) By increasing xK  and xH , we can attenuate the actions ( )0ˆ, ,f x x u uδ −  and ( )ˆ,h x xδ  on e   

and ( )σΦ , respectively. Thus, the observer (23) not only can effectively deal with the uncertain nonlinear ac- 
tions on system (1) but also the stability of the error dynamics is easier to be achieved. Moreover, since the inte-
gral action can attenuate measurement noise, the observer (23) can be suitable for handling measurement noise, 
too.  

Discussion 4: Although the works of [5] [7] and the observers (15) and (23) all use the same reformulation 
proposed by [5], their main differences are as follows: 1) The integral action and integrator, here they are all 
nonlinear, but they are all linear in [5] [7]; 2) The observed system, here it is used to deal with the uncertain 
nonlinear system, however, it is used to deal with the uncertain linear system and descriptor system in [5] [7], 
respectively; 3) The twice integrals of measured output and estimated one, they are used to decouple or attenuate 
measurement output disturbances in [7], but this paper uses it to counteract the unknown constant uncertainties 
produced by the model errors, prescient constant parameters and unknown steady-state control input. 

Discussion 5: Compared with the integrators and integral actions proposed by [2]-[18], the main differences 
are that: 1) The integrator and integral action: here are all nonlinear; however, they are all linear in [2]-[11], ex-
cept for the reference [11], where the diffeomorphism is used as the integrator; 2) The indispensable components 
to construct the integrator: here are the linear form on the estimated errors; however, they are taken as the partial 
derivative of Lyapunov function in [14]-[16] and a general function on all the system states in [17] [18], respect- 
tively; 3) The integral actions: here not only include bounded integral actions, such as ( ) ( )tanhσ σΦ = , but al- 
so contains the unbounded one; however, they are all bounded in [15]-[17]; 4) The correlations between the in-
tegrator and integral action: here they are closely related; however, they are independent of each other in [2]-[11] 
and [18]. Therefore, the nonlinear integrator and integral action proposed here are fire new. 

Remark 3: From the stability analysis of Subsections 3.1 - 3.3, it is obvious that: Just the integrator is taken  
as the product of estimated error and reciprocal of derivative ( )d dσ σΦ , the time derivative of integral action  
can be transformed into the linear form on the estimated error. Just with this ingenious mathematical transfor-
mation [15], we can use linear system theory to analyze the stability of the error dynamics with the nonlinear in-
tegral action and integrator. As a result, this is a highlight point of this paper. 

4. Simulations 
Consider the pendulum system [19] described by, 

sina b cTθ θ θ= − − +   

where 0a g l= > , 0b k m= > , 21 0c ml= > , θ  is the angle subtended by the rod and the vertical axis,  
and T  is the torque applied to the pendulum. View T  as the control input and suppose we want to regulate  
θ  to r . For the purpose of this paper, we add an uncertain nonlinear action ( )1 1 20.5 sin 3 2x x x+ +  on the  

measured output y , and then taking 1x rθ= − , 2x θ=   and u T= , the pendulum system with the extra non- 
linear action can be written as, 

( )
( )

1 2

2 1 2

1 1 2

sin

1.5 sin 3 2

x x
x a x r bx cu

y x x x

=
 = − + − +
 = + +



  

By the design method proposed here, the augmented system can be given as,  

( )

( )

0 1 1 2

1 2

2 1 2

1.5 sin 3 2

sin

x x x x
x x
x a x r bx cu

= + +


=
 = − + − +







 

and then, the pure added-order P_NI observer can be given as, 
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( )
( )
( ) ( ) ( )
( )( )

0 1 0 0 0

1 2 1 0 0

2 1 2 0 0

1
0 0

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ ˆsin sinh

ˆ ˆ ˆcosh

x x h x x

x x k x x

x a x r cu k x x k

x x
σ σ

σ σ−

 = + −

 = + −


= − + + + − +


= −









 

By the design method proposed here, we can take 0 100h = , 1 150k = , 2 1500k =  and 1500kσ =  such 
that the matrix 

0

1

2

1 0 0
0 1 0
0 0

1 0 0 0

h
k
k kσ

− 
 − Λ =
 − −
 
 

 

is Hurwitz. 
Therefore, the control input can be taken as, 

1 2

1 2

ˆ ˆ8 6 5
ˆ ˆ8 5

u x x
x x

σ
σ
= − − −

 = + 
 

For demonstrating the performance of the pure added-order observer, the simulations are implemented under 
normal and perturbed parameter cases, respectively.  

Normal case: The initial states are 0 2 0x x= = , 1 2x = − , 1̂ 2x = −  and 0 2ˆ ˆ 0x x= = ; the system parameters 
are 10a c= =  and 1b = .  

Perturbed case: The initial states are 1 2x = − , 0 0x = , 2 1x = − , 1̂ 2x = −  and 0 2ˆ ˆ 0x x= = ; the system 
parameters are 10a = , 0.5b =  and 5c = , corresponding to doubling of the mass. 

Figure 2 and Figure 3 showed the simulation results under the normal (solid line) and perturbed (dashed line) 
cases. As shown on Figure 2, the good control performance is still preserved, even under the perturbed case. 
This demonstrated that the observer (23) can be applied to the observer-based control. Figure 3 clearly shows 
that the estimated velocity error quickly shrinks to zero as the position tends to the equilibrium point. This not  
 

 
Figure 2. System output under the normal (solid line) and per- 
turbed (dashed line) cases.                                

 

 
Figure 3. Velocity error under the normal (solid line) and per- 
turbed (dashed line) cases.                                 
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only verified the justification of Theorem 3 but also shows that the observer (23) has strong robustness and can 
effectively deal with the uncertain nonlinearities on both the system dynamics and measured outputs. 

5. Conclusion 
This paper proposed a conventional P_NI observer and two kinds of added-order P_NI observers along with 
their design method. The main contributions are as follows: 1) A kind of fire new nonlinear integrator and inte-
gral action is proposed; 2) The gap that there is not nonlinear integral observer is filled by presenting three kinds 
of nonlinear integral observers; 3) For the system with uncertain nonlinearities that appear on both the system 
dynamics and measured outputs, two solutions, that is, mixed and pure added-order P_NI observers, are pro-
vided; 4) The conditions on the observer gains to ensure the estimated error to be ultimate boundness, which 
shrinks to zero as the states and control inputs converge to the equilibrium point, are provided. This means that 
if the observed system is asymptotically stable, the estimated error dynamics is asymptotically stable, too. In ad-
dition, the highlight point of this paper is that the design of nonlinear integral observer was achieved by linear 
system theory. 
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