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Abstract 
Two-phase fluid properties such as entropy, internal energy, and heat capacity are given by ther-
modynamically defined fit functions. Each fit function is expressed as a temperature function in 
terms of a power series expansion about the critical point. The leading term with the critical ex-
ponent dominates the temperature variation between the critical and triple points. With β  be-
ing introduced as the critical exponent for the difference between liquid and vapor densities, it is 
shown that the critical exponent of each fit function depends (if at all) on β . In particular, the 

critical exponent of the reciprocal heat capacity 1c−  is 1 2α β= −  and those of the entropy s  

and internal energy u  are 2β , while that of the reciprocal isothermal compressibility 1
Tκ
−  is 

1γ = . It is thus found that in the case of the two-phase fluid the Rushbrooke equation conjectured 
2 2α β γ+ + =  combines the scaling laws resulting from the two relations d dc u T=  and 

dln dT pκ ρ= . In the context with c , the second temperature derivatives of the chemical potential 

µ  and vapor pressure p  are investigated. As the critical point is approached, 2 T 2d d− µ  di-

verges as c , while 2 p T 2d d  converges to a finite limit. This is explicitly pointed out for the two- 
phase fluid, water (with 0.3155β = ). The positive and almost vanishing internal energy of the 
one-phase fluid at temperatures above and close to the critical point causes conditions for large 
long-wavelength density fluctuations, which are observed as critical opalescence. For negative 
values of the internal energy, i.e. the two-phase fluid below the critical point, there are only mi-
croscopic density fluctuations. Similar critical phenomena occur when cooling a dilute gas to its 
Bose-Einstein condensate. 
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Internal Energy, Free Energy, Heat Capacity 

 
 

1. Introduction 
An essential property of matter is its structure, i.e. the distribution of its constituents in space and time as 
governed by inter-particle forces [1]. We are concerned here with the electrically and magnetically neutral 
single-component gas under steady-state conditions, which are thermodynamically defined in the immediate 
vicinity of the critical point and below it. 

Andrews’s discovery of critical opalescence in carbon dioxide in 1869 stimulated numerous investigations of 
critical phenomena. The experimental observations on fluids show that a colorless gas in a narrow temperature 
range ( ) 310c cT T T −− ≈  above its critical temperature cT  suddenly becomes opaque and changes color and, at 

cT T≤ , exists as a two-phase fluid of different densities in volumes that are sharply separated by an interface 
surface a few molecular layers thick. The endeavor to explain theoretically the observations constituted a huge 
challenge. The course of a century then saw the development of the familiar phenomenological theories of a van 
der Waals gas, of the stable and unstable thermodynamic equilibrium formulated by Gibbs, of the correlation of 
fluctuations, of the scaling laws, including the hierarchical reference theory (renormalization group techniques), 
and of the Monte Carlo computer methods (see [2]). 

An insight into the nature of a fluid in the critical region is afforded by Figure 1, which for water of mass 
1M =  [g] and critical density cρ  in the volume 3.1056cV M ρ= =  [cm3] shows the different fluid states as 

a function of the temperature T . Below cT , M  is distributed as condensed mass lM  with the density 
l cρ ρ>  in the sub-volume lV  and as vapor mass vM  with the density v cρ ρ<  in the sub-volume vV . This 

gas in thermodynamic equilibrium existing in two phases is called a saturated fluid. As thermodynamic theory 
teaches, as the only independent variable of the saturated fluid that can be chosen is the saturation temperature 
T , since the other field variables possible, viz. vapor pressure p  and chemical potential µ  are unique 
functions of T . 

Every thermodynamic quantity of the saturated fluid,  
{ } free energy,   entropy,   internal energy,   heat capacityX F S U C= , can thus be represented as a function of 

T . The absolute values both of the fluid, X , and of the fluid phases, vapor, vX , and condensate (liquid, solid), 
lX , are proportional to the mass in the volume considered. As extensive quantities they have additive properties, 

i.e. they satisfy the equations 
,     ,     ,

,     ,     ,     .
v l v l v l

v v v l l l

M M M V V V X X X
V vM X xM X x M X x M

= + = + = +

= = = =
                        (1) 

The mass-specific quantities x X M=  and , , ,v l v l v lx X M=  contain the complete thermodynamic 
information on the fluid state [3]. The difference ( )v lx x−  gives the difference of the thermodynamic 
properties of x  in the volumes vV  and lV  and is called an order parameter. The quantity x  can be 
expressed by the quantities ,v lx , ,v lv , and v :  

.v l v l v l l v
v l

v l v l

M M x x x v x v
x x x v

M M v v v v
− −

= + = −
− −

                          (2) 

The quotient ( ) ( ) ( )v l v l Tx x v v x v− − = ∂ ∂  is a function of the vapor pressure ( )p T , and the quotient 

( ) ( ) ( ),v l l v v l Tx v x v v v x v v− − = ∂ ∂  a function of the chemical potential ( )Tµ :  

( )
( )

2

2

dd d,     ,     ,     
d d 1 dT T T T

p Tf s p u c pp T
v v T v T v T

−∂ ∂ ∂ ∂       = − = = =       ∂ ∂ ∂ ∂       
              (3) 

and  

( )
( )

2

2

d, , d , , d,     ,     ,     .
d d 1 dT T T T

Tf v s v u v c v T
v v T v T v T

µµ µµ
−∂ ∂ ∂ ∂       = − = = =       ∂ ∂ ∂ ∂       

           (4) 
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Figure 1. Water mass 1M =  [g] of critical density cρ  in the volume 

  3.1056cV M ρ= =  [cm3]. Below the critical temperature 647.3cT =  [K] the 
mass M  decomposes into two portions lM  and vM , where the mass lM  
with the higher density is located in lV , and the mass vM  with the lower density 
is located in vV . At the triple point there is a phase transition of lM  (liquid) to 

lM  (ice) involving release of energy in the form of so-called latent heat, 
accompanied by sudden changes in volume and structure. The dashed lines 
represent the densities of the condensate and vapor.                            

 
The vapor pressure is a positive, convexly curved, monotonically increasing function of the temperature and 

the chemical potential a negative, concavely curved, monotonically decreasing function of the temperature. 
Open questions on the thermodynamic properties of p  and µ , in particular in the critical region, are dealt 
with in Sections 3 and 7. 

Equation (2) can be transformed to  

( ), ,
, .v l v l

T T T

x x v xx v x v v
v v v
∂ ∂ ∂     = − = + −     ∂ ∂ ∂     

                        (5) 

Equation (5) yield, for example, ( ), ,v l v lx f vp f v v pµ= = − + = − − . 

Relations (1)-(5) represent the Gibbs equations for calculating x , vx , and lx  of the saturated fluid. One 
might think that the job of setting up generally valid fit formulae, i.e. applicable to every two-phase fluid has 
already been done. But this is not so. The literature yields, e.g. for water, only formulae for industrial use ([4]- 
[6]) which do not correctly give the physical picture of the two-phase fluid in the critical region. 

The objective of this study is to represent the quantities vx , lx , and x  in the region between the triple point 
and the critical point as thermodynamic fit functions dependent on the temperature (Sections 4-9). The 
representation of a fit function by an order parameter expanded around the critical point is based on the 
knowledge of the behavior of the fluid in the critical region. 

2. Thermodynamics of Critical Phenomena 
The thermodynamical physics of critical phenomena above and below the critical point is extensively treated in 
the literature (e.g. [2] [7]-[10]). Critical phenomena occur under the natural boundary condition of the vanishing 
value of the internal energy, 0U ≈  [11]. In the immediate vicinity of the critical point the one-phase fluid is in 
unstable equilibrium on transition to the two-phase fluid, which is then in stable equilibrium. 
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Thermodynamics describes the macroscopic state of the fluid by means of the quantities M , V , S , and 
U  and thus cannot delve into the microscopic processes actually occurring in the particle interactions taking 
place in the fluid. The effect of attractive and repulsive forces among interacting particles on the internal energy 
U  is that U  has negative sign for fluid temperatures below cT  and positive sign above. U  can be treated as 
the sum of two energy contributions, viz. the potential energy potU , whose gradient yields the attractive forces, and 
the thermal energy thU , which is assigned to the sum of kinetic, vibrational and rotational particle energies. As the 
result, Figure 2 shows for saturated water (under the same conditions as in Figure 1) the internal energy U  and 
the estimates potU  and thU  in liquid and vapor as functions of the mean particle separation, represented by  

the normalized density values ( )1 3
,l v cv v  in the regions ( )( ) ( )( ) [ ]

1 31 3
, 0.69,2.5l t c v cv T v v T v∗  =  

 with 

[ ], , 273,525,647t cT T T∗  =   [K] and ( ) ( ) [ ] 3, , 1.0002,3.1056,48.362  cml t c vv T v v T ∗   =    . For an estimation  

it is taken for granted that the thermal particle energy increases proportionally as the saturation temperature T , 
constantthu T= ⋅ . The empirical value constant  is given by ( ) 346.689v t tu T T =  [J/g]/273.16 [K] = 1.26918 

[J/(g ⋅ K)]. To calculate thU , thu  is multiplied by the mass ,l vM . This yields in the liquid phase an initially  
expected increase constantth lU T M= ⋅ ⋅  and on reaching the maximum value 668 [J] at about ( )1 3 0.776l cv v = , 

583T =  [K], 0.902lM =  [g] a continuous decrease to the critical value 1constant 410.6
2th cU T= ⋅ ⋅ =  [J]. 

With constantth vU T M= ⋅ ⋅  the decrease is continued in the vapor phase. The product vT M⋅  continuously 

decreases as the particle separation increases; at ( )( )1 3
2.5v cv T v∗ =  the value 26.2thU =  [J] is assumed. As  

 

 
Figure 2. Internal energy U , estimated thermal energy thU  and potential 

energy potU  of water mass [ ]1 g  in liquid and vapor as functions of the 

normalized particle separation ( )1 3

,l v cv v . It is assumed that constantthu T= ⋅ , 

where ( )constant 1.26918 J/ g K 5.5
2
R

=  ⋅  =  ; ( )0.461521 J/ g KR =  ⋅   ; 

2 5.5 11⋅ =  degrees of freedom of two H-bridged water molecules; 

, 0th l v thU M u= > , pot , 0l v thU U M u= − < , ( )liquid 0U < , ( )vapor 0U > ; 

critical values: [ ]647.096 KT = , [ ]410.642 JthU = , [ ]pot 410.642 JU = − , 

[ ]0 JU = , [ ]1  g
2l vM M= = , ( ), 1l v cv v = .                              
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U uM=  (with 1l vM M M= + =  [g]) can be calculated according to Equation (5), it is possible to estimate 
the potential pot thU U U= −  numerically. potU  is always negative. The resulting repulsion and attraction 
forces between the particles are equal and opposite at the critical point, which is expressed in Figure 2 by the 
fact that the curves thU , potU , and U  all are continuous there. Qualitative information about mean-field 
strength of forces in liquid and vapor can be obtained from potgrad 0U− <  and grad 0thU− > . 

The positive and negative regions of the fluid internal energy U  are shown in Figure 3 for water in the 
pressure vs volume diagram. They are separated by the isotherm ( ),cT v p  above the critical pressure cp  
(dashed line) and the vapor pressure ( )p T  below cp  and cv v>  (solid line). Along the dashed line there is 
a continuous change in the density passing through positive and negative regions of U . The solid lines 
represent the vapor pressure at temperature T  and are the loci of the first-order phase transition due to the 
jump between low-density vapor and high-density condensate. The jump is combined with a different fluid 
structure in each phase. 

A fluid state of 0U >  is characterized by an ensemble of particles freely moving in a structureless 
homogeneous phase. In contrast, a fluid state of 0U <  is characterized by an ensemble of particles bound in a 
more or less structured form as a result of particle self-organization under certain constraints, e.g. liquid, solid, 
and Bose-Einstein condensate (BEC) [12], each with its specific thermodynamic property. As an example, 
Figure 4 shows the variations in internal energy of vapor and condensates as functions of their phase-specific 
volumes and the saturation temperature, respectively, for the water mass of 1 [g]. 

The discontinuities of d dT U S= , represented as circles in Figure 5, indicate the phase transitions of bulks 
of different structures. States of different aggregation exhibit qualitatively different properties. Adding energy 
dU  to the fluid at fixed temperature distributes a surplus of the one bulk phase at the expense of the other [1]. 
Local variations of internal energy couplings between particles change the bulk structures. A structural change is 
thermodynamically described by an increase in internal energy dU  as a result of increasing system entropy 
dS , i.e. by d dU S . Changes in the bulk structure occur close to absolute zero, at the triple point and the 
critical point. The circles in Figure 1 and Figure 5 give the phase transitions for the functions ( )vM T , 

( )lM T , ( )vV T , ( )lV T , ( )U S , ( )vU S , and ( )lU S . It is seen that the phase transition near absolute zero at 
the critical temperature of the BEC, ,BECcT , refers to the mass vM , at tT T=  to the mass lM , and at cT T=  
to the masses vM  and lM , where it holds that v lM M M+ = . The discontinuous transition in the 710−  [K]  
 

 
Figure 3. Volume-pressure diagram of water and the regions of positive 
and negative internal fluid energy U . The dashed line, i.e. the isotherm 

( ),cT v p  for cv v≤  and cp p≥ , gives the loci of vanishing energy 
0U = , where the transition from positive to negative fluid energies U  is 

continuous. In contrast, the transition at the solid lines of the pressure of 
saturation p(T) is discontinuous.                                     
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Figure 4. Saturated water of mass M = 1 [g]: temperature T and internal 
energies U , vaporU , liquidU , and iceU  versus ( )ln v . While structural 

changes of condensed phases take place at the volumes [ ],lt st cv v v≈  (the 

corresponding logarithmic numbers being [ ]0.0,1.1 ), the structural transition 
from the Bose-Einstein condensate with BEC 0U ≤  to the gas phase with 

gas 0U ≥  could occur in the immediate vicinity of absolute zero temperature at 

( )ln 37v ≥  or 16 3
gas 10  cm /gv  ≥   .                                     

 

 
Figure 5. Internal energy U  of saturated water of mass [ ]1 g  and critical 
density as a function of entropy S . It holds that d dU S T=  and in the two- 
phase regime that l vU U U= + . The mass-specific quantities (dashed lines) 
satisfy the relations 0l vu u u≤ ≤ ≤ . The curves U  and u  are identical 
since M = 1 [g]. The data below the critical point are obtained from fit 
functions given in the appendix and those above are deduced from the T, s- 
Diagram of Ref. [4].                                                   
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region from ( )0 0vU S = <  to ( )( ),BEC 0v cU S T =  is the consequence of the change from the condensed gas 

structure of the single quantum state of a BEC to the gaseous state of a collection of freely moving particles; this can 
only be treated with quantum mechanics (in a BEC experiment the energy ( )( ) ( ),BEC 0 0v c vU U S T U S∆ = − = >  

is extracted from the mass vM ). The continuous transition at fixed tT T=  from ( )solid solidlU S U=  to 

( )liquid liquidlU S U=  is thermodynamically treated as a phase transition of the first kind (the complete change 

from solid to liquid structures requires the energy ( )liquid solid liquid solid 0tU U U S S T∆ = − = − ⋅ >  that is called 

latent heat). The transition at cT T=  from ( )v cU S  and ( )l cU S  to ( ) ( )v c l c cU S U S U+ =  is 
thermodynamically treated as a phase transition of the second kind (the energy to be imparted to the masses vM  

and lM  vanishes in the limit cT T→ : ( ) ( )( ) 0c v c l cU U U S U S∆ = − + = , i.e. is not latent heat). The smooth and 

continuous regions d dU S  aside the circles mark phase transitions between the homogeneous bulks, condensate 
and vapor. A transition at T  from the condensed phase ( )lU S  to the vapor phase ( )vU S  is likewise 

classed as a phase transition of the first kind (the vaporization enthalpy ( )vapor liquid 0U S T S S T∆ = ∆ ⋅ = − ⋅ >  
has to be provided). 

It is of interest to explain the occurrence of macroscopic fluctuations under the conditions 0U ≥  close to the 
critical temperature, ( ) 310c cT T T−− < , and their reduction to microscopic fluctuations under the conditions 

0U <  for cT T< . An unstable equilibrium position marks the beginning of decomposition of the mass M  to 

( )v lM M+  under the condition pot 0thU U U= + = . On a macroscopic scale the binding potential of all 

particles, potU , restricts its averaged value to the averaged value ( )thU−  at cT . The condition 

pot 0thU U U+ = ≈  appears twice in the state diagram of a gas (Figure 5): both at high particle number 2310  

and critical density 2210  cm 3−  in the vicinity of the critical point, ( ),c cS T , and also at low particle number of 

order 710  and particle densities 1410  cm 3−  in the vicinity of the absolute zero, 0S = . The state 

pot 0thU U ≈ − <  , as in the case of critical opalescence, is macrocopically described by correlation functions, 

and the state pot 0, 0thU U ≈ ≈  , as in the case of a Bose-Einstein condensate, quantum mechanically by a  

condensate wave function. As already mentioned, correlation functions are a measure of the number of 
scattering centres for light in the fluid dielectric and hence of a mean value of structural density fluctuations. 
The strong increase and subsequent decrease of long-wavelength fluctuations in critical fluid regions cause the 
observed sharp increase and decrease of scattered light intensity (e.g. [13]) and are thus experimental proof of 
the thermodynamic zero of the internal energy of, on the one hand, a dense gas in the critical temperature region 
and, on the other, a dilute-gas in the 710−  K region. 

Evidently, nature associates the problem of changing the sign of U  at cT  with the ability of self- 
organization of particles interacting in ensembles. For cT T> , the statistically distributed thermal energy of 
free-moving particles, 0thU > , outweighs the mutual binding energy, pot 0U < , yielding pot 0thU U U= + > . 
With decreasing temperature, thU  decreases and potU  becomes more negative, as long as both terms cancel at  

cT T= , i.e. pot 0thU U U= + = . The deviation ( )U U−  of the fluctuating energy variable U  from its average 

value U  is itself a fluctuating variable and the mean square deviation ( )2
U U−  is a convenient measure of 

the magnitude of the fluctuations [3]. The energy fluctuations become enormously close to the critical point since 

( )2
U U−  is equal to 2U . Together with density fluctuations, this represents an unstable equilibrium  

of the fluid state. One of the best ways of finding solutions for realistic particle interactions under the condition 
0U ≥  is to compute the order-parameter probability distribution functions by means of Monte Carlo computer 
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methods [10]. Computer simulations under different thermodynamic conditions afford quite a good picture of 
the phase transition in the critical region, and in conjunction with the renormalization group techniques allow 
calculation of critical exponents. 

For 0U <  the Gibbs applied theory, on the other hand, yields with Equations (1)-(5) universal order- 
parameter relations for calculating material-dependent critical exponents. 

Van der Waals was the first to show that the normalized difference in the phase densities ( )l v cρ ρ ρ−  is 
empirically very well described by a power law of the form ( )1 cT T β− , in which the normalized temperature 
difference ( )c cT T T−  appears as a variable and the so-called critical exponent β  characterizes the decrease 
of ( )l vρ ρ−  as T  approaches cT  (Figure 1). Applied thermodynamics has to determine the particular 
critical exponent for every order parameter, ( )v lx x−  and ( )cx x− , converging to zero. Here the value of the 
critical exponent depends on the choice of the variable of the order parameter. It is customary to choose the 
temperature as variable. 

When thermodynamic relations between various thermodynamic functions x  are known, these will reappear 
in corresponding relations between their critical exponents. A well-known exponent equation for the saturated 
fluid (e.g. [7]) is 

2 2α β γ+ + =                                      (6) 

(Rushbrooke equation), which describes the numerical relation between the exponents of the reciprocal heat 
capacity ( )α , the difference in the phase-specific volumes ( )β , and the reciprocal isothermal compressibility 
( )γ . The temperature dependences of these functions in the immediate vicinity of the critical point are defined 
by  

( ) ( ) ( )1 1

0 0 0

ln lnln
lim ,     lim ,     lim ,     1 .

ln ln ln
Tv l

c

c v v T
T

κ
α β γ

− −

→ → →

−
≡ ≡ ≡ = −
  


  

               (7) 

Consequently, the task here is to repeat the calculation of α  and γ  and additionally of the exponent of 
every function, which according to Relations (3) to (5) is connected with the heat capacity. Since  

( )
2 2 2 2

, ,2 2 2 2

d d d d d d
d dd d d dv l v l

f s u p pc T T v T c v v T
T TT T T T

µ 
= − = = = − = + − 

 
                (8) 

these are the functions c , f , s , u , p , µ , ,v lc , and ,v lv . Obviously, c  is an important measurable 
quantity that yields information on the phase transition at cT T< . The knowledge obtained about the 
temperature dependence of the functions mentioned then allows relations between critical exponents to be 
studied, e.g. between α , β , and γ  (Sections 4-9). It is found that only a single independent critical exponent 
is needed to characterize all order parameters, e.g. β  and the others can be expressed by it. Data for the fluid 
selected, saturated water, are given in the Appendix. 

It remains to consider some essential properties of the above-mentioned free interface surface. 
If the condition for forming a free surface between the liquid and vapor phases is given, then there is an 

interface particle layer, which represents a new equilibrium state described by a minimum internal energy U  
and simultaneously a maximum entropy S . Hence formation of the free interface surface lowers the free energy 
F  of the fluid. The relative energy contribution of an interface quantity to the respective system quantity depends 
on the ratio of the numbers of interacting particles in the interface volume (of the surface area A   

times the layer thickness 
( )
( ) ( )dv

l

z v

z v
z v∫ ) and system volume ( )V  and is therefore extremely small. Despite the  

smallness of the order 810−  and less, surface effects play a role in nature and technology, e.g. the minimization 
of the free interface surface. The smallness of an interface quantity shows, on the other hand, that ignoring it 
when studying volume properties of the fluid is completely justified. As the existence of a surface A  does not 
change the mass M  and volume V , the property of U , S , and F  being extensive quantities is maintained.  
If the area-specific difference of the internal energy ( ) ( ), , , , ,0, 0U M V A T U M V T A− ≤    is denoted by the 

temperature coefficient ( )Tσ  (surface energy), then the coefficient of the surface entropy increased at 

constant temperature, ( ) ( ), , , , ,0, 0S M V A T S M V T A− ≥   , is assigned to the function d dTσ  and that of 
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the surface free energy decreased, ( ) ( ), , , , ,0, 0F M V A T F M V T A− ≤   , to ( ) ( )d d 1T Tσ , yielding the 

two-phase fluid-relations for 0 cT T≤ ≤ : 

( )
( )

( )
( )

( )
( )

d d
0,

d 1 d 1
d d d 0,
d d d

d
0.

d 1

T p T
U M V A

T T
pS M V A

T T T
T

F M pV A
T

µ
σ

µ σ

σ
µ

= − + ≤

= − + + ≥

= − + <

                           (9) 

Equations (9) give U , S , and F  as functions of the system variables M , V , and A  and their conjugate 
temperature variables µ , p , and σ . In order to establish a relation between the unknown function σ  and the 
measurable surface tension γ , it is posssible simply to identify the negative values ( )Tγ−  with the free energy,  
i.e. ( ) ( ) ( )d d 1 0F A T Tσ γ∂ ∂ = = − ≤ . It is found that this choice gives the acceptable result of interface- 

specific coefficients, viz. ( ) ( )2 d 0cT

T
U A T T Tσ γ∂ ∂ = = − ≤∫ , ( ) ( )d d d d d 0cT

T
S A T T T Tσ γ∂ ∂ = = − ≥∫ , and 

concave curvature ( )2 2d d d d 0T T Tσ γ= ≤ , as shown in Figure 6 for water. The physical significance of  
the negativity of σ  and ( ) ( )d d 1T Tσ  and the positivity of d dTσ  is readily apparent since these 
functions multiplied by A  represent area-contributions to the negative internal and free energies and positive 
entropy of the two-phase fluid. 

3. Vapor Pressure 
The experimental finding that the heat capacity diverges at the critical point calls for a statement on the critical 
behavior of the vapor pressure and chemical potential, since 2 2 2 2d d d dc T v p T Tµ= − . What was known 
about the properties of these two quantities at the time when systematic investigations of the critical behavior of 
fluids and magnets were initiated [14]-[17] is summarized by Stanley [7] in his book (1971), Introduction to 
phase transitions and critical phenomena, as follows: If c  is divergent, then 2 2d dp T  or 2 2d dTµ  or both 
will be divergent. The exponent pϑ  is introduced as a measure of the degree of divergence (if any) of the 
curvature of the vapor pressure curve, i.e. ( )2 2d d 1 p

cp T T T ϑ−− . The lattice-gas model gives pϑ α= . 
However, for the real gas the curvatures of p  and µ  might both indicate divergence, so that pϑ  might differ 
from α . In particular, the divergence of the heat capacity of helium-4 ( 4 He) appears to be dominated by  
( )2 2d dp T  rather than by ( )2 2d dTµ− . 

Since then investigators have become resigned to not making any statement on µ  and letting 2 2d dp T  

grow as ( ) 1 21 cT T −−  (e.g. [18]-[22]). This attitude, however, is not accepted by all. In general, the literature 

provides no uniform statement on the temperature dependence of 2 2d dp T  in the critical region. The findings 
range from the absence of divergence, e.g. in the case of helium-3, to explicit specification of the exponent, e.g. 

1 2pϑ =  in the case of water [4] [5]. 
We shall take up the problem and show that 0pϑ = . If, on the other hand, the exponent µϑ  is introduced in 

order to describe by ( ) ( )2 2d d 1 cT T T µϑµ −− −  the divergence of the curvature of the two-phase chemical 

potential, then µϑ α=  is valid, as shown in Section 7. 

In the one-phase critical region ( )cT T>  a distinction must be made between conditions at constant volume, 

pressure, and chemical potential since ( ), ,x x v p µ= , ( ),p p v T= , and ( ),v Tµ µ= . For example, the 

difference of the heat capacities is positive, ( ) ( ) 0p v p vc c v T p T T− = ∂ ∂ ∂ ∂ > , while it vanishes in the case of 

the two-phase fluid ( )cT T<  [11]. To describe phase transitions under various conditions at cT T≥  it is 
necessary to introduce some different independent critical exponents that are inter-related [10] [23]-[27]. 
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Figure 6. Analyse of free-surface quantities. From fitted published surface 
tension data ( )γ  of water [4] [6] and setting γ  equal to the negative area- 

specific free energy, i.e. ( ) ( )d d 1 0F A T Tσ γ−∂ ∂ = − = > , one gets the area- 

specific internal energy ( )2 d 0cT

T
U A T T Tσ γ∂ ∂ = = − <∫  (surface energy) 

and the area-specific entropy ( )d d 0S A T Tσ σ γ∂ ∂ = = + > . Each of these 
functions vanishes at cT T= .                                            

 
With respect to the vapor pressure, the necessary thermodynamic proof of the finiteness of 2 2d dp T  in the 

critical region enlists the possibility of estimating the second temperature derivative by an expression containing 
as highest temperature derivative the first derivative d dp T , which itself is finite at the critical point. An 
estimate formula is obtained as follows. The vapor pressure can be expressed by the following relations:  

( ) dexp cTc
T

c

p Tp T T
T T

φ = −  ∫ ,                               (10) 

( ) ( )
( )
( )

( )d dln1where 1
d 1 dln

v l v l

v l v l

p T p Tu u u u
T

f f v v p T p T
φ

− −
≡ − = = − = >

− −
. 

The function φ  is defined by the ratio of the evaporation energy ( )v lu u−  to the volume energy 
( )v lv v p−  at the phase transition. This ratio, which is always greater than 1, decreases monotonically as the 
temperature rises because the binding energy difference ( )v lu u− , although its contribution to the heat of 
vaporization, ( )v l v lu u v v p − + −  , always exceeds that of the free energy difference ( )v lv v p− , 
continuously decreases with rising temperature in proportion to ( )v lv v p− . In other words, the function  

( ) ( )( )v l v lu u v v pφ = − −  decreases with increasing T :  
d d 0    for    cT T Tφ < <  

Differentiating Equation (10) gives ( )( )d d 1p T p T φ= +  and  
2 2d d d d 1 d d d d 1 d dp T p T T p T p T p p T Tφ= − ⋅ + ⋅ ⋅ + ⋅ . The term of interest here is  

( ) ( )( )d d d dv l v lT u u v v p Tφ  = − −  . In the critical region the quotient ( ) ( )( )v l v lu u v v p− −  has a well- 

defined value which does not essentially change in the limits ( ) 0v lu u− →  and ( ) 0v lv v− →  and can thus 
already be determined at a great distance from the critical point. It is finite and almost constant in the entire 
critical region. 
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From constantφ =  in the critical region it follows that ( )lim d d 0
cT T Tφ→ =  and, because of d d 0Tφ <  

for cT T< , the following etimate is generally valid:  

( )
( )

2

2 2

dd d d 1 1 1 dln
d d d 1 dlnd

p Tp p p p
T T p T T TT T
 

≤ − = − 
 

                        (11) 

The maximum value of ( ) ( ) 2d d 1 1 dln dlnp T T T p T−  is assumed at the critical point and is finite; it is 

thus shown that 2 2d dp T  never diverges. 
It will now be shown that no temperature derivative of the vapor pressure diverges at the critical point, where 

it holds that ( ) ( ) ( ) ( )d d d dv l v l v l v lu u v v u u T v v T   − − = − −    ; this value can be calculated according to 

the scaling laws ( )v lu u β−    and ( )v lv v β−    and with ( ) ( )( )d d 1 cp T T T−  is finite; the critical value 

)(1/ cTp  is likewise finite. Since ( ) ( )v l v lu u v v p − −   scales as 0 , further differentiation of  

( )( )d d 1p T p T φ= +  cannot generate a divergent term and always yields on the left-hand side a term with a 
derivative of p  one degree higher than on the right-hand side, which only contains terms whose values at the 

critical point are finite. Since, therefore, every derivative d dn np T  can be expressed by terms d dm mp T  

with 1m n≤ −  which do not diverge at cT , ( )d dn n
cp T T  does not diverge either. From this it follows that 

p  can be expanded about the critical point as a Taylor series. 
Series expansion of p   
Since the derivatives ( )d dn n

cp T T  exist for every integer n  and do not diverge, the temperature 
expansion of p  around cT  is possible, yielding  

( ) ( ) ( ) ( )
1

1 d 0
! d

nm n
c c cn

n

pp T p T T T T
n T=

− = ⋅ − >∑ .                        (12) 

The  -expansion (where c cT T T= −  and ( )d d 1 d dcT T= −  ) reads  

( ) ( ) ( ) ( )
1

1 0

1 d 0
! d

n nm m
n n

c nn
n n

pp T p T a
n

−

= =

−
− = ⋅ =∑ ∑  


.                       (13) 

The positive functions p  and d dn np T  increase monotonically as the temperature up to their finite critical 

values cp  and d dn n
cp T , i.e. it holds that cp p<  and d d d dn n n n

cp T p T<  for cT T< . The constants na  
in the  -expansion are found by fitting the given vapor pressure data ( )p T . 

A fit formula of conceptually different form, based on the expression (10) for the vapor pressure, is  
11

0
1

ln ln
nm

n
nr r r

p T Ta a
p T T

−
−

=

     
= ⋅ + ⋅     

     
∑ ,                           (14) 

where ( )r rp T  and rT  are reference values, e.g. the boiling temperature noT  [K] at atmospheric pressure 
0.101325nop =  [MPa]. 

The usual representation of measured vapor pressure data ( )p T  in the form lnp  versus 1 T  shows that  
the data can be described in first approximation by the straight line through the boundary points ( )ln ,1c cp T  

and ( )ln ,1t tp T  (see Figure 7). This linear function is 

( ) ln ln 1 1ln ln
1 1

c t
c

c t c

p p
y p T p

T T T T
 −

= = + ⋅ − −  
.                         (15) 

If one introduces the dimensionless variable ( )1 cT T= −  instead of the inverse temperature variable 
( )1 cT T T− , y  is represented as a function of   as follows:  
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Figure 7. Vapor pressure of water according to the IAPWS equation (Refs. [4] 
and [5], dashed lines) and Equations (13), (14), and (19) (solid lines). The line 
lnp  represents published vapor pressure data from [4] and [5], which are 
equally well reproduced by both the dashed and solid lines. The lines 
ln d dp T , calculated from the respective equations, also give results that are in 
reasonable agreement at every temperature between the triple and critical points. 
In contrast, the dashed and solid lines of 2 2ln d dp T  and 3 3ln d dp T  differ 
for temperatures in the vicinity of the critical point. Vapor pressure data should 
obey the condition d dn np T < ∞  for 2n ≥ . These conditions are not 
satisfied in the critical region by the IAPWS equation [4] [5].                  

 

( ) ( )ln
ln

1 1
c t

c
c t

p p
y p

T T
= − ⋅

− −





                              (16) 

The essential property of the function ( )y   is that the derivatives ( ) ( ) 1d 1 d ! 1 nn n n +− = −       exist  

for arbitrary 1,2,n =   and remain finite for 0 1≤ < . This satisfies the above-stated thermodynamic 
requirements, viz. that d dn ny   may nowhere diverge in [ )0,1 . Fine fitting with measured vapor pressure 
data p  calls for a further function ( )z  , which, of course, is likewise arbitrarily often differentiable and 
nowhere diverges, and which together with ( )y   as product function y z⋅  fits the values lnp . As a function 
with m  fit constants ka , the finite power series 

( )
1

2 1
0 1 2 1

0

m
m k

m k
k

z a a a a a
−

−
−

=

= + ⋅ + ⋅ + + ⋅ = ⋅∑                          (17) 

can perform the task required. 
The first three derivatives of ( )z   are 1 1

1d d m k
kkz a k− −

=
= ⋅ ⋅∑  , ( )12 2 2

2d d 1m k
kkz a k k− −

=
= ⋅ − ⋅∑   and 

( )( )13 3 3
3d d 2 1m k

kkz a k k k− −
=

= ⋅ − − ⋅∑  . The n -th derivative is ( )1d d 1mn n k n
kk nz a k n k− −

=
= ⋅ − + ⋅∑   . 

If the n -th derivatives of y  and z  are denoted for short by ( )ny  and ( )nz , the n -th derivative of 
( )y z⋅  is 

( ) ( ) ( )

0

d
d

n n
n k k

nkn
k

y z B y z−

=

⋅ = ⋅∑
                              (18) 

With the binomial coefficients nk

n
B

k
 

=  
 

, i.e. the figures in the Pascal triangle, one can calculate all ( )1m −  
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derivatives of the function ( )y z⋅  and they are all finite in [ )0,1 . 
The following fit formula for the vapor pressure is conceived such, with due allowance for Equation (10), that 

it does not yield any divergent higher-order temperature derivative:  
1

0
ln ,    where    0 1 1

1

m
n

n
nc c

p Ty z a
p T

−

=

= ⋅ = ⋅ ⋅ ≤ = − <
− ∑

 


                   (19) 

Each constant ka  of the series z  (see Equation (17)) is multiplied by the prefactor ( ) ( )( )ln 1c t c tp p T T− −   

of ( )1−   (see Equation (16)), yielding the constant ka , which is again denoted by ka  in the fit formula (19). 
Equation (19) can be used for describing the vapor pressure of every fluid. In the literature, however, one finds 
fit equations (e.g. in [4] [5] [22]) that are thermodynamically incorrect, because the corresponding function z  
contains terms with non-integer exponents k  (e.g. terms such as 1 3  or 1 2 ) that lead to divergences of  
lim d d

c

n n
T T p T→  for 2≥n . 

Formula (19) with the ten fit constants listed in the Appendix, Equation (A3), reproduces the measured data 
p  of water with the same accuracy as that given in [4]-[6]. The calculations of 2 2d dp T  in this study and, on 

the other hand, according to the equations published in [4] and [5] show that the differences expected occur 
exactly in the critical region, as seen in Figure 7. Results of calculating the water vapor pressure p  according 
to Equations (13), (14), and (19) are given in the Appendix (fit functions (1)-(3)). 

4. Coexistence Curve 
Along the coexistence curve in the critical region, the scaling laws must of course obey each two-phase 
equilibrium relation, e.g. 0v v v l l lu v p s T u v p s T µ+ − = + − = < , and at the critical temperature cTT =  the 
limits [11]:  

( )
( )

( )
( )

( )
( )

1 1,     ,     0,
2 2

d d dd d d .
d d 1 d d 1 d d 1

v l
c

v l v lc c

c c c c c c c c c c c c c
c c cc c c

u u
u

u u u u

T p T p TpT T v v T v s T v p s T
T T T T T T

µµ µµ

   
= = − =   − −   

= + = + = + − = −

       (20) 

In accordance with the defining Equation (7) for the exponent β  one obtains the scaling laws of the phase- 
specific volumes, internal energies and entropies in relation to their critical values as follows:  

, , ,,     ,     .v l v l v l c
T T

u sv v v u v s s v
v v

β β βηε ηε ηε∂ ∂   − = ± = ± − = ±   ∂ ∂   
                (21) 

In these formulae the plus sign refers to the vapor phase and the minus sign to the liquid phase. According to 
van der Waals the temperature dependences of the volumes vv  and lv  can be represented as series expansions 
about the critical value v , where the temperature expansion variable λ  gives the distance to the critical point 
and at the same time the decrease of the difference ( )v lv v− , which both tend to zero on approaching the 
critical point: 

( ), 2 3

0

11 1 0,     0 1.
1

nv l n

n

v
v

λ λ λ λ λ
λ=

= ± = ± + ± + = > ≤ <∑ 



                 (22) 

The expansion variable λ  is then expressed by the power function  

.ζλ η=                                         (23) 

The temperature dependence of λ  is described by ( )1 cT T= − , η  is a positive constant, and ζ  is the  
exponent defined by the function under consideration, for example, { }, ,ζ α β γ= − −  for the functions 

( ){ },, ,v l Tc v v κ− . The definition range [ )0,1  for λ  and   restricts the range of values of η  and ζ . For  

saturated fluids one has 2η ≈  and ζ  can assume a positive or negative value. The smaller a positive 
exponent ζ  is, the deeper the approach of the function to zero. A negative ζ  corresponds to a function which 
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diverges to infinity at the critical point. An exponent 1ζ =  leads to a series expansion with no anomalous 
behavior as, for example, the vapor-pressure difference ( )cp p−  in Equation (13). The properties stated are 
also exhibited according to Equation (21) by the functions ,v lu  and ,v ls , where ζ β= . 

5. Critical Exponents of the Phase-Specific Quantities vx  and lx  
According to Equation (3) a quotient ( ) ( )v l v lx x v v− −  has a finite value ( )T

x v∂ ∂  at every temperature cT T≤ . 
It thus follows that  

( )( ) , ,0    and        for    .v l v l v l c v l cTx x v v x v x x v v− = − ∂ ∂ → → →                 (24) 

According to Landau every quantity ( )v lx x−  between the stable phase-limiting values vx  and lx , whose 
difference, as described in Equation (24), tends to zero on approaching the critical state cx , is based on an 
order parameter [28]. In the case of the saturated fluid the natural order parameter is the difference of the  
condensation and vapor masses in relation to the fluid mass, ( ) ( )l v l vM M M M− + . The ratios lM M  and 

vM M  can be expressed by the quotients ( ) ( )v v lv v v v− −  and ( ) ( )l v lv v v v− − . If the value v  in 

( ) ( ) ( ) ( )2l v l v v l v lM M M M v v v v v− + = + − −  is expressed by ( )2 v l v lv v v v+ , which is justified in the 

critical region (see curves 1 and [1] in Figure 8), then ( )l vM M M−  is identical to ( ) ( )v l v lv v v v βη− + =  .  
The variable λ  thus represents the order parameter of the mass splitting, which as natural order parameter of 
the two-phase fluid is also the basis of all other order parameters:  

( ) ( ) ( ),     0,     0l v l v l vM M M M M Mλ λ= − + → − →                    (25) 

For values 0λ → , the phase-specific volumes and internal energies on the coexistence curve conform to the 
scaling functions,  

( ) ( )

( ) ( )

1 1,     ,
1 1

,     .
1 1

v l

v l
T T

v v v v

u uu v u v
v v

λ λ
λ λ

λ λλ λ
λ λ

= =
− +
∂ ∂ −   = =   ∂ + ∂ −   

                     (26) 

The values of η  and β  can be determined empirically by varying them until the curves of the published data 
(curves 2 and 3) and the scaling laws (straight lines [2] [3]) satisfactorily converge in the critical region as shown  
for water in Figure 8. From Figure 9 it is seen that relations (26) are valid for ( )1 0.01cT T− <  and hence for 

0.45λ < . One obtains ( ) ( ) 0v l v lv v v v λ− + = ≥ , ( ) ( )22 1 0v lv v v λ λ− = ⋅ − ≥ , ( ) ( )22 1 2v lv v v vλ+ = ⋅ − ≥ , 

( ) ( ) 2
d d 1 1 1v lv v λ λ= − + − ≤ −   . With ( ) ( ) ( )d d 1 0T cv u v v p T Tω = ∂ ∂ = − >  one gets 0l c vu u u≤ = ≤ , 

( ) ( )22 1 0v lu u ω λ λ− = ⋅ − ≥ , ( ) ( )2 22 1 0v lu u ω λ λ+ = − ⋅ − ≤ , ( ) ( )v l v lu u u u λ+ − = − ,  

( ) ( )1 1 1v lu u λ λ= − − + ≥ − , ( ) ( )2 1d d 1 2 1 0v l cu u T T ββη λ −= − ⋅ + ⋅ < ,  

( ) ( ) 2
d d 1 1 1v lu u λ λ= − − + ≤ −   , ( ) ( )1 11

2 2v v lu u u λ− = − ≤ , ( ) ( )1 11
2 2l v lu u u λ− = − + ≤ − ,  

( )21 0v v l lu v u v vω λ λ= − = ⋅ − ≥ . 

It can now be stated that the phase-specific quantities vx  and lx  in relation to their critical value cx  scale 

as ( )βλ η=  :  

,     ,     2 .
c c c

v c l c v l
T T T

x x xx x v x x v x x v
v v v

λ λ λ∂ ∂ ∂     − = − = − − =     ∂ ∂ ∂     
               (27) 

In contrast, the temperature derivatives ,d dv lx T  scale as 1β − ; they diverge at the critical point where 
0λ = =  because 1 2 1 0β β− < − < :  
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Figure 8. Scaling law of the vapor and liquid order parameters for water. 
Critical-point data: 647.096cT =  K, 3.101cv =  cm3/g, 0.3155β = , and 

1.9η = . Curve 1: ( )2 v l v lv v v v+ , curve 2: ( ) ( )v l v lv v v v− + , curve 3: 

( ) ( )l v l vM M M M− + . Straight line [1]: cv , straight line [2] [3]: 

( )1 cT T βλ η= − . Published data vv  and lv  from Ref. [5].               

 

 
Figure 9. Comparison of vapor data v cv v  (curve 1) with scaling data 

( )1 1 λ−  (curve [1]) and liquid data l cv v  (curve 2) with scaling data 

( )1 1 λ+  (curve [2]) for water. The data of each of the curves (1 and [1]) 

and (2 and [2]) agree in the range ( )1 0.01cT T− < , thus verifying the 
validity of relations (26) for 640T >  [K]. The straight line [3] represents 

( )1 cT T βλ η= −  as shown in Figure 8 by line [2] [3]. Published data vv  
and lv  from Ref. [5] and [6].                                        
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1
,d d .v lx T β −

                                      (28) 

Calculation of ,d dv lv T  and ,d dv lu T  yields with 1 cT T= −  

( )

( )
( )

( )
( )

( )
( )
( )

1
2

1
2

2 2
1

22 2

2
2 1

22 2

2
1

2

d 1 0,
d 1

d 1 0,
d 1

d 2 1 ,
d 1

d 4 1 ,
d 1

dd d 1 0,
d d 11 d 1

d
d 1

v

c

l

c

v l

c

v l

c

v

c

l

v v
T T

v v
T T

v v v
T T

v v v
T T

p Tu v p T
T T TT

u v
T

β

β

β

β

β
β

β

β

β

β β
β β

ηβ

η

ηβ

η

ηβ η

η

η β

η

η β
η η

η
η

−

−

−

−

−

= − ⋅ <
−

= ⋅ >
+

− +
= − ⋅

−

+
= − ⋅

−

  
= + ⋅ + ⋅ <   + +   

= −
−















 
 


( )
( )

( ) ( )
( )

( ) ( )
( )

2
1

2

2 2 2
1

2 2 2 2 2

2 2
2 2 1

2 2 2 2 2

dd 1 0,
d 1d 1

d d2 d 1 0,
d d 11 d 1

d d2 d 2
d d 11 d 1

c

v l

c

v l

c

p Tp T
T TT

u u p Tv p T
T T TT

u u p Tv p T
T T TT

β β
β β

β
β β

β β

β β
β β

β
η

η β η
η η

η β
η η

−

−

−

  
⋅ + ⋅ >    −   
  − +

= ⋅ + ⋅ <   − −   
  +

= − ⋅ + ⋅   − −   

 



 

 

 
 

0.>              (29) 

The relation ( )lim d d 0
cT T v lu u T→ + = , claimed by Ref. [11], is wrong and must be replaced by Equation 

(29). The divergence ( )lim d d
cT T v lu u T→ + →∞  also follows from  

( ) ( ) ( )d d d d d dv l v l v lu u T T s s T p v v T+ = + − +  and  

( ) ( ) ( ) ( )lim d d lim 2 d d 1 d d
c cT T v l T T v lu u T c p T T v v T→ →  + = − ⋅ + → +∞  . 

To get temperature-dependent quantities in the entire temperature range of the liquid [ ],t cT T , the given data 

,v l cx x−  and ( )v lx x−  are fitted and represented as power series. Here ( ) ( )c c tT T T Tτ = − −  is chosen as  

independent variable with values between 0 and 1, and λ  is replaced by βτ . A fit function expanded about the 
critical point with the exponent β  is then  

[ ]
1

0
fit quantity ,     0 1.

n m
n c

n
n c t

T T
a

T T
β βτ τ τ

= −

=

−
= ≤ = ≤

−∑                       (30) 

The sum contains m  constants na  which are specific to the quantity to be fitted and are calculated by the 
mathematical method of conjugate gradients by fitting the given data. Quantities such as the vapor functions  
( )1 2 vM M− , ( )1v cv v − , ( )1v cf f − , ( )1v cs s − , vu , vh  and the corresponding liquid functions as well 

as the differences ( )v lx x−  are expressed in terms of the fit function (30). It is found that 10m =  constants is  
sufficient to generate data with the numerical exactness usual in the literature. Results are stated in the Appendix, 
see fit functions (5)-(26). 

6. Critical Exponent of the Fluid Energy 
First it is shown that the internal energy is an order parameter:  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

  d d 1 d d 1 d d 1 d d 1

  d d 1 d d 1

  d d 1 d d 1 d d 1 d d 1 0.

v l v v l l

v v l l

v l v v l l

U U U u M u M

T T v p T T M T T v p T T M

T T M M p T T v M v M

T T M p T T V T T v p T T M

µ µ

µ

µ µ

= + = +

= − + −      
= + − +

= − = − <  

 

At cT T=  one has cv v=  and ( ) ( ) ( ) ( )d d 1 d d 1cT T v p T Tµ =  [11], i.e. 0c cU u M= = . 
Each of the following functions has the property of an order parameter since it holds that 0u ≤ , 0vu ≥ , 

0lu ≤ , ( ) 0v lu u− ≥ , and ( ) 0v lu u+ ≤ . 
To obtain the fluid quantity x  as a function of λ , Relation (2) is transformed as follows:  

( ) ( ) ( )

( ) ( )

( )
2

2

1 1
2 2
1 1  
2 2

1  .
2 1

v l v l
T

l v
v l v l

T

v l
T

xx x x v v v v
v

M M xx x v v
M M v

xx x v
v

λ
λ

∂  = + − − − −    ∂ 
∂   = + − − −    ∂  

∂ = + −  ∂−  

                       (31) 

The fluid quantity x  in relation to its critical value ( )1lim
2cc T T v lx x x→= +  (which takes either the 

minimum or maximum of ( )x T ) scales as 2λ :  

2

21c
T

xx x v
v

λ
λ

∂ − =  ∂−  
                                (32) 

In the case x u=  one obtains with ( ) ( ) ( )2 22 1v l Tu u v u vλ λ+ = − − ⋅ ∂ ∂   

( )
( )

( )
( )

222

2 22

2 1 d2 0.
d 11 1 1

c

T c

T T p Tuu v v
v TT T

β

β

ηλ
λ η

 −∂ = − = ≤    ∂−   − −  
                   (33) 

Below cT , u  is a negative function which tends to zero in the critical region as 2λ  or ( )21 cT T β− . The 

temperature derivative d du T  is a positive function and scales as ( )2 11 cT T β −− :  

( )
( )
( ) ( )

( ) ( )
2 2

2 1 2
2 2 22 2

d 2d 2 d1 1 0.
d d 1 d1 1 1 1

c
c c

c c

p T Tu v pT T T T T
T T TT T T T

β β
β β

βη
η η

−  
 = − ⋅ − + ⋅ − >   − − − −  

   (34) 

For cT T→ , d du T  diverges as ( ) ( )2 124 d d 1 ccv p T p T T T βη β −− ⋅ − . 

Quantities such as the fluid functions ( )1 cf f− , ( )1 cs s− , ( )u− , ( )1 1v lv v+ , and ( )v lu u+  are fitted 
by the fit function  

[ ]
1

2

0
fit quantity ,     0 1.

n m
n c

n
n c t

T T
a

T T
β βτ τ τ

= −

=

−
= ≤ = ≤

−∑                       (35) 

See Appendix, fit functions (27)-(33). In particular, from  
( ) ( ) ( ) ( )d d d d 1 d dv l v l v lu u T c c p T T v v T+ = + − ⋅ +  one has, because of 2 2 2 1

, d dv lc T βµ −− +    and 

( ) 2 1d dv lv v T β −+ −   [16], the scaling ( ) 2 1d dv lu u T β −+ −  . 

7. Critical Exponents of the Heat Capacity and Chemical Potential Functions 

The scaling of ( ) ( ) ( ) ( )d d 1 d d d 1 0cT

T
T T c T v p T Tµ = − + <∫ , taking Relations (4) and (26) into account, is 
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calculated as follows:  
( )
( )

2

2

d 1 d 0.
d 1 d1

l v v l

Tv l

T u v u v uv
T v v v

µ λ
λ

− +  = = − < − −  
                     (36) 

Thus, ( ) ( )d d 1T Tµ  tends to the final value ( ) ( ) ( )d d d d 1c cv u v v p T T− = , while the difference 

( ) ( ) ( ) ( )( )d d 1 d d 1T T v p T Tµ −  converges to zero as dcT

T
c T u− =∫ :  

( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2

d d d d1 21 .
d 1 d 1 d 1 d 11 1

T p T p T p T
v v v u

T T T T
µ λ λ

λ λ
 +

− = − = = − − 
               (37) 

This agrees with Equation (5). Differentiation of ( ) ( ) ( ) ( )d d 1 d d 1T T v p T T uµ − =  yields  

2 2

2 2

d d d .
dd d

p uT v T c
TT T

µ
− + = =                                (38) 

The scalings of d du T  and c  are with ( )1 2β− −  described by Equation (34) and the scaling of 2 2d dTµ  

is calculated from the difference ( )2 2d d d dv p T u T T− :  

( )
( )

( )
( ) ( )

( )
22 22 2 2

2 1
2 2 2 2 22 22

1 1 d 4d d d 1 d 1 0.
d d 1d d d 1 1 1 1

c c
c

c c

T T p T Tp u p vv v T T
T T T TT T T T T T T

β
β

β β

η η βµ
η η

−+ −
= − = + ⋅ − <

− −  − − 

  (39) 

The (positive) functions ( )2 2d dTµ−  and c  diverge for cT T→  as 2 1β − , while the (negative) function 

u  converges as 2β  to 0. The exponent of c  is denoted in accordance with Equation (7) by ( )α− ; is thus 

holds that ( ) ( )2 1α β− = − . The identity  

1 2α β= −                                       (40) 

thus states that the heat capacity function c  is the temperature derivative of the internal energy function u , 
whose exponent is 2β . From the scaling ( ) ( ) ( )( )2 2 2 2 2 2 2 1d d d d d d 1 4c cc

T v p T v T p T T βµ η β −= + ⋅ ⋅ ⋅  it 

follows that the function ( )cµ µ−  converges to zero as ( )2 1 2
1 2 3a a a β++ + +    and the function 

( )( )d d d d cT Tµ µ−  as ( )( )2
2 32 1 2a a ββ+ + +  , where ia  are constants. See Appendix, fit functions (38) 

and (39). 

8. Critical Exponent of the Reciprocal Isothermal Compressibility of the 
Two-Phase Fluid 

The isothermal compressibility Tκ  is measured as the relative change of the fluid volume when the pressure is 
increased, i.e. the reciprocal isothermal compressibility 1

Tκ
−  is defined by the relations:  

1 .T
T T

p pv
v

κ ρ
ρ

−  ∂ ∂ = − =   ∂ ∂   
                               (41) 

In the one-phase region the density 1vρ −=  and pressure ( ),p T ρ  increase monotonically along an 

isotherm T  and one gets the relations ( ) [ ]one phase 0Tpρ ρ∂ ∂ >  with the value ( ) 0
cTpρ ρ∂ ∂ =  at the 

critical point [14]. In the two-phase region, on the other hand, the vapor pressure ( )p T  and densities 

( ) ( )1
, ,v l v lT v Tρ −=  remain constant at constant temperature, and one has to consider how a mechanical quantity 

such as the isothermal compressibility is to be interpreted here. Any attempt to compress the fluid of constant 
density 1vρ −=  is accompanied by condensation of the vapor mass vM  and release of energy 
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( )d 0v l vU U U M M= − > , which results in a temperature increase by dT , this in turn leading to the pressure 
increase dp . The isothermal compressibility is therefore infinite except on the coexistence boundary when the 
fluid becomes homogeneous on the liquid side. Representation of the connection between vapor pressure and 
phase densities along the coexistence curve allows the difference ( )l vρ ρ−  to be introduced as a density 
function ρ , whose pressure dependence d dpρ  is a well-defined negative quantity with the reciprocal value 

( )d d 0
cTp ρ =  at the critical point. 

Justification for choosing ( )l vρ ρ ρ= −  and ( )v lv v v= −  can be given by treating the isothermal 

compressibility ( )1
T Tv p vκ − = − ∂ ∂  according to the Le Ch â telier-Braun princple [3]. The change of state 

( )Tp v∂ ∂  is described as the two infinitesimal changes of states, viz. ( )vp T∂ ∂  and ( ) pv T∂ ∂ , which 

process simultaneously and are indirectly induced since ( ) ( ) ( )T v pp v p T v T∂ ∂ = ∂ ∂ −∂ ∂ . The change of state, 

( )vp T∂ ∂ , is an isothermal variation of the entropy and volume, ( )Ts v∂ ∂ , which according to Equation (3) is 

expressed by the isothermal phase transition ( ) ( ) d dv l v ls s v v p T− − = . The isobaric volume compression, 

( ) pv T∂ ∂ , is expressed by ( )d dv lv v T− . The change ( )d v lv v−  is the result of the temperature increase 

dT  or the vapor pressure increase dp  since ( ) ( )d dv l v lp s s v v T= − − ⋅ . Hence the effect of the isothermal 
and isobaric infinitesimal changes on the two-phase fluid of constant density is  

( )
( )

( )
( ) ( ) ( )

2 2
1

2 2

d d d 1 .
d d d 1

v cT
T v l

T v lp p

p T s v Tp p T pv v v v v
v v T v T v v T T

β

β

ηκ
β η

− ∂ ∂ ∂ ∂∂ − = − = = = − = − ∂ ∂ ∂ ∂ ∂ − + 





      (42) 

Calculating the scaling of 1
Tκ
−  gives 

1 dlim 1
dc

c
TT T

cc

Tp T
T T

κ
β

−

→

 
= ⋅ ⋅ − 

 
                               (43) 

and yields the exponent γ  of the two-phase fluid:  

( )1

0 0

ln ln d d ln
lim lim 1

ln ln
T c cp T Tκ β

γ
ε

−

→ →

⋅ +
= = =
 




                       (44) 

The function ( ) ( )d d d dv l v lp T v v v v T⋅ − −  is represented in Figure 10 for the case of water; in the  

critical temperature region it goes asymptotically to zero with the proportionality factor ( )d d c cp T T β⋅ . 
Measurements of Tκ  under one-phase conditions for water liquid and gas about the critical region are 
performed by Ref. [29], yielding 1.20 0.05γ = ± . 

9. Fit Functions for the Saturated Fluid 
To describe important thermodynamic properties of the saturated fluid, fit functions of quantities are set up. A fit 
function presents an appropriate power series expanded about the critical point and affords the possibility of 
obtaining fairly reliable information concerning the thermodynamic function. Of course, the exponent of the 
series is defined by the thermodynamic function. Calculation of the fit constants is done by the least squares 
method, published and estimated data taken as a basis. Fit functions are evaluated for water data (see Appendix). 
The tables each (arbitrarily) list 10 fit constants, with the aid of which each temperature value of the  
thermodynamic quantity in the region [ ],t cT T  can then be calculated. As an example, some evaluated functions 

are represented in Figure 11, viz. ,v lu , ( )v lu u± − , ( )v lu u+ , u , ( ) ( )d d 1T Tµ , and ( ) ( ), , d d 1c v lv p T T . 

10. Results and Discussion 
The Gibbs theory describes the macroscopic state of matter by means of the quantities M , V , S , and U   
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Figure 10. Calculation of the reciprocal compressibility of saturated water, 

( ) ( )1 d d d dT v l v lp T v v v v Tκ − = ⋅ − −  (curve 1, Appendix fit function (4)). The 

straight line 2 represents the function ( ) ( )d d 1c c cp T T T Tβ⋅ ⋅ − .               

 

 
Figure 11. Properties of water: Curves 1: 0v lu u≥ ≥ , curves 2: ( )v lu u± − , 

curve 3: ( )v lu u+ , curve 4: u , curve 5: ( ) ( )d d 1T Tµ , curve 6: 

( ) ( )d d 1v p T T , curves 7: ( ) ( ), d d 1v lv p T T . At the critical point, the curves 
1, 2, 3 and 4 assume the value 0 and the curves 5, 6 and 7 the value 

( ) ( )d d 1 0cv p T T < . One-phase 0u >  above cT  according to Ref. [30].       

 
and thus cannot delve into the microscopic processes of interacting particles which give the structure of matter. 
Nevertheless, the theory treats the thermodynamic equilibrium of matter correctly, using interrelations between 
the entropy, internal energy, chemical potential, pressure, and temperature. If an additional parameter, β , is 
introduced for characterizing the behavior of any thermodynamic quantity under the boundary condition of a 
reversible isobaric and isothermal transition from the condensate structure to vapor, it follows that this β  
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reveals in all thermodynamic relations relevant to these changes. For the two-phase fluid, the established Gibbs 
interrelations are summarized by Equations (1)-(5). Equations (8) explicitly show relations between the heat 
capacity, free energy, entropy, internal energy, vapor pressure plus chemical potential, and phase-specific heats 
and volumes as functions of the temperature and, consequently, the parameter β . Then a specific quantity is 
formulated, according to van der Waals, in terms of a power series expanded about the critical point as a 
function of T  and β , which is called a thermodynamic fit function. It is valid between the critical and triple 
points. Thermodynamic fit functions y  for 40 two-phases quantities are listed in the Appendix. They are given 
as functions of the temperature variable ( )x T  and characterized by fit parameter arrays a  and b . The 
figures proposed here are specified for saturated water ( )0.3155β = . 

The critical point is thermodynamically defined by the vanishing value of the internal energy, and this 
( )( ), , 0cU S T T M V= =  and Nernst’s ( )( )0 , , 0S U T M V= =  allow calculation of all thermodynamic 

functions with absolute figures and the unique transformation of one plotted projection plane into another. 
Regarding the scaling on approach to the critical point, it is found that the phase-specific volumes, entropies, 

and energies are dominated by the critical exponent β , and the fluid entropy and energy by 2β , while the 
second temperature derivative of the chemical potential by ( )2 1β − , thus determining the divergence of the 
heat capacity. The second temperature derivative of the vapor pressure converges to a finite value. The 
difference of phase-specific quantities likewise scales as β  and the sum scales as 2β . 

The exponents of the reciprocal heat capacity, 1 2α β= − , and reciprocal isothermal compressibility, 1γ = , 
calculated for the two-phase fluid are not in conformity with those given in the literature for the one-phase fluid. 
The corresponding exponents differ since the thermodynamic behavior above and below cT  is described by 
different free energy functions [14]. There are large density fluctuations in the immediate vicinity of the critical 
point under the condition 0U ≥ . These unstable fluctuations do not occur under the condition 0U <  and are 
not the subject of the Gibbs theory, which deduces the thermodynamic stable equilibrium of the macroscopic 
fluid from the statistics of microscopic fluctuations of its constituents at given total energy. 

The subject of quantum mechanics is to investigate in detail interactions between particles. There are 
statistical arguments about the relative likelihood of attractive and repulsive interactions. In particular, one has 
to consider the possible resonant scattering of particles with different internal degrees of freedom and spin- 
exchange and dipolar processes [12]. This is all very hard to do, but it may finally provide an explanation for 
large density and energy fluctuations in a fluid in the vicinity of 0U ≥ . On the other hand, atto- and 
femtosecond laser techniques have made it possible to follow the movements of atoms and study subpicosecond 
processes in solids and liquids as well as in gases (in and out of the direct light interaction region) [31]. 

Almost all significant results produced in the years 1960-1980 were obtained at a time when non-classical 
thermodynamic behavior of the free energy of the one-phase fluid near the critical point is assumed. The efforts 
to obtain an equation of state that describes the singularities of the heat capacity and isothermal compressibility 
in the critical region are to be found in, for example, Refs. [14]-[16], and [29]. As is shown in this study, 
however, the scaling laws of the two-phase fluid can be treated on the basis of the classical thermodynamic free 
energy function if the equilibrium relations between the phase-specific volumes, vapor pressure, chemical 
potential, and heat capacity are considered. A significant result is thus confirmation of the Rushbrooke equation 

2 2α β γ+ + =  for the two-phase fluid. It is satisfied by the van der Waals gas because 0α = , 1 2β = , and 
1γ = , and for the real two-phase gas because 1 2α β= −  and 1γ = , with β  having a value smaller than 

1 2 . Since the exponent of the internal energy u  is 2β , the Rushbrooke equation can be interpreted as the 
sum of the exponents of the reciprocal heat capacity ( )vT u∂ ∂ , internal energy u , and reciprocal isothermal 
compressibility ( )ln Tp v− ∂ ∂ . 

The appreciable deviations of the two-phase fluid values calculated here, 1γ =  and 1 2α β= −  (in case of 
saturated water 0.3155β = , 1 2 0.369α β= − = ), in relation to those given for the real one-phase fluid in the 
literature, e.g. Ref. [23], 1.239γ = , 0.327β = , and 0.107α = , are very surprising indeed. Such eminently 
different results can be explained, as mentioned above, by the statements that the scaling hypothesis, in 
particular the renormalization group techniques, is valid for one-phase fluids where 0U ≥  and p VC C> , but 
is not suitable to represent the behavior of two-phase fluids where 0U ≤  and p VC C=  [11]. 

Nature reveals the thermodynamic energy zero of a gas at the critical point through the sudden appearance of 
macroscopic fluctuations in a narrow temperature range ( ) 310c cT T T−− ≤ ⋅  above cT . The critical behavior 
depends on particle interactions, thus the equilibrium conditions of fluid stability and instability and the size of 
fluctuations in the vicinity of 0U =  have to be regarded. The condition 0U =  means that the positive 
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internal energy contribution of the thermal energy of all fluid particles, thU , balances the negative internal 
energy contribution of the binding energy of all particles, potU . Under the condition pot thU U= −  the inter- 
particle forces of attraction and repulsion cancel. This leads to an unstable equilibrium of one-phase particles 
and hence local density fluctuations, ( )M M V± ∆ , of wavelengths of order 41 10→  Å [1]. If, however, the 
mass M  in V  is split up into the condensed mass lM  of overbalanced bound particles with pot 0thU U+ <  
and into the vapor mass vM  of overbalanced freely moving particles with pot 0thU U+ > , then there is no 
eventuality of macroscopic fluctuations, i.e. the masses lM  and vM  are in stable equilibrium within the 
subvolumes lV  and vV , respectively. Conditions for macroscopic fluctuations and hence observation of critical 
opalescence exist near to the critical point where 2310N ≈  particles, 22 310  cmN V −≈ , and  

( )( ), , 0cU S S T N V> > , and close to absolute zero where 710N ≈  particles, 14 310  cmN V −≈ , and 

( )( ),BEC , , 0v cU S S T N V> >  (gaseous state). In the BEC state where macroscopic density fluctuations are 

suppressed and alone microscopic fluctuations occur, ( )( ),BEC , , 0v cU S S T N V< <  yields the condition 

precedent for the existence of coherent matter waves. 
Changes in the fluid structure take place at phase transitions where the gradient ( ) ,M VU S∂ ∂  is not  

continuous in the representation ( ), ,U U S M V=  (Figure 5). This is the case at the critical point of the Bose- 
Einstein condensate when the BEC changes to the dilute gas, at the triple point when the solid continuously 
melts to liquid, and at the critical point of the fluid when the two phases disappear. The first two phase 
transitions mentioned are associated with heat input required to alter the fluid structure and are called phase 
transitions of the first kind, whereas the phase transition at the critical point occurs without additional energy 
and is called a phase transition of the second kind. Every isothermal transition at cT T<  from the condensate to 
the vapor state, which requires the energy input ( ) 0v lU U− > , is a phase transition of the first kind. 

Adding energy to the fluid increases its entropy and thus the mobility of particles, both being equivalent to a 
loss of matter structure. This feature can be described by the concept of an order parameter. The “natural” order  
parameter of the two-phase fluid is ( ) ( )l v l vM M M M βη − + =   (Equation (25)), but specific order 

parameters may be used to specify fit functions, e.g. ( )cs s− , u , and ( )v lv v− , to describe entropic, energetic 
or volumetric first-kind phase transitions (see Appendix). 

Area-specific order parameters are the surface energy σ  and surface tension γ . They describe the effect of 
particle interactions in the highly inhomogeneous interface layer at the free area A  between the homogeneous 
bulks, condensate and vapor. Since Aσ ⋅  is part of the fluid internal energy U , which is negative below the 
critical point, σ  must be negative and the temperature values can be determined according to Equation (9), if  
( ) ( )d d 1T Tσ  is set equal to the negative temperature values of γ . As part of the fluid free energy F , 

( ) ( )d d 1T T Aσ ⋅  lowers the free system energy when the fluid proceeds to a new equilibrium state with an 
interface layer. Interesting enough, the zeros of the surface energy and surface tension, viz. 0σ =  and 0γ =  
at cT  on approaching the critical point from below, evidently display the disappearance of the free interface 

surface and through ( )( ), , , 0cU S T M V A =  the occurrence of the thermodynamic internal energy zero of the 

high-density fluid, since ( )( ), , 0cU S T M V = . 

The thermodynamic internal energy zero of the low-density fluid is the vanishing value vU  at the critical 

temperature of the BEC, i.e. ( )( ),BEC , , 0v cU S T M V = . The internal gas energy vU  is positive above ,BECcT  

and negative below, when all gas particles suddenly condense into a quantum state (Figure 5, where ,BEC 0vU < ). 
The lowest energy ,BECvU  is assumed by the quantum state of zero momentum, zero entropy and zero 
temperature [3]. 
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Appendix: Fit Functions for Thermodynamic Properties of a Saturated Fluid in 
Liquid-Vapor Equilibrium 
Computer program for evaluating fit functions 

Temperature values of a specific thermodynamic quantity are calculated by calling the IDL-FUNCTION 
evaluation in an IDL-source program:  

( )evaluation label,  ,  ,  y a b x=  

The IDL-FUNCTION evaluation is specified by the label, e.g. label k= , that is relevant to the selected fit 
function y , the fit arrays [ ]0 1 9, , ,a a a a=   and [ ]0 1 6, , ,b b b b=  , and the temperature variable x  of y . 
The general structure of an IDL evaluation function is given below. 

 
label  integer  specifies the fit function selected  input  

a   dblarr ( )a   fit parameter array  input  

b   dblarr ( )b   boundary parameter array  input  
x   dblarr  x  temperature variable  input  
0y   dblarr  function value f at x   output  
1y   dblarr  first derivative d df x  at x   output  
2y   dblarr  second derivative d2 d 2f x  at x   output  
3y   dblarr  third derivative d3 d 3f x  at x   output  
4y   dblarr  integral value at x   output  

 
[ ]exponent, ,  , sign, reference value, shift, gaint cb T T=  

In this work the following values are fixed, valid for saturated water:  

( ) ( ) ( ) ( ) ( )0 exponent 0.31550,  1 273.160,  2 647.096,  3 sign 1, 6 gain 1t cb b T b T b b= = = = = = = = = =  

In addition, the values  

( ) ( )4 reference value, 5 shiftb b= =  

are specific for calculating an individual thermodynamic fluid quantity. These are listed by ( ) ( )4,5 4 , 5b b b=    . A 
thermodynamic quantity is thus described by ( )labely , a , and 4,5b  as a function of the temperature variable 
( )x T , where for instance ( )t c tT T T T= + − ·findgen (1234)/(1234 − 1).  
FUNCTION evaluation, k, a, b, x 
 

nx  =n_elements(x) − 1 
na  =n_elements(a) − 1  
y0  =replicate (0., nx + 1)  
y1  =replicate (0., nx + 1)  
y2  =replicate (0., nx + 1)  
y3  =replicate (0., nx + 1)  
y4  =replicate (0., nx + 1)  
case label of 

…… 
k: begin  

…… 
goto, ret  

end  
…… 

endcase  
ret:                          struct = create_struct('fit function label', label, $  

'fit constants', a,'fit parameters, b,'variable', x,$  
'y(T) at x', y0,'dy/dT', y1,'d2y/dT2', y2, $ 
'd3y/dT3', y3,'integral ∫  y(T) dT', y4)  

return,                       struct  
END 
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The fit function y  with label=1 evaluates the vapor pressure Equation (13) 

( ) ( ) ( )
9

1

0
1 ,     n

n c c t
n

y a x x T T T T+

=

= ⋅ = − −∑                         (A1) 
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The fit function y  with label = 2 evaluates the vapor pressure Equation (14)  

( )
9

1
0

1
2 ln ,     n

n no
n

y a x a x x T T−

=

= ⋅ + ⋅ =∑                           (A2) 
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The fit function y  with label = 3 evaluates the vapor pressure Equation (19)  

( )
9

0
3 ,     1

1
n

n c
n

xy a x x T T
x =

= ⋅ ⋅ = −
− ∑                            (A3) 

 

 
 
Fit functions for saturated water  
Each of the fit functions ( )1y , ( )2y , ( )3y  yields the vapor pressure  

[ ]
[ ]

( )

4,5

95.35736, 168.8092,172.5089, 128.4158,46.19433,49.22893, 47.38145, 28.61308,46.62186, 14.69646

1., 21.99605

result evaluation 1, , ,

a

b

a b x

= − − − − −

= −

=

[ ]
[ ]

( )

4,5

0.0190783,0.109800,2.45864,0.223098,30.0553,2.22426, 22.6915, 3.94893,21.7540, 8.20671

1,0.000611177

result evaluation 1, , ,1

a

b

a b x

= − − −

=

= −

  

[ ]
[ ]

( )

4,5

50.61926, 96.51403,188.6561, 94.67052, 66.78023,97.76319,8.417264, 71.74600,43.32453, 8.450202

373.128,0.101325

result evaluation 2, , ,

a

b

a b x

= − − − − −

=

=
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[ ]
[ ]

( )

4,5

7.624357,3.613861, 9.459584,3.939279,11.62949, 6.490808, 30.45161, 6.579575,79.74229, 45.53531

647.096,21.99605

result evaluation 3, , ,

a

b

a b x

= − − − − − −

=

=

 

(1-3) vapor pressure [J/cm3] ( ) result. 0p T y=   
2 3

2 3

d d dresult. 1,     result. 2,     result. 3
d d d

p p py y y
T T T
= = =  

Fit function ( )1y  yields the reciprocal isothermal compressibility  
[ ]
[ ]

( )

4,5

9.386773, 36.49801,121.8104, 424.3336,983.9064, 1385.892,1190.770, 602.3226,157.3091, 14.12874

30.0392,0

result evaluation 1, , ,

a

b

a b x

= − − − − −

=

=

 

(4) reciprocal isothermal compressibility [J/cm3] ( )1 result. 0T T yκ − =   
Fit function ( )4y  yields ( )result evaluation 4, , ,a b x=  for quantities (5)-(26). 
According to Equation (30), this function calculates functions with exponents β .  

( ) ( ) ( )
9

0
4 ,     n

n c c t
n

y x a x x T T T Tβ β

=

= ⋅ ⋅ = − −∑                        (A4) 
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[ ]
[ ]4,5

1.53076, 0.346094,0.772904, 0.397157, 1.07686, 0.373334,0.594496,0.626299, 0.187160, 0.144201

1,0

a

b

= − − − − − −

=
 

(5) order parameter ( ) ( )( ) result. 0l v l vM M M M T y− + =   

[ ]
[ ]4,5

0.855142, 0.980355,2.54119, 1.30350, 3.19689,1.17288,3.63738, 0.0259943, 4.42455,2.22503

1,0.5

a

b

= − − − − −

=
  

(6) relative liquid mass ( )( ) result. 0l l vM M M T y+ =   

[ ]
[ ]4,5

1.64744,2.55082, 3.54131,1.52162,2.07537, 0.604010, 1.82598, 0.354414,1.51875, 0.374317

3.10559,1

a

b

= − − − − − −

=
  

(7) liquid volume [cm 3 /g] ( ) result. 0lv T y=   

[ ]
[ ]4,5

0.113845,25.6900, 124.151,248.174,68.9776, 1042.32,1565.97, 748.312, 170.529,187.704

1,1.13320

a

b

= − − − − −

=
  

(8) vapor volume [cm 3 /g] ( ) ( )exp result. 0vv T y=   

[ ]
[ ]4,5

1.48696,2.85283,0.938452, 1.17792, 1.98398, 1.76956, 0.988839, 0.0808819,0.628872,0.933399

68.5217,1

a

b

= − − − − −

=
  

(9) vapor volume-pressure energy [J/g] ( )( ) result. 0vv p T y⋅ =   

[ ]
[ ]4,5

1.38036,0.513565, 1.61779,0.147755,1.31813,1.52539,0.461715, 1.51041, 2.30547,1.84753

68.5217,1

a

b

= − − − −

=
  

(10) liquid volume-pressure energy [J/g] ( )( ) result. 0lv p T y⋅ =   

[ ]
[ ]4,5

1.47247,1.98615, 0.590030,1.24981, 1.63366, 2.71395, 1.22314,1.17904,2.07025, 0.796522

126.003,0

a

b

= − − − − −

= −
  

(11) specific free energies difference [J/g] ( )( ) result. 0v lf f T y− =   

[ ]
[ ]4,5

0.266710, 0.0502656,1.52962, 2.08067, 0.926612,2.67307,2.70876, 2.07296, 5.56181,4.51283

9.15409,0

a

b

= − − − − −

=
 

(12) specific entropies difference [J/(g ⋅ K)] ( )( ) result. 0v ls s T y− =   

[ ]
[ ]4,5

0.567234,0.913123, 0.899225,0.843719,0.225934, 0.687829, 0.580662,0.205369,0.653722, 0.241254

2500.53,0

a

b

= − − − −

=
 

(13) specific enthalpies difference [J/g] ( )( ) result. 0v lh h T y− =   

[ ]
[ ]4,5

0.534001,0.537709,0.395953, 0.588307, 0.708852,0.758154,1.31744, 0.454482, 2.34511,1.55443

2374.53,0

a

b

= − − − −

=
 

(14) specific internal energies difference [J/g] ( )( ) result. 0v lu u T y− =   

[ ]
[ ]4,5

0.107002,3.58303, 21.8215,58.2433, 51.4785, 45.2356,79.4605,58.7154, 142.973,62.6110

160.515,0

a

b

= − − − − −

=
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(15) specific heats difference [J/(g ⋅ K)] ( )( ) result. 0v lc c T y− =   

[
]

[ ]4,5

0.510916,0.0595490, 0.282315,0.416933,0.504735, 0.203350, 0.642217, 0.0865999,

       0.768421, 0.346191

1,0.3220

a

b

= − − − − −

−

=

 

(16) vapor density [g/cm 3 ] ( )1 result. 0vv T y=   

[
]

[ ]4,5

0.499734,0.0246116,0.738259, 0.287404, 0.740815, 0.0713399,0.658282,0.455843,

      0.412697, 0.174258

1,0.3220

a

b

= − − −

− −

=

 

(17) liquid density [g/cm 3 ] ( )1 result. 0lv T y=   

[
]

[ ]4,5

0.973508,0.235330,0.433696, 0.498010, 0.706760,0.0588016,0.717225,0.394517,

      0.502750, 0.0932264

1,0

a

b

= − −

− −

=

 

(18) densities difference [g/cm 3 ] ( )( )1 / 1 / result. 0l vv v T y− =   

[ ]
[ ]4,5

2.06183, 3.93337,31.5958, 61.0194,22.6552,52.0955, 40.8935, 51.8536,77.3130, 27.0240

346.690,0

a

b

= − − − − −

=
 

(19) vapor internal energy [J/g] ( ) result. 0vu T y=   

[ ]
[ ]4,5

0.359123,0.410040, 0.973294,1.26634,1.01728, 0.556973, 1.07467, 0.129731,0.888168, 0.205881

2029.84,0

a

b

= − − − − −

= −
  

(20) liquid internal energy [J/g] ( ) result. 0lu T y=   

[
]

[ ]4,5

0.966710,4.97284, 4.09877, 0.544358, 0.371626, 0.290983, 0.202243, 0.0638619,

       0.127305,0.357621

472.595,0.144990

a

b

= − − − − − −

=

 

(21) vapor enthalpy [J/g] ( ) result. 0vh T y=   

[
]

[ ]4,5

0.403414,0.288097, 0.666530,1.20021,0.437199, 0.312805, 0.584839, 0.201505,

       0.384923,0.0523213

2098.36, 0.0326549

a

b

= − − − −

= − −

 

(22) liquid enthalpy [J/g] ( ) result. 0lh T y=   

[ ]
[ ]4,5

0.231186, 0.0472792,2.13446, 3.04839, 1.09446,3.38156,2.92166, 2.75222, 6.06560,5.33769

4.71794,1.64434

a

b

= − − − − −

=
  

(23) vapor entropy [J/(g ⋅ K)] ( ) result. 0vs T y=   

[ ]
[ ]4,5

0.269902, 0.327585,0.294836,0.364111, 1.01610, 1.00682,0.139263,1.25209,1.05674, 1.48587

4.43367,1.74977

a

b

= − − − − −

=
  

(24) liquid entropy [J/(g ⋅ K)] ( ) result. 0ls T y=   
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[
]

[ ]4,5

0.0790752,0.0294262,1.10812, 0.434269,0.391088,0.453726,0.401006, 0.280411,

       1.47401,0.884182

1958.31, 2.56350

a

b

= − − −

−

= −

 

(25) vapor free energy [J/g] ( ) result. 0vf T y=   

[ ]
[ ]4,5

0.0273990,0.0855359,1.13261, 0.748869,1.16486,0.261752, 1.12585, 0.446656,1.09952, 0.450116

2083.14, 2.40988

a

b

= − − − −

= −
  

(26) liquid free energy [J/g] ( ) result. 0lf T y=   

Fit function ( )5y  yields ( )result evaluation 5, , ,a b x=  for quantities (27)-(33). According to Equation (35), 
this function calculates functions with lowest exponent 2β .  

( ) ( ) ( )
9

2

0
5 ,     n

n c c t
n

y x a x x T T T Tβ β

=

= ⋅ ⋅ = − −∑                       (A5) 
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[ ]
[ ]4,5

0.166249, 0.252613,1.24530, 0.0701179, 0.638943, 0.993436, 0.295894,1.22926,1.72627, 1.74983

1,0.6440

a

b

= − − − − − −

=
 

(27) densities sum [g/cm 3 ] ( )( )1 1 result. 0l vv v T y+ =   

[ ]
[ ]4,5

1.07301, 5.74927,9.33052, 0.951669, 5.04044,0.101390,4.01957,0.699468, 4.87764,2.39464

1685.14,0

a

b

= − − − −

= −
  

(28) specific internal energies sum [J/g] ( )( ) result. 0v lu u T y+ =   

[ ]
[ ]4,5

13.2996,91.3247, 213.377,227.859, 54.5104, 167.983,119.990,169.458, 271.404,112.944

0.281113,55.1943

a

b

= − − − − −

=
 

(29) specific entropies sum [J/(g ⋅ K)] ( )( ) result. 0v ls s T y+ =   

[
]

[ ]4,5

0.579292,0.603316, 1.11602,0.0408024, 0.259468,0.135034,0.0680569,0.261610,

      1.07447, 1.22830

4.42914,1.75156

a

b

= − − −

−

=

 

(30) entropy [J/(g ⋅ K)] ( ), result. 0cs T v y=   

[ ]
[ ]4,5

0.696480, 0.220262, 0.324727,2.53569,0.243298, 2.37945, 1.79993,1.08425,2.63878, 1.47457

2029.47,0

a

b

= − − − − −

= −
  

(31) internal energy [J/g] ( ), result. 0cu T v y=   

[ ]
[ ]4,5

0.0423559,0.854344,1.05367, 1.02728, 0.165783,0.240029,0.548130,0.0473467, 1.25437,0.661417

2083.14, 2.40988

a

b

= − − −

= −  

(32) free energy [J/g] ( ), result. 0cf T v y=   

[ ]
[ ]4,5

0.443902,0.0680497, 1.97041,5.98966, 4.51582,0.509576,1.55638, 0.867467, 1.31167,1.09668

1561.07,0.302111

a

b

= − − − −

= −
  

(33) chemical potential function [J/g] ( ) ( )( )( )d d 1 result. 0T T T yµ =   
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Fit function ( )6y  yields ( )result evaluation 6, , ,a b x=  for quantities (34)-(35). According to Equation (28), 

this function calculates functions with lowest exponent ( )1 β− .  

( ) ( ) ( )
9

1

0
6 ,     n

n c c t
n

y x a x x T T T Tβ β−

=

= ⋅ ⋅ = − −∑                       (A6) 
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Fit function ( )7y  yields ( )result evaluation 7, , ,a b x=  for quantities (36)-(37). According to Equation (38), 

this function calculates functions with lowest exponent ( )1 2β− .  

( ) ( ) ( )
9

1 2

0
7 ,     n

n c c t
n

y x a x x T T T Tβ β−

=

= ⋅ ⋅ = − −∑                       (A7) 

 

 
 

[ ]
[ ]4,5

1253.44, 8278.10,25699.1, 46855.1,49393.0, 17973.7, 25447.1,40299.0, 23124.4,5034.94

0.00607013,0

a

b

= − − − − −

=
  

(34) specific heat of vapor [J/(g ⋅ K)] ( ) 1 result. 0vc T y=   

[ ]
[ ]4,5

19.8944, 69.8257,129.729, 164.750,102.447,37.9097, 16.6115, 162.493,182.807, 58.1115

0.237727,0

a

b

= − − − − −

=
 

(35) specific heat of liquid [J/(g ⋅ K)] ( ) 1 result. 0lc T y=   

[ ]
[ ]4,5

2.13973, 15.0002,211.303, 1333.97,4622.27, 9769.92,12935.9, 10460.5,4718.44, 909.644

0.236711,0

a

b

= − − − − −

=
 



A. Elsner 
 

 
824 

(36) heat capacity [J/(g ⋅ K)] ( ), 1 result. 0cc T v y=   

[ ]
[ ]4,5

8.14762, 147.378,1431.95, 5240.21,8639.93, 4780.11, 4795.45,9114.57, 5383.40,1152.95

64.8719,0

a

b

= − − − − −

= −
 

(37) chemical potential function [J/(g ⋅ K 2 )] ( )2 2d d 1 result. 0T T yµ =   

Fit function ( )8y  yields ( )result evaluation 8, , ,a b x=  for the quantity (38). This function calculates the 
temperature derivative of the chemical potential  

( ) ( ) ( )
9

0 1
2

8 ,     n
n c c t

n
y a a x a x x T T T Tβ

=

= + + ⋅ = − −∑                     (A8) 

 

 
 

[
]

[ ]4,5

0.00125898,0.0284841,0.868724, 1.83929,0.739882,2.14233,0.820594, 1.72308,

       2.38005,2.34305

3.63587, 1.91574

a

b

= − − −

−

= −

 

(38) chemical potential function [J/(g ⋅ K)] ( )d d result. 0T T yµ =   
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Fit function ( )9y  yields ( )result evaluation 9, , ,a b x=  for the quantity (39). This function calculates the 
chemical potential  

( ) ( ) ( ) ( )
9

1 12
0 1 2

3
9 ,     n

n c c t
n

y a a x a x a x x T T T Tβ+ −

=

= + + + ⋅ = − −∑                 (A9) 

 

 
 

[
]

4,5

0.000511166,0.988665,0.352493, 0.708904,0.161913,0.383685,0.0103495, 0.475330,

      0.493858,0.470038

[2922.33, 1.69447]

a

b

= − −

−

= −

  

(39) chemical potential function [J/g] ( ) result. 0T yµ =  
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Fit function ( )10y  yields ( )result evaluation 10, , ,a b x=  for the quantity (40). This function calculates the 
surface tension  

( ) ( ) ( )
9

1

0
10 ,     n

n c c t
n

y x a x x T T T Tβ β+

=

= ⋅ ⋅ = − −∑                      (A10) 

 
 

[
]

[ ]4,5

2.02307, 0.358767, 0.477839, 0.130455, 0.0658336, 0.00930948,0.0259298,0.0330425,

       0.00867826, 0.0484515

75.65,0

a

b

= − − − − −

−

=

 

(40) surface tension [dyne/cm] or [erg/cm 2 ] ( ) result. 0T yγ =   
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