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Abstract 
We review (not exhaustively) the quantum random walk on the line in various settings, and pro-
pose some questions that we believe have not been tackled in the literature. In a sense, this article 
invites the readers (beginner, intermediate, or advanced), to explore the beautiful area of quan-
tum random walks. 
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1. Introduction 
1.1. Preamble 
The author would first like to thank Scientific Research Publishing with the invitation to contribute to the special 
issue on “Stochastic Processes”. I also acknowledge all active researchers in “Quantum Wonderland”. 

The quantum walk (QW) is regarded as the quantum analogue of the random walk (RW). In the RW, a particle 
is located at one of a set of definite positions (such as the set of integers on the line). In response to a random 
event—for example, the flipping of a coin—the particle moves either left or right. This process is iterated, and 
the motion of the particle is analyzed statistically. These systems provide good models for diffusion and other 
stochastic processes. The QW is studied in various contexts and settings. The main difference between the RW 
and the QW can be simply stated in terms of the dynamics on Z , the integers. In the RW, the walker is in posi-
tion { }0, 1, 2,x∈ ± ±   at time { }0,1,2,t∈  , and moves to 1x −  at time 1t +  with probability p , or 1x + , 
with probability 1q p= − . In contrast, the evolution of the quantum walker is defined by replacing p  and q  
with 2 2×  matrices P  and Q , respectively, where U P Q= +  is unitary. If ( )tσ  denotes the standard 
deviation of the walk at time t , then it is well known that the particle spreading in the classical case is diffusive, 
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( ) ~t tσ , while in the quantum case, the particle spreading is ballistic, ( ) ~t tσ . In quantum computation, 
the QW is applied to quantum algorithms and is known to give faster searching than the classical random walk, 
e.g., the Grover walk which is related to the Grover search algorithm. 

In these notes we have touched on some major topics on the QW that has been the subject of extensive re-
search by many authors from the experimental and theoretical point of view. It is my hope that the reader at any 
level interested in research on the QW, will take this opportunity to read these notes, and explore some of the 
questions we have proposed here, as an initiation into “Quantum Wonderland”. 

A good working knowledge of probability, statistics, linear algebra, and analysis, is a prerequisite necessary to 
commence research on the QW. Aside, motivation, passion, mathematical maturity, and the ability to think in 
abstract and applied terms, are also key ingredients to becoming a successful researcher in this area. 

Apart from the books mentioned in these notes, the following books make it possible for the reader with a 
good working knowledge of probability, statistics, linear algebra, and analysis, to start reading the research pa-
pers on QW in the literature: 
• Nielsen and Chuang, Quantum Information and Quantum Computation, Cambridge University Press (2011). 
• Portugal, Quantum Walks and Search Algorithms, Springer (2013). 
• Wang and Manouchehri, Physical Implementation of Quantum Walks, Springer (2013). 
• McMahon, Quantum Computing Explained, Wiley-IEEE Computer Society Pr (2007). 

1.2. Introduction on the Quantum Walk 
The quantum walk [1] is regarded as the quantum analogue of the classical random walk [2]. The quantum walk 
can be divided in two parts, the discrete [3] [4] and the continuous [5] [6]. The time evolution of the quantum 
walk can either be discrete [7] or continuous [6]. The connection between the continuous time quantum walk 
and the discrete time quantum walk has been established, see [8]-[10] for examples. The walk is intensely inves-
tigated in the literature due to its connection to quantum computing, see [11]-[20] for examples. In particular 
quantum walks have shown promise in the design of quantum algorithms [21], and the proposals in the literature 
are becoming extensive, see [22]-[31] for examples. The experimental implementation and realization of the 
quantum walk is also receiving considerable attention in the literature by researchers. Experiments are being de-
signed and in some cases already performed to implement the quantum walk, see [32]-[40] for examples. The 
quantum walk is studied on various topologies including cycles, lattices, and hyper-cubes. The literature is ex-
tensive; a few examples include the authors in [41]-[50]. For the most comprehensive review on the quantum 
walk, the reader should consult [51]. Another nice review is given in [52]. As far as books are concerned the 
reader should consult the following references [53]-[56]. 

1.3. Introduction on Disorder 
The discrete-time quantum walk with spatially or temporally random defects as a consequence of interactions 
with random environments is known as the disordered quantum walk. In this paper we review the disordered 
quantum walk as defined by N. Konno [57]. We should remark that the unitary transformation governing our 
walk is an example of a disordered quantum walk of type II. The matrix was studied by Mackay et al. [58] in 
their analysis of quantum walk in higher spatial dimensions, comparing classical and quantum spreading as a 
function of time. As for the review on disorder in quantum systems, beginning in [59] the authors study the 
transport efficiency of an excitation moving from a source via a network to a drain. The model considered is a 
topologically disordered network with long-range interactions of dipole-dipole type. The authors show the cros-
sover between purely quantum mechanical transport and environmentally induced diffusion, by phenomenolog-
ically modeling the system using quantum stochastic walk. In [60], the authors study quantum walks where sig-
nals can jump to a distant location, which is a generalization motivated by Levy flights in classical mechanics. 
In particular, they study two classes of quantum walks with disordered connections between beam-splitters. In 
the particular case of dynamic disorder, the model considered shows that decoherence leads Gaussian distribu-
tion modulated by residual patterns of quantum walk or by valleys. In [61], the authors investigate excitonic 
transport in systems consisting of rings of chromophores stacked in cylindrical arrays, as a function of the num-
ber of chromophores per ring, the spacing between rings, and the strength of decoherence and disorder. Using 
the symmetries of the system, the authors perform simulations to capture the dynamics of excitonic diffusion in 
the presence of environmentally-induced noise and disorder. In particular, the authors provide clear evidence for 
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the presence of super transfer in the appropriate regimes and for the destruction of super transfer in other re-
gimes. In [62], the authors investigate one-dimensional discrete time quantum walks with spatially or temporally 
random defects as a consequence of interactions with random environments. In particular the authors show that 
quantum walks with spatial disorder exhibit delocalization behaviors. In [63], the author studies the discrete-time 
quantum walk model with Hamiltonian form of the evolution operator for each step. In particular, studying the 
walk dynamics using temporal, spatially static, and fluctuating disordered unitary evolutions, it is shown that 
localization only occurs with spatially static disordered operations. Anderson localization usually emerges in 
quantum systems when randomized parameters cause the exponential suppression of motion. In [64] this phe-
nomenon is considered using the toric code. The authors show that magnetic field perturbations on the toric code 
induce quantum walks of anyons, which quickly destroy any stored information when anyons are present. In 
particular, they show that disorder induces exponential localization which suppresses the anyon motion. In [65], 
the authors study how disorder and fluctuations in a periodic lattice can influence the evolution of a transversing 
particle. In particular they show a fast ballistic spread for slowing changing lattice parameters, a diffusive spread 
in the case of dynamical disorder, and Anderson localization for lattices with static disorder. In [66] the authors 
study a spin (one-half)-particle on a one dimensional lattice subject to disorder induced by a random, space-de- 
pendent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk opera-
tors, where the shift operation is assumed deterministic. Sufficient conditions on the probability distribution of 
the coins such that the system exhibits dynamic localization is derived. In [67], the author presents an approach 
to induce localization of a Bose-Einstein condensate in a one-dimensional lattice under the influence of unitary 
quantum walk evolution using disordered quantum coin operation. It is shown that the discrete-time quantum 
walk on a two-state particle in a one-dimensional lattice can be diffused or strongly localized in position space, 
respectively. In addition, it is shown that these behaviors of the discrete time quantum walk can be efficiently 
induced without introducing decoherence into the system. In [68] the authors consider percolation lattices, as a 
simple example of a disordered system, in which edges or sites are randomly missing, interrupting the progress 
of the quantum walk. In one dimension quantum tunneling is used study the properties of the quantum walk as it 
spreads, whilst in two dimensions, it is shown that spreading rates vary from linear in the number of steps down 
to zero, as the percolation probability decreases towards the critical point. In [69] the dynamics of finite-sized 
disordered systems is considered, using the mapping between any master equation satisfying detailed balance 
and a Schrodinger equation in configuration space, the authors compute the largest eigenvalue relaxation time of 
the dynamics via lowest energy vanishing eigenvalue of the corresponding quantum Hamiltonian. In [70] the 
fate of quantum walks in a random environment is studied, with both static and dynamic disorder. It is shown 
that static disorder is responsible for exponentially suppressing quantum evolution with variance reaching a 
time-independent limit for long times, depending on the strength of static disorder and space dimensionality. For 
dynamic disorder, by coupling the quantum system to a random environment it is shown that decoherence oc-
curs and quantum physics becomes classical so that a quantum walk is still propagating but only diffusively. In 
[71] the effect of static disorder on the coherent exciton transport by means of discrete Wigner functions is ana-
lyzed. It is shown that the Wigner function shows strong localization about the initial node. Integrating out the 
details of the time evolution by considering the long time average of the Wigner function, it is shown that loca-
lization is even more pronounced. In [72] the authors study the effect of random and aperiodic environments on 
cooperative processes in one space dimension. It is shown that at the critical point, both for the transverse-field 
Ising model and for the diffusion process, the two types of in homogeneities have quite similar consequences, 
which is based on the same type of distribution of the low energy excitations. Finally in [73], the authors study 
controllability of a closed quantum system whose dynamical lie algebra is generated by adjacency matrices of 
graphs. The key property is a novel graph-theoretic feature consisting of a particularly disordered cycle structure. 
The main result is characterizing a large family of graphs that give a pair of Hamiltonians implementing any 
quantum dynamics, thereby rendering a system controllable. 

1.4. Introduction on Inhomogeneity 
When the quantum walk is position dependent it is said to be inhomogeneous. The inhomogeneous quantum 
walk is studied in various settings, especially in the applications. In [74] a two-state time inhomogeneous quan-
tum walk is defined by two matrices on the line. It is shown that for the time-homogeneous walk determined by 
a unitary matrix, the limit distribution is expressed by a single density function. However, if another unitary ma-
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trix operates the walk in certain intervals, the limit distribution has a combination of density functions. In [75] 
the authors focus on the localization property of the quantum walk and study a class of the discrete-time quan-
tum walk (DTQW) on a one-dimensional lattice with spatially homogeneous coins. Localization is defined as 
the limit distribution of the DTQW divided by some power of the time variable has the probability density given 
by the Dirac Delta function. Let n  be the position of the walker, the coin flip is given by  

( ) ( )
( ) ( )

cos 2π sin 2π
sin 2π cos 2πn

n n
C n n

n n
α α
α α

  − 
= ⊗  

   
∑ . 

In [76] the authors study walks that are periodic in position and show that depending on the period, such  

walks can be bounded or unbounded. The coin flip used in [76] is related to those in [75] by 1
2k

α = . Given a 

sequence ( ){ }, :x x x Zω ω ∈ , with [ ), 0, 2πx xω ω ∈ , let ( ) e e1,
e e2

x x

x x

i i

x x x x i iU U
ω ω

ω ωω ω
−

 
= =  

− 





 . It is shown in  

[77] that ballistic and localized behaviors in the walk co-exist with respect to the time average measure and the 
weak limit measure. A universality class of quantum walks with respect to the weak limit measure is also pro-
posed. In [78] the case ( ),0x xU ω  is treated. Using the method of path counting, the quenched and annealed 
weak limit theorems for the walk is presented. On the other hand the case ( )0,x xU ω  is treated in [79], in 
which it is shown that the walk exhibits localization by a path counting method. In [80] we treated 

( ) ( )0,x x x xU Uω ω≡  and obtained the limit theorem for the walk using the Fourier analysis. 

1.5. Introduction on Parametrization 
As far as we can tell the quantum walk on the line with phase parameters was initiated by Villagra et al. [81]. In 
this paper the authors study a discrete-time coined quantum walk on the line with the objective of addressing the 
following question: Given a graph, what is the probability that a quantum walk arrives at a given vertex after 
some number of steps? The main contribution of the paper is a closed-form formula for a general symmetric 
SU(2) operator for walks on the line. In the quantum walk on the line the operator is defined as follows: Take 
any unitary operator U , and form the unitary operator U UTU′ = , where ( )1 2π πDiag e ,ei iT τ τ=  is the di-
agonal phase adjustments with [ ]1 2, 0,1τ τ ∈ . Due to the restriction of 1 2,τ τ  to the unit interval, the author of 
the present paper started calling walk operators of the form U UTU′ =  the parametrization of U , in analogy 
to parametric equations in mathematics. The parametrization of the quantum walk has been investigated, and the 
contributions are few. In [82] we investigated the question above for the Grover operator by proposing a coin 
operation with phase parameters. We studied the discrete-time quantum walk on the line and obtained a closed- 
form formula for the amplitudes of the state of the walk and convergence properties of the walk. In [83] we stu-
died asymptotic entanglement properties of the Hadamard walk with phase parameters on the line using the 
Fourier representation. We used the von Neumann entropy of the reduced density operator to quantify entangle-
ment between the coin and position degree of freedom. We investigate obtaining exact expressions for the 
asymptotic entropy of entanglement, for different classes of initial conditions. In [84] we obtained the limiting 
distribution of the Grover walk with phase parameters. In [85] we studied the discrete-time nearest-neighbor 
quantum walk with phase parameters in random environments in one dimension involving a Grover-type opera-
tor. Using the Fourier analysis, we obtained the limiting distribution of the walk. 

1.6. Introduction on the Quantum Walk with Memory 
Recently Mc. Gettrick [86] introduced and investigated 2-state QW with one step memory on Z . In [87] the 
authors show that his walk becomes a 4-state QW by relabeling his notation, which is the definition considered 
in this paper. In particular any extended version of his walk with r -state memory can be considered 12r+ -state 
QW without memory. The m -state QW has been investigated for specific m , for introductory papers, see [88] 
for the 3-state Grover walk, and for 4-state models, see [89]-[92].  

1.7. Introduction on Decoherence and Entanglement 
As is well known the physical implementation of the quantum walk faces many obstacles including environ-
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mental noise and imperfections collectively known as decoherence. The decoherence in the quantum walk is in-
tensely investigated in the literature in various settings and contexts, and the overarching goal is to study possi-
ble routes to classical behavior. In [93] they gave two such ideas, the first is to measure the quantum “coin” at 
every step, the record of the measurement outcomes singles out a particular classical path. By averaging over all 
possible measurement records, one recovers the usual classical behavior. Alternatively, rather than using the 
same coin every time, one could replace it with a new quantum coin for each flip. After a time t  one would 
have accumulated t  coins, all of them entangled with the position of the particle. By measuring them, one 
could reconstruct a unique classical path; averaging over the outcomes would once again produce the classical 
result. For the quantum walk on the line it is known that the variance grows quadratically with time. The va-
riance in the classical random walk on the line, by contrast, grows linearly with time. Both of these are effects of 
interference between the possible paths of the particle. 

Some introductory studies on the decoherent quantum walk can be found in [94]-[118] and have been re-
viewed by the author of the present paper in [119]. In [93], the decoherent quantum random walk on the 1-di- 
mensional integer lattice Z  is studied, leading to expressions for the first and second moments of the position 
distribution, it is also shown in the long time limit that the variance grows linearly with time with the diffusive 
character. In [119] the Brun type decoherence is extended to the two dimensional setting providing generaliza-
tions with wide range of applications. The generalized first and second moments for the decoherent quantum 
walk is obtained, the Brun formalism for the quantum walk is also treated. In the presence of broken line noise, 
the diffusive character of the walk is studied. It is conjectured that the diffusion coefficient in the quantum realm 
varies directly as 1 p− , and inversely as 2p , where p  is the probability of adjacent broken link at a given 
site in the walk. The conjecture if holds true implies the diffusion co-efficient of the decoherent quantum walk is 
always larger than the diffusion co-efficient in the in the classical case. 

As the author of the present paper pointed out in [119], due to the complexity of the calculations, the pure 
analytic papers on the decoherent quantum walk have been given little attention in the literature. Moreover in 
[120] it is found that the complicated form of the superoperator in [93] makes it difficult to obtain the limit of 
the decoherent quantum walk. However, this difficulty is overcome by analyzing the characteristic function of 
the position probability distribution. 

In this paper we follow the convention of obtaining the limit of the decoherent quantum walk by analyzing the 
characteristic function, following discussion of the result of Fan et al. [120], which was recently extended in the 
two-dimensional setting by the author of the present paper [119]. 

Related to decoherence is the notion of entanglement. The (asymptotic) entanglement in quantum walks is in-
tensely investigated in the literature in various context, see [121]-[149], for examples. In this paper we also re-
view asymptotic entanglement of the quantum walker in the sense of Machida [150]. The discussion of their re-
sult indicates application to entanglement rather than decoherence. Quantifying entanglement has been consi-
dered in various contexts [151]-[160]. If the system is pure, the von Neumann entropy is used as a measure to 
quantify the entanglement. The measure of entanglement in this case is usually given by ( )2logE C CS tr ρ ρ= − ,  

where ( )C Ptrρ ρ=  is the reduced density operator obtained from ( ) ( )0

tt TU Uρ ρ=  by tracing over the po-  

sition degrees of freedom. We should remark that studies involving this measure of entanglement have focused 
mainly where Cρ  has dimension two, see [161]-[163] for examples, the case where Cρ  has dimension higher 
than two has been given little attention in the literature, the known studies in this case include [164] [165]. 

2. Brief Overview of the Quantum Random Walk on the Line 
In the general setting the time-evolution of the one-dimensional quantum walk is given by the following unitary  

matrix 
a b

U
c d
 

=  
 

, where , , ,a b c d C∈ , and C  is the set of complex numbers. The unitarity of U  implies 

we have 2 2 2 2 1a b c d+ = + = , 0ac bd+ = , c b= −∆ , d a= ∆ , where the bar denotes complex conjuga- 
tion, and detU ad bc∆ = = −  with 1∆ = . The quantum walk is regarded as the quantum analog of the clas-
sical random walk with an additional degree of freedom called the chirality. The chirality takes value left and 
right, and means the direction of the motion of the particle. The evolution of the quantum walk takes place in the 
following way. At each time step if the particle has the left chirality, it moves one step to the left, and if it has the 
right chirality, it moves one step to the right. The unitary matrix U  acts on two chirality states L  and R :  
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L a L c R→ + ;  R b L d R→ + .  P u t  
1
0

L  
=  
 

,  a n d  
0
1

R  
=  
 

,  t h e n :  U L a L c R= + ;  

U R b L d R= + . In particular, at any time n , the amplitude of the location of the particle is defined by a 
2-component vector in 2C  at each location { }, 2, 1,0,1, 2,− −  . The probability that the particle is at location 
n  is given by the square of the modulus of the vector at k . If ( )k nΨ  defines the amplitude at time n  at  

location k  where ( ) ( )
( )

L
k

k R
k

n
n

n
 Ψ

Ψ =  
Ψ  

, with the chirality being left (upper component) or right (lower com-

ponent), then the dynamics of the quantum walk is given by the following transformation: 

( ) ( ) ( )1 11k k kn P n Q n+ −Ψ + = Ψ + Ψ , 

where  

0 0
a b

P  
=  
 

, 
0 0

Q
c d
 

=  
 

.  

We should remark that U P Q= + , and the unitarity of U  ensures that the amplitude always defines a proba-
bility distribution for the location. The probability that the quantum walker is in position k  at time n  is given 
by  

( ) ( )
2

n nP X k kψ= = ,  

where 2
a a a= . In the k ′ -space we have ( ) ( )ˆ e ik k

n n
k Z

k kψ′−

∈

′Ψ = ∑ . By the inverse Fourier transform 

we have ( ) ( )
π

π

d ˆe
2π

ik k
n n

kk kψ ′

−

′
′= Ψ∫ . In the k ′ -space the time evolution of the walk is given by 

( ) ( ) ( )1
ˆ ˆ ˆn nk U k kψ+ ′ ′Ψ = . From ( ) ( ) ( )1

ˆ ˆ ˆn nk U k kψ+ ′ ′ ′Ψ =  and induction on n , we can write the time 

evolution of the walk by ( ) ( ) ( )0
ˆ ˆ ˆn

n k U k k′ ′ ′Ψ = Ψ , where ( )0
ˆ k ′Ψ  is the initial state in the Fourier do-

main. Note that we can write the probability distribution as ( ) ( ) ( )
2π

0
π

d ˆ ˆe
2π

tik k
n

kP X k U k k′

−

′ ′= = Ψ∫ . The ex-

plicit form of the probability distribution is given by the Konno density function. 
Theorem 1 (Konno Density Function): Consider the one-dimensional quantum walk nX ϕ  at time n  start-

ing from the initial quibit state 
α

ϕ
β
 

=  
 

 with 2 2 1α β+ = , determined by the 2 2×  unitary matrix 

a b
U

c d
 

=  
 

 with 0abcd ≠ , where , , ,a b c d C∈ , and C  is the set of complex numbers. 

If n →∞ , then nX
Z

n
⇒ , where Z  has the density ( )

( )
( )

2
.

, 22 2

1 1

π 1

a k
f k

k a k

α β
α β

λ− −
=

− −
 with 

( )2 2
, 2

2Re a b

a
α β

α β
λ α β= − + , for ( ),k a a∈ − , and ( ), 0f kα β =  for ( ),k a a∉ − . 

Remark 2: We are referring to the probability distribution in Theorem 1, in the sense of weak limit theorem. 
The weak limit theorems for quantum random walks have a storied history. In fact going back to Grimmett, 

Janson, and Scudo [167], they formulate and prove a general weak limit theorem for quantum random walks in  

one or more dimension. In particular, let nX  denote position at time n , the authors show that nX
n

 converges  

weakly as n →∞  to a certain distribution which is absolutely continuous and of bounded support. In the 
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one-dimensional setting the authors obtained the following result. 

Theorem 3: If n →∞ , then ( )nX
Y h Z

n
⇒ = , where Z  is a random variable of Ω  with distribution µ . 

Proof/Sketch of Proof: Let ( )U k  be the unitary matrix governing the quantum walk in the one dimensional 
setting in the Fourier picture. Suppose ( )j kλ  and ( )jv k  are the eigenvalues and eigenvectors of ( )U k , 
respectively. Put  

d
d

D i
k

= ,  

then 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )1
0

rn rr r
n j j j jr

j
D k n k D k v k k v k O nλ λ− −Ψ = Ψ +∑ ,  

where ( ) ( ) ( )1 1rn n n n r= − − + . It can be shown that  

( ) ( )
π

π

d
2π

r r
n n n

kE X k D k
−

  = Ψ Ψ  ∫ .  

Combining the expressions for r
nE X    and ( )r

nD kΨ  yields, as n →∞ ,  

( )
( ) ( ) ( ) ( )

π 2 1
0

π

d
2π

rr
jn

j
j j

D kX kE v k k O n
n k

λ
λ

−

−

     = Ψ +          
∑∫ .  

Let { }1,2KΩ = × , let µ  be the probability measure on Ω  given by  

( ) ( )
2

0
d
2πj
kv k kΨ  on { }K j× .  

Let ( ) ( )
( )
j

j
j

D k
h k

k
λ
λ

= , and define :h RΩ→ by ( ) ( ), jh k j h k= , then lim d
r

rn

n

X
E h

n
µ

→∞
Ω

   =  
   

∫ . Since h  

is bounded and the relation lim d
r

rn

n

X
E h

n
µ

→∞
Ω

   =  
   

∫  holds for all 0r ≥ , by the method of moments the result 

follow. 
The authors further extend Theorem 3 to arbitrary dimension 2d ≥  using the same argument yielding the 

following result. 
Theorem 4: For the d -dimensional quantum walk  

( ) ( )( )1 , ,n
dh Z h Z

n
⇒ =

X
Y    

where Z  is a random element of { }1, , 2dK dΩ = ×   with distribution µ , and ( ) ( )
( )

, i J

J

D
h J

λ
λ

=
k

k
k

, where 

{ }1, , 2J d=  , and { }1, ,i d=  . 
The papers [167] [168] gave a complete characterization of the weak limit theorem for one-dimensional 

quantum walks, which is now known as the Konno density function. In particular using an explicit form of  
( )nP X kϕ =  the author obtained the characteristic function of nX ϕ  and the thm  moment of it. From the ex-

plicit form of ( )nP X kϕ =  the author obtained a combinatorial expression for the characteristic function of  

nX ϕ  and used it to obtain the limit theorem of nX ϕ . 
The weak limit theorem can also be written in terms of the density matrices at position k  at time t  [150]. 

In particular if ( ) 2
t k Cψ ∈  is the amplitude of the walker at position k  at time t , then the density matrix is 

given by ( ) ( ) ( )t t tk k kρ ψ ψ= , and we have the following version of Theorem 1. 
Theorem 5: For 0abcd ≠ , and 0,1,2,r =  , we have,  
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( ) ( )
1

0
lim lim d

rr
rt

tt tk Z j

Xk j k j E y g y y
t t

ρ
∞

→∞ →∞∈ = −∞

    = =         
∑ ∑ ∫  

where,  

( )
( ) ( ) ( )

( )2
2 2

, 222 2

2Re1
1

π 1
a a

a ba
g k I k k

ak a k

α β
α β−

  −   = × − − +   − −   

,  

( )
1, if
0, ifA

k A
I k

k A
∈

=  ∉
,  

and [ ]E Y  means the expected value of Y . 
Remark 6: We should note a version of Theorem 5 for the interference terms have been given in [150]. The 

ground-breaking paper [169], study the connection of the limit distribution of the interference terms in the con-
tinuous-time quantum random walk. From now on, the connection to other notions in quantum information 
science is discussed. 

3. Connection to Notion of Disorder 
Consider the time evolution of the quantum walk governed by the following infinite random unitary matrices  

{ }: 1, 2,nU n =  , n n
n

n n

a b
U

c d
 

=  
 

, where the entries of the matrix are complex numbers, and the subscript n  

denotes the time step. The unitary of nU  gives 2 2 2 2 1n n n na c b d+ = + = , 0n n n na c b d+ = , n n nc b= −∆ , 

n n nd a= ∆ , where z  denotes complex conjugation, and detn n n n n nU a d b c∆ = = −  with 1n∆ = . Put 

( )n n n n nw a b c d= . 
Let { }: 1, 2,nw n =   be independent and identically distributed on some space with 

( ) ( )2 2
1 1

1
2

E a E b= =   

and ( )1 1 0E a c = . By using the fact that 2 2 2 2 1n n n na c b d+ = + = , 0n n n na c b d+ = , n n nc b= −∆ ,  

n n nd a= ∆ , we also see that ( ) ( )2 2
1 1

1
2

E c E d= =  and ( )1 1 0E b d = . The set of initial quibit states for the 

quantum walk is given by [ ]{ }T 2 22 : 1Cϕ α β α βΦ = = ∈ + = , where T  means the transposed operator.  

Moreover, we assume that { }: 1, 2,nw n =   and { },α β  are independent. The quantum walk governed by the 
above process is what is called the disordered quantum walk. In this paper we will consider quantum walks de- 

scribed by the above process with the additional requirement that ( )2 1
2

E α = , and ( ) 0E αβ = .  

4. Connection to Notion of Parametrization 
Let  

{ },CH span L R= , { }:SH span k k Z= ∈ .  

The state of the walk ( )n n
k

kψΨ =∑  at time n  is defined over the joint space  

{ }, : ,S C C SH H k d d H k H⊗ = ∈ ∈ ,  

where  

( ) ( ) ,d
n n

k
k k d kψ α= ∑ ,  
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and ( )d
n kα  is the amplitude at time n  in direction d  and position k . We should note that  

( )
2

, 1d
nd k kα =∑ .  

For the analysis of the walk on line we consider the projection at time n  onto position k  as two dimensional 
vector in  

2C : ( )
( )

L
n
R
n

k
k

α
α
 
 
  

,  

where ( )L
n kα  and ( )R

n kα  represent the amplitude of the walker at position k  at time n  going left and  
right respectively. The probability of being at position k  at time n  is given by ( ) ( ) ( )

2 2L R
n n nP k k kα α= + . 

In this paper we will take ( ) 0
0

0

0
L

R

α
ψ

α
 

=  
 

 and for 0k ≠  ( )0

0
0

kψ
 

=  
 

, with 
2 2

0 0 1.L Rα α+ =  The time  

evolution of the walk is given by 1n nU −Ψ = Ψ . By induction on n , we can show in terms of 0Ψ , the 
evolution is given by 0

n
n UΨ = Ψ , where ( )U S I C= ⊗  is a unitary defined on C SH H⊗ , I  is the 

identity operator on SH  and C  is the coin operator in the usual quantum walk acting on CH , and S  is the 
shift operator. It should be noted that the quantum walker first choose a direction of movement using the coin 
operator C  in the usual quantum walk and moves according to the operator  

( )1 1
k

S L L k k R R k k= ⊗ − + ⊗ +∑ .  

Let 
a b

C
c d
 

=  
 

 be the coin operator in the usual quantum walk. In the quantum walk with phase parame-

ters we replace the coin operator C  with C CTC′′ = , where 1 2π πe ei iT R R L Lτ τ= +  is the diagonal 

phase adjustment with [ ]1 2, 0,1τ τ ∈ .  
Let  

1 2π π2e ei ia a cbτ τ′ = + , 1 2π πe ei ib ab bdτ τ′ = + ,  
1 2π πe ei ic ac cdτ τ′ = + , and 1 2π π2e ei id bc dτ τ′ = + ,  

then  

a b
C

c d
′ ′ ′′ =  ′ ′ 

,  

with the following effect on CH : L a L c R′ ′→ + R b L d R′ ′→ + . The dynamics of the quantum 
walk is given by  

( ) ( ) ( )1 1 1n n nk M k M k+ + −Ψ = Ψ − + Ψ + ,  

where  

0 0
M

c d+
 

=  ′ ′ 
,  

and  

0 0
a b

M −

′ ′ 
=  
 

. 

5. Connection to Notion of Inhomogeneity 
In the general setting, the time evolution of the walk is determined by a sequence of 2 2×  unitary matrices, 
{ }:xU x Z∈ , where  
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x x
x

x x

a b
U

c d
 

=  
 

,  

with , , , :x x x xa b c d Z C→ . The subscript x  indicates the location. The matrix xU  rotates the chirality before 
the displacement, which defines the dynamics of the walk. To describe the evolution of the walk, we write 

x x xU P Q= + , with  

0 0
x x

x

a b
P  

=  
 

 

and  

0 0
x

x x

Q
c d
 

=  
 

. 

It should be noted that xP  and xQ  represent the walker moving to the left and right at position x  at each 
time step. 

6. Connection to Notion of Decoherence  
Here we will discuss two approaches, the first by Fan et al. [120], and in terms of the interference phenomena, 
the approach by Machida [150]. Regarding the approach by Fan et al. [120], we make the discussion in the two 
dimensional setting, following a recent paper of the author [170]. 

6.1. Approach by Fan et al. Discussion in Two-Dimensional Setting 
Consider the quantum random walk on the general square lattice 2Z . Let the state space be given by P CH H⊗ , 
where PH  denotes the position space and CH  denotes the coin space. Let the basis for the position space be 
given by { }, : ,x y x y Z∈ , and let the basis for the coin space be given by { }, , ,L R U D , where 

, , ,L R U D  represent the left, right, upward, and downward chirality states respectively. Let the shift operators 
in PH  be defined as follows:  

, 1,R x y x y+ = + , , 1,L x y x y− = − , , , 1U x y x y+ = + ,  

and  

, , 1D x y x y− = − ,  

where , , ,R L U D+ − + −  are unitary shift operators on the particle position. Let , , ,R L U DP P P P  be the orthogonal 
projections on the coin space CH  spanned by  

{ }, , ,L R U D ,  

where  

R L U DP P P P I+ + + = .  

Let M  be the unitary transformation on CH , then the evolution operator of the quantum walk is given by  

( ) ( ) ( ) ( ){ }( )R L U DG R P L P U P D P I M+ − + −= ⊗ + ⊗ + ⊗ + ⊗ ⊗ .  

The eigenvectors ,x yk k  of , , ,R L U D+ − + −  are given by  

( )
,

, e ,x yi k x k y
x y

x y
k k x y+

= ∑ , [ ], 0, 2πx yk k ∈   

with eigenvalue  

, e ,xik
x y x yR k k k k−+ = , , e ,xik

x y x yL k k k k− = , , e ,yik
x y x yD k k k k−− = , , e ,yik

x y x yU k k k k+ = .  

Therefore in the ,x yk k  basis (aka Fourier Picture, Fourier Domain) the evolution operator is given by  
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( )
( )

,

,

, e e e e

,

y yx x

x y

x y

ik ikik ik
x y R L U D

x y k k

Q k k

k k P P P P M

k k M

−−

⊗ Φ

= ⊗ + + + Φ

≡ ⊗ Φ

  

where  

( ), e e e ey yx x
x y

ik ikik ik
k k R L U DM P P P P M−−= + + + .  

We should remark that ,x yk kM  is also a unitary operator.  
Let { }nA  be a set of unital operators on CH , that is, *

n n
n

A A I=∑ . The decoherence on the coin subspace is  

defined as follows, before each unitary transformation acting on the coin, a measurement given by the unital op-
erators is performed on the coin, after which a density operator X  on CH  is transformed by  

*
n n

n
X X A XA′→ = ∑ .  

The general density operator of the quantum random walk is given by  

, ; ,

d dd d
, ,

2π 2π 2π 2π x x y y

y yx x
x y x y k k k k

k kk k
k k k k Xρ ′ ′

′′
′ ′= ⊗∫∫ ∫∫ ,  

where  

( ), ; ,x x y yk k k k CX L H′ ′ ∈ ,  

and ( )CL H  is a vector space of linear operators on CH . After one step of the evolution introduced by the 
decoherent coin space, the density operator can be written as  

* *
, , ; , ,

d dd d
, ,

2π 2π 2π 2π x y x x y y x y

y yx x
x y x y k k n k k k k n k k

n

k kk k
k k k k M A X A Mρ ′ ′ ′ ′

′′
′ ′ ′= ⊗∑∫∫ ∫∫ .  

Suppose the quantum walk starts in 00,0 ⊗ Φ , then the density operator in the initial state is given by  

0 0 0

d dd d
, ,

2π 2π 2π 2π
y yx x

x y x y

k kk k
k k k kρ

′′
′ ′= ⊗ Φ Φ∫∫ ∫∫ .  

After t  steps the state evolves to  

, ; , 0 0

d dd d
, ,

2π 2π 2π 2π x x y y

y y tx x
t x y x y k k k k

k kk k
k k k k Lρ ′ ′

′′
′ ′= ⊗ Φ Φ∫∫ ∫∫ ,  

where ( ) ( ), ; , :
x x y yk k k k C CL L H L H′ ′   is defined by  

* *
, ; , , ,x x y y x y x yk k k k k k n n k k

n
L C M A CA M′ ′ ′ ′≡ ∑   

for every ( )CC L H∈ . The probability of being at ( ),x y  at time t , is given by  

( ) ( ){ }

{ }
( ) ( ) { }

, ; , 0 0

, ; , 0 0

, , , ,

d dd d
, , , ,

2π 2π 2π 2π
d dd d

e e
2π 2π 2π 2π

x x y y

y yx x
x x y y

t

y y tx x
x y x y k k k k

iy k ky y ix k k tx x
k k k k

P x y t Tr x y x y I

k kk k
x y k k k k x y Tr L

k kk k
Tr L

ρ

′ ′

′−′−
′ ′

= ⊗

′′
′ ′= Φ Φ

′′
= Φ Φ

∫∫ ∫∫

∫∫ ∫∫

 

Let ( ) ( ) ( ) ( )
,

, e e , ,iq x y iq x y

t x y
R q t P x y t+ +≡ = ∑  be the characteristic function of ( ), ,P x y t . The purpose of this 

section is to obtain the limit theorems for the decoherent quantum walk. We should remark that  
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( ) ( ) ( ) ( ) ( ) { }
( ) ( ) { }

, ; , 0 0
, ,

, ; , 0 0
,

2

d dd d
e , , e e e

2π 2π 2π 2π
d dd d

e e
2π 2π 2π 2π

d dd d
4π

2π 2π 2π 2π

y yx x
x x y y

y yx x
x x y y

iy k ky y ix k kiq x y iq x y tx x
k k k k

x y x y

iy k k qy y ix k k q tx x
k k k k

x y

y yx x

k kk k
P x y t Tr L

k kk k
Tr L

k kk k
δ

′−′−+ +
′ ′

′− − −′− − −
′ ′

′′
= Φ Φ

′′
= Φ Φ

′′
′=

∑ ∑ ∫∫ ∫∫

∑∫∫ ∫∫

∫∫ ∫∫ ( ) { }
{ }

, ; , 0 0

, , , 0 02

,

dd1
2π 2π4π

x x y y

x x y y

t
x x y y k k k k

y tx
k k q k k q

k k q k k q Tr L

kk
Tr L

′ ′

+ +

′− − − − Φ Φ

= Φ Φ∫∫

 

where we have used the following property of the dirac delta function  

( ) ( ) ( ) ( ) ( )2
,

1 e e ,
4π

y yx x iy k km mix k k
x x y y

x y
xy i k k k kδ

′− −′− − ′ ′= − − −∑ . 

Let ( )ˆ
CO L H∈  be any initial state. The generating function of ( )eiq x y

t

+  is given by  

( ) ( ) { }, , ,
0 0

, ; ,

dd ˆ, e
2π 2π

ˆdd
2π 2π

x x y y

x x y y

yiq x yt t tx
k k q k k qtt t

yx

k k q k k q

kk
G z q z z Tr L O

kk OTr
I zL

∞ ∞
+

+ +
= =

+ +

= =

  =  
−  

∑ ∑∫∫

∫∫
 

where 1z <  and ( )ˆ
CO L H∈ . Note that the generating function is well defined by Lemma 1 below.  

We should remark that the proof is similar to Lemma 3.1 in Fan et al. [120], therefore we omit it. 
Lemma 1: Suppose { }space of 4 4 unitary matrices with complex entriesM ∈ × , and { }nA  is a set of unital 

operators. Let λ  be an eigenvalue of , ; ,x x y yk k q k k qL + + , then 1λ ≤ . 

We should remark from Lemma 1 that 
, ; ,

0

ˆ
k k q k k qx x y y

t t

t
z L O

+ +

∞

=
∑  converges inside 1z < , and , ; ,x x y yk k q k k qI zL + +−  

has no poles inside the disk 1z < . By Lemma 1 and ( )( ), ; ,x x y yk k q k k q CI zL L L H+ +− ∈  we have 

( ) ( )
1

1

,1e d
2π

iq x y
tt

z r

G z q
z

i z
+

+
= <

= ∫  for some 0 1r< < . Since a basis for ( )CL H  is given by  

{
}

, , , , , , , ,

, , , , , , ,

o o o x o y o z x y x z y z x o

y o z o y x z x z y y y z z x x

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
,  

where oσ , xσ , yσ , and zσ  are the Pauli matrices. We can write Ô  as a linear combination of the basis  
elements. In column form let us write  

0

1

15

ˆ

r
r

O

r

 
 
 =
 
 
 



.  

Let A  be the matrix associated with , ; ,x x y yk k q k k qI zL + +− , then,  

( )
0 0

1 11
1 , 16

, ; ,

15 15

ˆ 1
det

x x y y

ij i j
k k q k k q

r r
r rO A A

I zL A
r r

−

≤ ≤
+ +

   
   
   = =
   −
   
   

 

,  

where ijA  is the cofactor of A . Note that with the exception of 0σ , the traces of the other Pauli matrices are 
zero. Since the elements in the basis are in a tensor product, the decomposition implies the trace of 0 0σ σ⊗  is 
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four, whilst the traces of the other matrices is zero. Hence when taking the trace in  

, ; ,

ˆdd
2π 2π

x x y y

yx

k k q k k q

kk OTr
I zL + +

  
 

−  
∫∫ ,  

only the first row action ( )
16

1 1
1

, i i
i

h z q A r −
=

= ∑  remains. Therefore we have ( ) ( )
2

4 ,1, d d
det4π x y

h z q
G z q k k

A
= ∫∫ . Let 

( )( )ijL l q=  be the matrix representation of , ; ,x x y yk k q k k qL + +  in terms of the basis for ( )CL H , then we have  

the following lemma whose proof is similar to Lemma 3.2 in Fan et al. [120], therefore we omit it. We should 
remark that in Lemma 2 below we have given the matrix representation for , ; ,x x y yk k q k k qL + +  in terms of the tensor 
product of the matrix representation for ,k k vL +  as given in Lemma 3.2 of the paper of Fan et al. [120]. However 
to get the matrix in Lemma 2 below in terms of q , one can use the following relation between ,k k vL +  and  

, ; ,x x y yk k q k k qL + +  , ; , 2
, ,

2 2 2 2
x x y y x y x y x y x yk k q k k q k k k k q k k k kL L L+ + + + + − −= ⊗ .  

We should remark that the proof of Lemma 3.2 in Fan et al. [120] is incomplete, however to get the remaining 
entries, X , it is necessary only to repeat the argument in their proof for each row and/or column with respect to 
the basis. 

Lemma 2: Suppose { }space of 4 4 unitary matrices with complex entriesM ∈ × , and { }nA  is a set of unital 
operators, then , ; ,x x y yk k q k k qL + +  has the following representation. 

cos cos
0 0
0 0

sin sin

v X X X v X X X
X X X X X X
X X X X X X

i v X X X i v X X X

   
   
   ⊗
   
   
   

. 

Let us define the probability mass function on Z
t

 by ( ) ( ), , , ,tP x y t P t x t y t= , , Zx y
t

∈ . 

The limit theorem for the decoherent two-dimensional quantum walk is given by the following:  
CLAIM: ( ),tP x y  converges in distribution to a continuous convex combination of normal distributions. 
Proof of Claim: [C. Ampadu, Quantum Inf Process (2012) 11: 1921-1929] 

6.2. Approach by Machida 

Consider the special unitary matrix 
a b

U
c d
 

=  
 

 for the 2-state QW on the line with cosa d θ= − = , and 

sinb c θ= = , or cosa d θ= = , and sinb c θ− = = , where ( )0,2πθ ∈ , and π 3π, π,
2 2

θ ≠ . We may suppose  

that ( ) 2
t x Cψ ∈  is the amplitude of the walker at position x  at time t , and ( ) ( ) ( )t t tx x xρ ψ ψ=  are  

the density matrices at position x  at time t . Put [ ]T0 1 0= , and [ ]T1 0 1= , where T  denotes the 
transposed operator. Consider the off-diagonal parts ( )0 1t xρ  in the density matrices ( )t xρ , then the rela- 

tion between the interference terms and the moments of tX
t

 are given as follows. 

Lemma 1: For 0,1,2,r =  , we have  

( )
1sinlim Re 0 1 det lim

2cos

rr
t

tt tx Z

Xx x U E
t t

θρ
θ

+

→∞ →∞∈

      =           
∑ ,  

where [ ]Re z  denotes the real part of the complex number z . 
Proof: [T. Machida, Quantum Information and Computation, Vol.13 No.7 & 8, pp. 661-671 (2013)]. 
On the other hand, if we assume that the 2-state quantum walk, starts from the origin with the initial state 

given by ( ) [ ]T0 0ψ α β= , where T  denotes the transposed operator, and 2 2 1α β+ = , then the limit 
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theorem is obtain as follows. 
Theorem 2: For 0,1,2,r =  , we have 

( ) ( ) ( ) ( ) ( ){ }lim 0 1 d
r

R Ir
tt x Z

x x y f y if y y
t

ρ
∞

→∞ ∈ −∞

  = + 
 

∑ ∫ ,  

where  

( ) ( ) ( )
( ) ( ) ( )2 2

,2 2 2
det 1 2det Re

2 π 1
R

c c

ss sf x U x U x I x
c cx c x

α β αβ −

   = × − − −     − −
 

( ) ( )
( )

( ) ( )
2 2

,2 2

Im

π 1
I

c c

s c xf x I x
c x

αβ
−

−
= ×

−
,  

where [ ]Im z  denotes the imaginary part of the complex number z , and cos , sinc sθ θ= = . 
Proof: [T. Machida, Quantum Information and Computation, Vol. 13 No. 7&8, pp. 661-671 (2013)]. 

7. Connection to Notion of Memory 
In this section we define the 4-state quantum walk (4QW) without memory. The state space of the 4-state quan-
tum walk is composed of the following vectors: ,0n , ,1n , , 2n , ,3n , where n Z∈ . For the chirality  
states we put [ ]T0 1 0 0 0= , [ ]T1 0 1 0 0= , [ ]T2 0 0 1 0= , and [ ]T3 1 0 0 0= ,  
where T  denotes the transposed operator. We should remark that 0 , 1  correspond to the left mover, and 
2 , 3  correspond to the right mover. In particular the states 0 , 1 , 2 , 3  correspond to the move-

ment “right→ left”, “left→ left”, “left→ right”, and “right→ right”, respectively. The position shift operator is 
given by 

( ) ( )1 0 0 1 1 1 2 2 3 3
n Z

S n n n n
∈

= − ⊗ + + + ⊗ +∑ .  

The one-step time evolution operator is given by ( )S I U⊗  where I  is the (infinite) identity matrix and  
0 0

0 0
0 0

0 0

a c
b d

U
a c

b d

 
 
 =
 
 
 

  

where the nonzero entries of U  are complex numbers. To define the 4-state quantum walk let x , x C∈ , 
where C  is the set of complex numbers, be a (infinite-component) vector which denotes the position of the 
walker. Here the x  component of x  is one , and the others are zero. Let ( ) 4

t x Cψ ∈  be the amplitude of 
the walker at position x  at time t . The 4-state QW at time t  is given by  

( )t t
x Z

x xψ ψ
∈

= ⊗∑ .  

Recalling that 0  and 1  correspond to a left-mover and 2  and 3  correspond to a right mover, we 
can write U P R= + , where  

0 0
0 0

0 0 0 0
0 0 0 0

a c
b d

P

 
 
 =
 
 
 

  

and  

0 0 0 0
0 0 0 0

0 0
0 0

R
a c

b d

 
 
 =
 
 
 

,  
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then the evolution of the QW is determined by  

( ) ( ) ( )1 1 1t t tt P x R xψ ψ ψ+ = + + − .  

The probability that the quantum walker tX  is at position x  at time t , is given by  

( ) ( )
2

t tP X x xψ= = ,  

where 2
x x x= . In order to obtain the limit theorems we introduce the Fourier Transform ( )ˆ t kψ  of 

( )t xψ  as follows:  

( ) ( )ˆ e ikx
t t

x Z
k xψ ψ−

∈

= ∑ .  

By the inverse Fourier transform we have  

( ) ( )
π

π

1 ˆe d
2π

ikx
t tx k kψ ψ

−

= ∫ .  

The time evolution of ( )ˆ t kψ  is given by  

( ) ( ) ( )1
ˆ ˆt tk U k kψ ψ+ =  

where ( ) ( )Û k R k U=  and  

( )

e 0 0 0
0 e 0 0
0 0 e 0
0 0 0 e

ik

ik

ik

ik

R k
−

−

 
 
 =
 
 
  

.  

The standard argument by induction on the time step gives ( ) ( ) ( )1 0
ˆˆ ˆt

t k U k kψ ψ+ = . The probability that 
the quantum walker is at position x  at time t  is defined by  

( ) ( ) ( )
2π

0
π

1 ˆ e d
2π

t ik
tP X x U k k kψ

−

= = ∫ . 

8. Open Questions 
8.1. Quantum Walk without Memory 
Consider the quantum walk on the k -dimensional lattice governed by the 2 2k k×  unitary matrix kU A⊗= , 
where  

0 0
0 0
0 0

0 0

a c
b d

A
a c

b d

 
 
 =
 
 
 

.  

It is an open problem to obtain the limit theorems for the quantum walk for a general , , ,a b c d C∈  and m-state. 
We should remark that the case 1k =  was proposed by Konno and Machida [87], and we believe it is still un-
solved.  

8.2. Localization in Quantum Walk 
Consider the following question: “If, say, a quantum walker which could be a quantum particle exists only at 
one site initially in some media, perhaps with disorder, will the quantum walker remain trapped with high prob-
ability near the initial position?” This phenomenon of the quantum walker is termed Localization.  

1) Consider the disordered quantum walk as described in this paper, and evolution in the Fourier picture,  

( ) ( )ˆ
nU k M k U= ,  
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where  

( ) e 0
0 e

ik

ikM k
−

 
=  
 

  

and  

1 e1
e 12

n

n

i

n iU
θ

θ−

 
=  

− 
.  

It can be shown that none of the eigenvalues are independent of k  in the Fourier space. Therefore, how can we 
show non-existence of localization, rigorously? 

2) What is the localization criterion for a general M -particle quantum walk on a general D -dimensional 
lattice in which the particles are allowed to stay at the same position, in addition to their original degrees of 
freedom, 2D ? 

Example (Five-State Quantum Walk): The Hadamard walk as is well known plays a key role in the studies 
of the quantum walks, thus the generalization of the Hadamard walk is one of the many fascinating challenges. 
The simplest and well studied example of the Hadamard walk is given by the following unitary matrix  

1 11
1 12

H  
=  − 

.  

The five-state quantum walk is a kind of generalized Hadamard walk in the plane, and differs markedly from 
the previous studies. The particle ruled by the 5QW is characterized in the Hilbert space which is defined by a 
direct product of a chirality-state space { }, , 0 , ,s L R D U∈  and a position space spanned by 
{ }1 2 1 2, : ,n n n n Z∈ . The chirality states are transformed at each time step by the following unitary transforma-
tion:  

{ }1 3 2 2 0 2 2
5

L L R D U= − + + + + ,  

{ }1 2 3 2 0 2 2
5

R L R D U= − + + + ,  

{ }10 2 2 3 0 2 2
5

L R D U= + − + + ,  

{ }1 2 2 2 0 3 2
5

D L R D U= + + − + ,  

{ }1 3 2 2 0 2 2
5

L L R D U= − + + + + .  

Let  

( ) ( ) ( ) ( ) ( ) ( )
[ ]

T
1 2 1 2 1 2 0 1 2 1 2 1 2, , , , , , , , , , , ,L R D Un n t n n t n n t n n t n n t n n tψ ψ ψ ψ ψ

α β γ λ µ

Ψ ≡   
≡

 

be the amplitude of the wave function of the particle corresponding to the chiralities , ,0, ,L R D U  at the posi-
tion ( ) 2

1 2,n n Z∈  and the time { }0,1,2,t∈  , where T  denotes the transposition, and Z  is the set of in-
tegers. We assume that a particle exists initially at the origin in the plane, then the initial quantum states are de-
termined by  

( ) ( ) ( ) ( ) ( ) ( )
[ ]

T
00,0,0 0,0,0 0,0,0 0,0,0 0,0,0 0,0,0L R D Uψ ψ ψ ψ ψ

α β γ λ µ

Ψ ≡   
≡

,  

where , , , , Cα β γ λ µ ∈ , and C  is the set of complex numbers. Before we define the time evolution of the 
wave function, we introduce the following operators:  
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3 2 2 2 2
0 0 0 0 0

1 0 0 0 0 0
5

0 0 0 0 0
0 0 0 0 0

LU

− 
 
 
 =
 
 
  

,  

0 0 0 0 0
2 3 2 2 2

1 0 0 0 0 0
5

0 0 0 0 0
0 0 0 0 0

RU

 
 − 
 =
 
 
  

,  

0

0 0 0 0 0
0 0 0 0 0

1 2 2 3 2 2
5

0 0 0 0 0
0 0 0 0 0

U

 
 
 
 = −
 
 
  

,  

0 0 0 0 0
0 0 0 0 0

1 0 0 0 0 0
5

2 2 2 3 0
0 0 0 0 0

DU

 
 
 
 =
 

− 
  

,  

0 0 0 0 0
0 0 0 0 0

1 0 0 0 0 0
5

0 0 0 0 0
2 2 2 2 3

UU

 
 
 
 =
 
 
 − 

. 

Note that if the matrix, say RU  is applied to ( )1 2, ,n n tΨ , then only the R  component is selected after 
carrying out the superposition between ( )1 2, ,L n n tψ , ( )0 1 2, ,n n tψ , ( )1 2, ,D n n tψ , ( )1 2, ,U n n tψ . This is also 
similar for the other matrices 0U , DU , LU , UU . We now define the time evolution of the wave function and 
this is given by  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 0 1 2 1 2 1 2, , 1 1, , 1, , , , , 1, , 1,L R D Un n t U n n t U n n t U n n t U n n t U n n tΨ + = Ψ + + Ψ − + Ψ + Ψ + + Ψ −  

One finds clearly that the chiralities , ,0. ,L R D U  correspond to the left, right, neutral, downward, and up-
ward state for the motion. Using the Fourier Analysis we can get the wave function. Notice that the spatial 
Fourier transform of ( )1 2

, ,n nk k tΨ  is defined by  

( ) ( ) ( )
( )

1 21 2
1 2

2
1 2

1 2
,

, , , , e n ni k n k n
n n

n n Z

k k t n n t − +

∈

Ψ = Ψ∑ .  

In the Fourier domain, the dynamics of the wave function is defined by ( ) ( )1 2 1 2
, , 1 , ,n n n nk k t U k k tΨ + = Ψ   , 

where  
1

1

2

2

e 0 0 0 0 3 2 2 2 2
0 e 0 0 0 2 3 2 2 2

1 0 0 1 0 0 2 2 3 2 2
5

2 2 2 3 20 0 0 e 0
2 2 2 2 30 0 0 0 e

n

n

n

n

ik

ik

ik

ik

U

−

−

  −      −    = −     −    −    

 .  
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The standard argument by induction on the time step allows us to write the evolution as  

( ) ( )1 2 1 2
, , , ,0t

n n n nk k t U k kΨ = Ψ   . 

It can be shown that the strongly degenerate eigenvalue of 1, associated with this model, is a necessary condi-
tion for localization, see [88] for similar type conclusion. 

8.3. Decoherence and Entanglement in the Quantum Walk 
1) Consider discussion of the asymptotic behavior of the quantum walker subject to decoherence in the two 

dimensional setting [170] following Fan et al. [120]. We have shown that ( ), ,tP x y t  converges to a continuous 
convex combination of normal distributions, under certain eigenvalue conditions. Consider the spectrum of the 
superoperator , ; ,x x y yk k k kL  and obtain the necessary and sufficient conditions for the unitary transformation M  
to satisfy the eigenvalue conditions. 

2) Consider discussion of the asymptotic behavior of the quantum walker subject to entanglement in the sense 
of Machida [150]. Can we generalize their characterization of the limit distribution regarding the quantum 
walker on the D-dimensional lattice? Can we give similar type criterion on other topological structures rather 
than DZ ? What is the relationship between the results of Machida [150] and Fan et al. [120], if any? 

8.4. Parametrization of the Quantum Walk 
1) The Grover operator as is well known was first introduced by Moore and Russell in their study of quantum 

walks on the hypercube [18]. Based on Grover’s diffusion, the operator has elements  

2
ij ija

d
δ= − , 

where  

1,
0,ij

i j
i j

δ
=

=  ≠
 

and 2dd =
  where d  is the lattice dimension of the quantum walk. If 4d = , that is, 2d = , for example, 

then we get the most studied Grover transformation,  

1 1 1 1
1 1 1 11
1 1 1 12
1 1 1 1

G

− 
 − =
 −
 

− 

. 

In general given an undirected graph, let V  be the set of vertices and E  be the set of edges. If there are m  
edges e  incident to vertex v , for all v V∈  and e E∈ , then in its most general form the Grover operator is 
described by the following matrix 

2 2 21

2 2 21

2 2 21

m

m m m

D m m m

m m m

 − + 
 
 − + =
 
 
 

− + 
 





   



.  

If v  has exactly two edges adjacent to it, then mD  becomes 
0 1
1 0
 
 
 

. Following the discussion on the  

quantum walk with phase parameters in this paper, it is an open question what is the limiting distribution of mD  
subject to parametrization? 
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2) In a paper of Venegas-Andraca [171], the quantum walk on the line with two entangled coins is investi-
gated, the shift operator (as we shall see in the two-coin framework (2cQW) example below) is similar in nature 
to the one in that paper, in that depending on the state of the coin, the walker moves left, right or is stalled in ei-
ther direction at each step. For this type of quantum walk it is shown numerically that localization occurs. In the 
paper by Liu and Pentulante [172], the numerical study of Venegas-Andraca is verified theoretically; in particu-
lar they show that the occurrence of localized spikes as observed by Venegas-Andraca reflects the degeneracy of 
the eigenvalues of the time evolution operator in the Fourier picture. In what follows, we are going to propose a 
problem regarding a general characterization of the limiting distribution for the “2cQW” for entanglement in the 
coin subspace of the generalized parametrized quantum walk on the line. First we describe the two-coin frame-
work as motivation. 

Motivated Example (2cQW): Let the Hilbert space of the entangled coin subspace of the 2cQW be given by 
{ }entangled

00 , 01 , 10 , 11CH span=  , and let the Hilbert space of position subspace of the 2cQW be given by 

{ }:PH span x x Z= ∈ , then the Hilbert space of the system is given by 
entangledC PH H H= ⊗ . The state of the 

2cQw can be expressed by ( )
{ }00,01,10,11

,
x Z j

x j jψ ψ
∈ ∈

= ⊗∑ ∑ . Let the entangled coin operator be given by  

entanlgedC C C= ⊗ , where C  is the coin operator in the single-coin framework which may be any unitary oper-
ator acting on a single coin space. The evolution of the 2cQW is determined by the unitary operator 

( )entangledU S I C= ⊗ , where I  is identity operator in the position subspace, and the shift operator which is a 
three-direction shift operator is given by 

00 00 1 01 01 10 01 11 11 1
i i i i

S i i i i i i i i= ⊗ + + ⊗ + ⊗ + ⊗ −∑ ∑ ∑ ∑  

We should remark the labeling [ ]{ } { }00, 01,10 ,11 , ,R S L→ , where , ,R S L  corresponds to the chirality 
states right, stall right or stall left, and left respectively. On one step of the quantum walk we first make superpo-
sition on entangledC , and then move the walker according to the coinstate using the shift operator. The state of the  
particle at time t  is given by ( )

{ }00,01,10,11
,t t

x Z j
x j jψ ψ

∈ ∈

= ⊗∑ ∑ . In terms of the initial state 0ψ , the evolution 

of the walk is given by 0
t

t Uψ ψ= . Moreover, the probability of finding the particle at position x  at time t  

is given by ( ) ( )
{ }

2

00,01,10,11
,t t

j
p x x jψ

∈

= ∑ . Now we introduce the Fourier transform of the wave function for the 

“2cQW”. Let  

( )

( )
( )
( )
( )

entangled

entangled

entangled
entangled

entangled

,1

, 2

,3

, 4

t

t
t

t

t

x

x
x

x

x

ψ

ψ
ψ

ψ

ψ

 
 
 

=  
 
 
  

  

be the amplitude of the wave function, where ( )
entangled

,1t xψ , ( )
entangled

, 2t xψ , ( )
entangled

,3t xψ , and ( )
entangled

, 4t xψ   

correspond to the chirality states right, stall right, stall left, and left respectively. Define  

( )

1

2 4

3

4

0t C

α
α

ψ
α
α

 
 
 = ∈
 
 
 

,  

where 
4 4

1
1j

j
α

=

=∑ . In the Fourier domain the amplitude of the wave function takes the form  

( ) ( )
entangled entangled

eikx
t t

x Z
k xψ ψ

∈

= ∑ , where ( )entangled kψ  is the Fourier transform of ( )entangled xψ . Let ( )
entangled0 kψ   

be the initial state of the system in the Fourier picture, then the evolution of the 2cQW is given by  
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( ) ( ) ( )
entangledentangled 0

tk U k kψ ψ=  ,  

where ( )U k  is the unitary operator in the -spacek  governing the quantum walk. We should remark that 
( ) ( ) ( )Diag e ,e Diag e ,eik ik ik ikU k C C− −= ⊗ , where C  is the coin operator in the single-coin framework. 
Now consider the “2cQW” where the unitary matrix governing the walk is given by *U C C= ⊗  it is an 

open question what is the limiting distribution of the “2cQW” determined by *U . 
Consider the discrete-time nearest-neighbor quantum walk in a random environment (QWRE) on the line, 

whose evolution proceeds almost everywhere as in the case of the inhomogeneous quantum walk. The definition 
of the QWRE can be made more precise as follows: Let 2Ω = ℜ , where ℜ  is the set of real numbers. A ran-
dom environment is an Ω -valued random variable { }:x x Zω ω= ∈  with probability measure P . Assume 
that P  is a product measure on ( ), FΩ , where F  is the Borel -fieldσ  of Ω , then we can write  

xx Z
P P

∈
= Π ,  

where xP  is a probability measure on ( ),Gℜ , and G  is the Borel -fieldσ  of ℜ . Suppose xU  is a para-
metrization of the matrix  

0 e
e 0

x

x

i

x iU
ω

ω−

 
′ =  

 
,  

that is, let x x x xU U T U′ ′= , where ( ) ( )1 2π πe ex xi i
xT L L R Rτ τ= +  is the diagonal phase adjustments with 

( ) [ ]0,1x i
τ ∈ . Suppose that { }:x x Zω ω= ∈  is independent identically distributed, that is, xP  does not de-

pend on x . When ( )0x x Zω = ∈ , the walk is non-random and position independent. In particular we see that  

0 1
1 0xU  ′ ≡  
 

,  

and thus ( )2 1π πDiag e ,ei i
xU τ τ≡ . We should remark that ( )2 1π πDiag e ,ei iτ τ  is the operator governing the para-

metrized Grover walk in one dimension. When the quantum walk is conditioned upon the environment, the 
QWRE is said to be quenched. On the other hand averaging over the environment, the QWRE is said to be an-
nealed. In [78] weak limit theorems for both the quenched and annealed QWRE are presented for a Hadamard- 
type operator governing the quantum walk on a random environment by counting the number of paths that it 
takes a quantum walker from the origin to a position. It is an open question what is the weak limit theorems for  

both the quenched and annealed QWRE for the Grover-type operator 
0 e

e 0

x

x

i

x iU
ω

ω−

 
′ =  

 
. 

8.5. Inhomogeneous Quantum Walk 
Consider the discussion of the inhomogeneous quantum walk in this paper. Suppose { }:x x Zω ∈ , is a given 
sequence. Let  

( ) 0 e
e 0

x

x

i

x x x iU U
ω

ωω
−

 
= =  

 
.  

For [ )0,2πω∈ , define ( )0 0U U ω= , ( )0x xU U=  if 0x ≠ . If 0ω ≠ , the walk is homogeneous except the 
origin. If 0ω = , the walk is homogeneous and is equivalent to the Grover transformation on the line,  

( )
0 1

0
1 0x xU U G  

= ≡ =  
 

.  

We clearly see 0abcd = , thus the distribution of the walk cannot be described by the Konno density function.  

It is an open question what is the limiting distribution of the inhomogeneous walk ( ) 0 e
e 0

x

x

i

x x x iU U
ω

ωω
−

 
= =  

 
, 

or the homogeneous walk ( )
0 1

0
1 0x xU U G  

= ≡ =  
 

. Since the Grover walk is an example of quantum diffusion, 
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it is interesting to have an asymptotic probability function that captures this phenomenon. The result will be sig-
nificant for quantum information processing task. 
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