
Open Journal of Statistics, 2014, 4, 765-775 
Published Online October 2014 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2014.49072  

How to cite this paper: Tong, L.P., Shoham, D. and Cooper, R.S. (2014) A Co-Evolution Model for Dynamic Social Network 
and Behavior. Open Journal of Statistics, 4, 765-775. http://dx.doi.org/10.4236/ojs.2014.49072  

 
 

A Co-Evolution Model for Dynamic Social 
Network and Behavior 
Liping Tong*, David Shoham, Richard S. Cooper 
Department of Public Health Sciences, Loyola University Medical School, Maywood, USA 
Email: *ltong@luc.edu, dshoham@luc.edu, rcooper@luc.edu 

 
Received 11 August 2014; revised 15 September 2014; accepted 28 September 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly 
influenced by the behavior of friends. At the same time, the choice of friends can be influenced by 
shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study 
the interdependence of social networks and behavior. These methods are efficient and useful for 
analysis of discrete behaviors, such as drinking and smoking; however, since the behavior evolu-
tion function is in an exponential format, the ABSM can generate inconsistent and unrealistic re-
sults when the behavior variable is continuous or has a large range, such as hours of television 
watched or body mass index. To more realistically model continuous behavior variables, we pro-
pose a co-evolution process based on a linear model which is consistent over time and has an in-
tuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and 
Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of 
parameter values. Additionally, we show that our assumptions are reasonable using data from the 
National Longitudinal Study of Adolescent Health (Add Health). 
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1. Introduction 
Numerous studies have examined the role friends play in influencing behavior. Researchers have made exten- 
sive use of data from the Framingham Heart Study-Network Study (FHS-Net) [1]-[3], the National Longi- 
tudinal Study of Adolescent Health (Add Health) [4] [5], and other datasets [6]-[9] to examine whether health 
behaviors such as smoking and becoming obese can spread between friends. However, the validity of analyses 
based on observational studies has been called into question by several authors [10] [11]. The main concern is 
the impossibility of identification of peer influence from peer selection using regression-based approaches [11]. 
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In response to these concerns, the actor-based stochastic model (ABSM) was proposed by [12] [13]. This 
model employs Markov chain simulation and method-of-moments (MOM) to adjust estimates of peer influence 
and peer selection parameters using longitudinal data. The underlying model is a random utility function, where 
the utilities are not observed. This type of model is the most appropriate for scenarios where an actor must make 
a single choice from a given set of choices [14], although several researchers have applied the ABSM model to 
continuous behaviors [7] [8]. 

In ABSM, a continuous time finite-state-space Markov process was used to model the dynamic relationship 
between social network and behaviors. Three steps describe this process. The first step determines when the 
chance for the next change will occur. Let n

iλ  be the rate of change for actor i ’s network and b
iλ  be the rate 

of change for actor i ’s behavior. Then the waiting time for the next chance of change is exponentially distri-  
buted with parameter ( ).n b

i iiλ λ λ= +∑  Note that the chance of change does not necessarily results in success-  

ful change. The second step defines which actor has the opportunity to make a change (either a network change 
or a behavior change). The probability of a network change taken by a particular actor i  is given by n

iλ λ  
and the probability that this is a behavior change taken by actor i  is .b

iλ λ  At the third step there is an 
opportunity to make a change in network or behavior. If actor i is making a network change, there are n possible 
outcomes, where n  is the number of actors in the network. This condition holds because for network changes, 
at most one tie difference from the current network is allowed; no network change is also allowed. Say, y  is 
the current network. The next network y′  must be either equal to y  or deviate from y  exactly one element 
in row i . To simplify notation, for adjacent matrix y  and indicators 1, 2, ,i n=   and 1,2, ,j n=  , we 
define a mapping function ( ), ,c y i j  that maps y  to a new matrix y′  whose ( ),s t th element sty′  equals 
the ( ),s t th element of y , which is sty , when s i≠  or t j≠ . If s i=  and t j= , there are two situations. 
If j i= , then ij ijy y′ = . If j i≠ , then 1ij ijy y′ = − . For actor i , let iku  be the k th effect for network 
evolution, which is a function of network variable y  or behavior variable z , or both. Therefore, we can write 

( ),ik iku u y z=  to emphasize this relationship. Then the network objective function of actor i  is  
( ) ( ), ,n n

i k ikkf y z u y zβ
∈

= ∑   where n
kβ  are parameters that are either given (in a simulation) or estimated  

from data (in a analysis), and   is a set of the effects of interest. The probability that actor i  will make a 
network change and have a new network value ( ), ,y c y i j′ =  is  

( )
( )( )
( )( )( )1 1

1

exp ,
, .

exp , , ,

n
i

t t t n n
it

f y z
P Y y Y y Z z

f c y i t z
− −

=

′
′= = = =

∑
                        (1) 

If actor i  is going to make a behavior change, there are 3 possible outcomes: increase 1 unit, stay the same, 
or decrease 1 unit. Similarly, for 1, 2, ,i n=   and 1,2,3j = , define a mapping function ( ), ,d z i j  that maps 
vector z  to a new vector z′  whose s th element sz′  equals to the s th element of z , which is sz , when 
s i≠ . If s i= , then 2i iz z j′ = + −  for 1, 2,3j = . For actor i , let ( ),ikv y z  be the k th effect for behavior  
evolution. Then the behavior objective function of actor i is ( ) ( ), , .b b

i k ikkf y z v y zβ
∈

= ∑   The probability that  
actor i  will make a behavior change and have a new behavior value ( ), ,z d z i j′ =  is 

( )
( )( )

( )( )( )1 1 3
1

exp ,
, .

exp , , ,

b
i

t t t b
it

f y z
P Z z Y y Z z

f y d z i t
− −

=

′
′= = = =

∑
                         (2) 

In summary, the probability to change to a new set of value ( ),y z′ ′  in the next step is 

( )
( )( )
( )( )( )

( )( )
( )( )( )

1 1

1

3
1

, ,

exp ,
if    and  ( , , ),  1   and  1 ,

exp , , ,

exp ,
if    and  ( , , ),  1   and  1 3,

exp , , ,

0 otherwise.

t t t t

nn
ii

n b
it

bb
ii
b

it

P Y y Z z Y y Z z

f y z
z z y c y i j i n j n

f c y i t z

f y z
y y z d z i j i n j

f y d z i t

λ
λ

λ
λ

− −

=

=

′ ′= = = =

 ′
 ′ ′× = = ≤ ≤ ≤ ≤

=  ′
′ ′× = = ≤ ≤ ≤ ≤

∑

∑









      (3) 
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To use ABSM, the behavior variable must be bounded and discretized. For continuous behavior variables, 
such as body mass index (BMI), time spent watching television, etc., the process of discretizing can be arbitrary 
and tricky. In Section 3 (Results), we show that the effect of average BMI similarity can be very different for 
integer and categorical BMI. 

Based on the above considerations, we were motivated to develop a linear-based behavior evolution model. In 
our model, the network evolution is similar to ABSM. However, the behavior evolution is defined by a 
continuous Markov process, which is completely different from [12] [13]. To simplify computation, we consider 
only a real network change as an “event” (instead of the opportunity of change). In addition, for behavior 
evolution, we assume normal residuals for values of change. 

2. Methods 
2.1. Complete and Observed Data 
For illustration purpose, consider two waves of data that are collected at time 0 and T. The complete data during 
time period ( )0,T  include number of events k , time of events 0 10, , , kt t t=  , 0 1 T, , , ,k ky y y y y=  (or  
write as ( ) ( )( ) ( ) ( )( )0

1 1, , , , ,k ky i j i j , where ( ) ( )( ),s si j , ( ) ( )1 s si j n≤ ≠ ≤ , is the network edge changing at time ts,  

1, ,s k=  ), and behavior variable 0 1 T 1, , , ,k kz z z z z += . The observed data include network variables 
0 T,  y y  and behavior variables 0 T,  z z . All the other variables occur between observations, and thus are 

considered missing in the complete data set. The joint evolution of network and behavior is shown in the 
following flow chart: 
 

 
 

Here the observed data are represented in black ovals, missing behavior data in blue ovals, and missing 
network data in red ovals. The network evolution process is represented by red arrows and behavior variable by 
blue arrows. 

2.2. Occurrence of Events 
The number of events k  during time period ( )0,T  follows a Poisson distribution with rate Tλ . Conditional 
on k , the event times 1, , kt t  has the joint probability density function 

( ) 1
1

! if  0 ,
, ,

0 otherwise.

k
k

k

k T t t T
f t t k

 ≤ ≤ ≤ ≤= 




                          (4) 

For now, we assume the chance of making a network change is the same for each actor. This assumption can 
be extended to be actor-specific if the data are informative enough. 

2.3. Network Evolution 
Let ( ),u y z  be an arbitrary vector of statistics of the graph and behavior, θ  be the vector of coefficients, and 
( )ψ θ  be the normalizing factor. Define ( ) ( ) ( ), , ,ij ij ijy z u y z u y zδ + −= − , where ijy+  is the same as y  except  

that the edge ( ),i j , ( ) 1ij ij
y+ = . Likewise, ( ) 0ij ij

y− = . If the current network is y and the behavior immediately  

before the next event is z , the probability to change edge ( ),i j  at next event is  

( ){ }
( ) ( ){ }
( ) ( ){ }

T

T

exp 2 1 ,1change , .
exp 2 1 ,

ij ij

ij ijj i

y y z
P i j

n y y z

θ δ

θ δ′ ′′≠

−
= ⋅

−∑
                    (5) 
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2.4. Behavior Evolution 
Define ( ) 2 1

1 2, t tZ t t Z Z∆ = − , the vector of behavior variable changes from time t1 to t2. For any time ( )1,u ut t t +∈ , 
we propose the following co-evolution model for behavior variables 

( ) ( ) ( ), ,u u
u u uZ t t W Z t t t t Xα γ ε∆ = ∆ + − +                        (6) 

where ( )u
n nW
×

=  is a matrix of functions of uty , ( )n pX
×

=  is the matrix of p  covariates,  

( )T
1, , pγ γ γ=   is the vector of coefficients for general trend for BMI, ( )T

1 , ,u u u
nε ε ε=   are all independent  

from each other or any other random variable, and uε  follows a multi-dimensional normal distribution with 
mean zero and variance matrix ( ) 2

u nt t Iσ− . Note that uW  represents individuals’ friendship network vari- 
ables. This is saying that the change of individuals’ behavior is a function of friends’ behavior change. The 
parameter α  measures how strong this relationship is. In the next subsection we give an example choice of 
W  and explain this function more intuitively. 

Note that when ut t= , the variance of uε  is zero and therefore there is no change at all; when t  increases, 
the variance of uε  increases, as one would expect. Equation (6) can also be written as 

( ) ( ) ( ), .u u
u uI W Z t t t t Xα γ ε− ∆ = − +                             (7) 

Since behavior variables are accumulated over time, we would expect that when modeling behaviors, the 
distribution of change from time ut  to 1ut +  is consistent with a two-step process: first from ut  to t , then 
from t  to 1ut + . In our model, this condition is naturally satisfied because 

( ) ( ) ( ) ( ) ( ) ( ) ( )1
1 1, u ut tt t u t

u u u u u uI W Z t t I W Z Z Z Z t t Xα α γ ε ε+
+ +

 − ∆ = − − + − = − + +   

where uε  and tε  are independent and both follow multi-dimensional normal distributions with mean zero and 
variances ( ) 2

u nt t Iσ−  and ( ) 2
1u nt t Iσ+ −  respectively, which indicates that u tε ε+  follows a normal dis- 

tribution with mean zero and variance ( ) 2
1u u nt t Iσ+ − . This is exactly what we expect. Note that in ABSM [7] 

[8], this condition is usually not satisfied for continuous behavior variables. 

2.5. An Example Choice of W 
As an example, assume that the i th individual’s BMI change during time ( )1 2,t t , where 1 20 <t t T≤ ≤ , is a 
linear function of the average change of BMI of his/her friends. That is, 

,i i j j ij i
j j

Z y Z yα ε∆ = ∆ +∑ ∑  

where iε  is independent of any other random variable and follows a normal distribution with mean zero and 
variance ( ) 2

2 1t t σ− . When written in matrix format: 
Z W Zα ε∆ = ∆ +  

where ( )( ) 1
1diag , , nW y y y

−

+ +=  . That is, ( )nI W Zα ε− ∆ = . We can then assume that the corrected be-  

havior variables ( )nI W Zα− ∆  follow a multi-dimensional normal distribution with mean 0 and variance 
matrix ( ) 2

2 1 nt t Iσ− . A network effect exists if 0α ≠ . 

2.6. Complete Data Log-Likelihood Function 
Exponential random graph models (ERGMs) are commonly employed to test whether the presence of network 
ties (edges) differs from what would be expected in a random graph, given some set of network statistics [15]. In 
the ERGM, the parameters are ( ), , , ,η λ θ γ α σ=  with dimension 3 p q= + + , where p  is the number of 
covariates and q is the number of network statistics in the ERGM. The complete data log-likelihood function is 

( )

( )
( ) ( )( ) ( ) ( ) ( )

( )
( )( ) ( )

( )

( )
( )( ) ( )( )

1 T 1 1 T 1
, , , ,

1 1

T1 1
1 1 1 1

2 1
1

1 1 1 1

log 2 1 , log exp 2 1 ,

   log log log
2 2 2

u u u u u u
u

k k
u u u u u u
i j i j i j i j

u u j i

u u u u
k k k k u uu

u u
u u u u u u

l

T k y y z y y z

I W z I W zn n t t I W
t t

η

λ λ θ δ θ δ

α µ α µ
σ α

− − − −
′ ′

′= = ≠

− −
+ + + +

−
−

= = = = −

   = − + + − − −    

− − − −
− − − + − −

−

∑ ∑ ∑

∑ ∑ ∑ ∑ ( ) 2
1 σ

  (8) 
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where ( ) ( )1 1
1 .u u

u u uI W z t t Xµ α γ− −
−= − + −  

2.7. EM Algorithm to Find MLE of Parameters 
Parameter λ  can be estimated directly: ( )MLE 0 0

ˆ , , ,T TE k y z y z Tλ = . The EM algorithm to estimate the other 
parameters can be described as follows: 1) Start from initial values 0η ; 2) E-step: calculate  
( ) ( ) ( )( )0

0 0 T T, , ,h E l y z y zηη η= ; 3) M-step: maximize ( )h η  over the parameter space to update η ; 4) With 
the new value of η , repeat the E- and M-steps. Since the E-step cannot be calculated directly, we use Markov 
Chain Monte Carlo to simulate hidden variables R  times. We evaluate the complete data log-likelihood  

function using simulated samples and obtain ( ) ( )1 , , Rl lη η . Then ( ) ( )1

1 R u
uh l

R
η η

=
≈ ∑  For the M-step, the 

MLE of parameters ( ), ,λ γ σ  can be written as functions of the MLE of parameters ( ),θ α . Then ( )h η  
becomes a smoothed function of ( ),θ α , which can be maximized using computational methods. Specifically,  

( )( ) ( ) ( )

( )
( )( ) ( )( )

( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )

11T T 1
MLE 0 1

1 1
T

1 1 MLE 1 MLE2
MLE

1 1 1

1
1

1 T 1
, ,

1 1 1 1

ˆ , ,

ˆ ˆ1ˆ ,
1

where  , ,

constant 2 1 ,
u u u u

R k
u

u u
v u

u uR k u u u u

v u u u

u u
u u

R k R k
u u u
i j i j

v u v u

R T t X X X I W z t t

A t t X A t t X

n k R t t

A I W z t t

h y y z

γ α

γ γ
σ

α

η θ δ

+− −
−

= =

+ − −

= = −

−
−

− −

= = = =

= − − ∆

− − − −
=

+ −

= − ∆

= + − −

∑∑

∑∑

∑∑ ∑∑
( )

( )( ) ( ) ( )( )
( )

1 T 1

1
2 1
MLE

1 1

log exp 2 1 ,

1
ˆ                log log .

2

u u
u

u u u
i j i j

j i

R k
u

v u

y y z

Rn k
I W

θ δ

σ α

− −
′ ′

′≠

+
−

= =

 
 −
 
 

+
+ + −

∑

∑∑

 

2.8. Normal Distribution to Simulate Behavior Variable Zu 
In the general multi-dimensional situation, assume that ( )1 10,X N Σ , ( )2 20,X N Σ , 1X  and 2X  are in- 
dependent. Then ( )1 2 1 20,X X N+ Σ + Σ . The distribution of 1X  conditional on 1 2X X X= +  is normal  

with mean ( ) 11
2 1nI x

−−+ Σ Σ  and variance ( ) 11 1
1 2

−− −Σ + Σ . In our situation, for 1, , 1u k= − , we have  

( ) ( )( )( ) 1T2 1 1
1 1

u u
u ut t I W I Wσ α α

−
− −

−Σ = − − −  

and 

( ) ( )( )( ) 1T2 1 1
2 1

1
.

k
h h

h h
h u

t t I W I Wσ α α
−

− −
−

= +

Σ = − − −∑  

Here 2Σ  is unknown since 1hy − , 1, ,h u k= +   are not available at time ut . To solve this problem, we 
simply ignore the variations in 1 1, ,u kW W− −

  and use 1uW −  to replace all the other W s to generate an 
approximate distribution. Then we use Metropolis-Hastings algorithm to find the acceptance ratio and adjust 
samples to the right distribution. Let all W s equal to 1uW − , 2Σ  can be simplified as  

( ) ( )( )( ) 1T2 1 1u u
uT t I W I Wσ α α

−
− −− − − , which is ( ) ( )1 1u u uT t t t −− − ⋅Σ . Therefore, we propose to sample uz   

according to the normal distribution with mean ( ) ( )1 1u u ut t T t X− −− − ⋅  and variance ( ) ( )1 1u uT t T t −− − ⋅Σ . 

2.9. Sample Hidden Variables Conditional on Observed Data 
Remember that the observed data are 0 0 T T, , ,y z y z  and the hidden variables are k , 1, , kt t , 1 1, , ky y −

 , 
1, , kz z . With known 0y , the network variables 1 1, , ky y −

  can also be written as ( ) ( )( )1 1,i j ,  ,  

( ) ( )( )1 1,k ki j− − . With known 0z , the behavior variables 1, , kz z  can also be written as  

( ) ( )0 1 1,, , , k kz t t z t t−∆ ∆ . The following sampling steps will sample the above hidden variables conditional on 
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0 0 T T, , ,y z y z . 
• Sample k: let d be the number of edges ( ),i j  such that 0 T

, ,i j i jy y≠ . Then it must follow that k = d + 2a for 
some 0,1,a =  . 
 If d is even, 

{ } ( )( )
( ) ( )( )

( )

2 2
2 1
0

exp
2 .

1 exp 2 exp
!

2 2 2 !

k

u a
d
u

T T
P k d a

T T T
k

u a

λ λ

λ λ λ +
−

=

−
= + =

 + − −
 −
 + 

∑
 

 If d is odd, 

{ } ( )( )
( ) ( )( )

( )
( )

2 2 1
1 2

0

exp
2 .

1 exp 2 exp
!

2 2 2 1 !

k

u a
d

u

T T
P k d a

T T T
k

u a

λ λ

λ λ λ + −
−

=

−
= + =

 − − −
 −
 + − 

∑
 

• Sample 1, , kt t  conditional on k : ordered uniform ( )0,T . 
• Sample ( ) ( )( ) ( ) ( )( )1 1

1 1 1 1, , , , , , k
k ki j z i j z −
− −  conditional on others using the following procedure. 

1) Sample ( )0 1,z t t∆  from the following multinormal distribution, conditional on 0y , 0z , Ty , Tz , k , 
1, , kt t : 

( ) ( )( ) ( )( )( )
2 1T1 1 0T 0 1 11 0

0 0

, u uT t t tt t
N z z I W I W

T t T t
σ

α α
−

− − − −−
− − −  − − 

 

and evaluate the density function of the above normal distribution at the realized value ( )0 1,z t t ′∆ , which is 
denoted by ( )1q z′ . 

2) Sample ( ) ( )( ) ( )1 1, ,i j i j=  conditional on 2k d a= + , 0y , ( )1
0 0 1,z z t t= + ∆ : 

a) Define the important list to be ( ) ( ){ }1 1, , , ,d dL i j i j=  , where 0 T
u u u ui j i jy y≠  for 1, ,u d=  .  

b) If 0a > , sample and select an edge ( ),i j , from all ( )1n n −  candidates with probability  

( ) ( )( ) ( ) ( )( )T 0 1 T 0 1exp 2 1 , exp 2 1 ,ij ij i j i ji jy y z y y zθ δ θ δ′ ′ ′ ′′ ′≠
− −∑ . Then 

 If ( ),i j ∈ , delete ( ),i j  from  , and change d  to 1d − . 
 If ( ),i j ∉ , add ( ),i j  to  , change d  to 1d + , and change a  to 1a − . 

c) If 0a = , sample and select ( ),i j  from   with probability  

( ) ( )( ) ( ) ( ) ( )( )T 0 1 T 0 1exp 2 1 , exp 2 1 ,ij ij i j i ji jy y z y y zθ δ θ δ′ ′ ′ ′′ ′ ∈
− −∑ 

. Then delete ( ),i j  from  , and change  

d  to 1d − . 
d) Denote the probability from the situlation of 0a >  or 0a =  by ( )1r y′ .  
3) Likewise, sequentially sample ( ) ( ) ( )( )1 2 2 2, ,  , ,  z t t i j∆  , ( ) ( ) ( )( )2 1 1 1, ,  ,k k k kz t t i j− − − −∆ , and finally  

( )1,k kz t t−∆ , and evaluate the quantities ( ) ( )2 , , kq z q z′ ′
  and ( ) ( )2 1, , kr y r y−′ ′

 .  
4) Use the Metropolis Hastings algorithm to decide whether to accept the generated sample ( ),y z′ ′  or not. 

The acceptance ratio is 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 1

1 1 1

min 1, k k

k k

L y q z q z r y r y
L y q z q z r y r y

−

−

′  
 ′ ′ ′ ′  

 

 

 

where ( )L  is the complete data likelihood function. 

3. Results 
We used the Add Health “saturation sample” data to check the reasonableness of our assumptions and to per- 
form simulation studies. First, we show results based on the ABSM model; next we compare these results with 
our co-evolution model. 

The Add Health saturation sample data are based on adolescents in 16 high schools where all students in a 
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given school were asked to participate. There are two waves (1 year apart) of friendship network data, including 
environmental variables and self-reported height/weight. We focus on one school called “Jefferson High” as in 
[16] [17], where over 99% students are white. In this data set, the sample size with complete data over two 
waves is 624, among which 52.7% are males. The grade levels range from 9 to 11, the average BMI is 23.1 with 
SD being 4.4 and the average outdegree (number of friends named) of the network is 4.0 with SD being 2.1. 

3.1. Results for ABSM Models 
The results based on ABSM are in Table 1. The parameter of waiting time for the opportunity of change is 

( )total 624 12.29 4.17 10,271λ = × + = . That is, the average waiting time between two adjacent opportunities of 
change is 1 10271 36524 0.85× =  (hour). The overall mean of BMI is 23.10 and the average similarity score is 
0.8619. The average sex similarity score is 0.5005 and grade similarity is 0.6598. 

The estimated network objective function is 

( ) { } { }

( )

, 3.4228 2.3341 0.4957 0.058 0.5417

                0.3901 1 32 0.8619 .

i ij ij ji ij ih hj ij i j ij i j
j j j h j j

ij i j
j

f y z y y y y y y y I s s y I g g

y z z

= − + + + = + =

+ − − −

∑ ∑ ∑ ∑ ∑ ∑

∑
 

where s  represents sex, g  grade, and z  BMI. The estimated behavior objective function is  

( ) ( ) ( ) ( )2, 0.1571 23.098 0.0144 23.098 13.9074 1 32 0.8619 .i i i ij i j ij
j j

g y z z z y z z y= − + − − − −∑ ∑  

For example, consider the behavior evolution for individuals who have no friends. The estimated behavior 
objective function becomes  

( ) ( ) ( ) ( )2 2, 0.1571 23 0.0144 23 0.0144 17.5 constant.i i i ig y z z z z= − + − = − +  

The probabilities for BMI evolution are shown in Table 2. The results indicate that for individuals whose 
BMI is greater than 17.5 there is a higher probability of an increase in BMI, which is consistent with the ob- 
served propensity for BMI to “track” over time [18] [19]. However, for individuals whose BMI is less than 17.5, 
the results indicate a higher probability of decrease in BMI; this may not be reasonable. 

3.2. Validation of Assumptions in the Joint Evolution Model 
Using the Add Health data for the school of Jefferson High, we can draw the histogram of BMI change and 
 
Table 1. Estimated ABSM for the school of Jefferson High.                                                       

 Function Estimate S.E. P value 

Network dynamics     

1. Rate: rate friendship  12.2900 (0.4620) <1e−4 

2. Eval: outdegree (density) ijj
y∑  −3.4228 (0.0370) <1e−4 

3. Eval: reciprocity ij jij
y y∑  2.3341 (0.0664) <1e−4 

4. Eval: transitive triplets ij ih hjj h
y y y∑ ∑  0.4957 (0.0268) <1e−4 

5. Eval: same sex { }ij i jj
y I s s=∑  0.0580 (0.0451) 0.1984 

6. Eval: same grade { }ij i jj
y I g g=∑  0.5417 (0.0501) <1e−4 

7. Eval: BMI similarity ( )0.1381 32ij i jj
y z z− −∑  0.3901 (0.1807) 0.0309 

Behavior dynamics     

8. Rate: rate BMI period 1  4.1708 (0.3577) <1e−4 

9. Eval: BMI linear shape ( )23.098iz −  0.1571 (0.0275) <1e−4 

10. Eval: BMI quadratic shape ( )223.098iz −  0.0144 (0.0066) 0.0291 

11. Eval: BMI similarity ( )0.1381 32ij i jj
y z z− −∑  13.9074 (3.7561) 0.0002 
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Table 2. BMI evolution probabilities for individuals with no friends.                                               

BMI −1 Same +1 

14 0.000 0.522 0.478 

15 0.359 0.330 0.311 

17 0.340 0.330 0.330 

18 0.330 0.330 0.340 

30 0.224 0.316 0.460 

45 0.124 0.270 0.605 

46 0.309 0.691 0.000 

 
screen time change between these two waves (Figure 1). From Figure 1, we see that the normality assumption 
is not perfectly satisfied due to larger amount of observations around zero. However, the distributions are 
approximately symmetric, which is usually sufficient in a linear model if sample size is moderately large (for 
example, greater than 30). 

We also draw the scatter plot of individual’s BMI change versus average friends’ BMI change to check lin- 
earity assumption. The plot in Figure 2 suggest weak linear relationship between these two variables. Note that 
to draw this plot, we consider only friends who were nominated at both waves so that the BMI change com- 
parison is valid. Therefore, the relationship shown reflect only part of the data, which contributes to the weak- 
ened linear relationship. These findings suggest that our assumptions are approximately satisfied. 

3.3. Simulation Study 
To simulate a realistic network with reasonable BMI values assigned to each individual, we randomly sampled 
30 individuals (from the same school) in the Add Health data. The average BMI of selected individuals is 

222.9 kg/m . We then create an initial network using Bernulli graph with density = 0.3. 
We specified that network and BMI would evolve for 60 days using the following parameters values: 1λ = , 

0.001γ = , 0.1α = , 0.1σ = , and ( )3.42,2.33,0.50,0.39θ = −  with corresponding statistics of outdegree, 
reciprocity, transitive triplets and BMI total similarity. In the simulated data set, the number of network change 
events = 65, within which 21 edges change from 1 to 0 and 44 change from 0 to 1. The average BMI after 60 
days is 23.6 and network density 0.33. 

Apply the EM procedure described in Methods section, we obtained the following parameter estimations 
(Table 3). From the table, we see that some of the parameter estimates, such as event rate λ , network effect 
α , and coefficient of out degree 1θ  are relatively accurate. The variance 2σ  is underestimated. The other 
parameters are not significant comparing to zero. This suggest that our algorithm can find reliable parameter 
estimates for those that are significantly different from zero. 

The explanation of the above parameters are mostly straight forward. For example, the rate of events 
1.08λ =  indicates that on average, there is 1.08 edge change during one unit time (one day in this example). 

The coefficient of trends γ  is not distinguishable from zero, which means that there is no significant trend of 
BMI increase or decrease during these 60 days. The parameter that is of most interest is the network effect α , 
which is 0.12 in this example. This means that whenever an individual’s friends’ average BMI increases/de- 
creases by one unit, this individual’s BMI is expected to increase/decrease by 0.12. 

3.4. Application to Real Data 
Since our model cannot deal with a network as large as 624 individuals, we include only students in grade 11 in 
this application. The sample size here is 110. We first run the ABSM model using RSiena (Table 4). Then we fit 
in our joint co-evolution model (Table 5). 

Compare results from Table 4 and Table 5. We found out that the results for network evolution are similar 
from both models. This is because we are using the same network evolution models. The different behavior 
models have only limited effect on the network evolution process. Both model suggest that there is no effect of 
selection or influence. That is, similarity in BMI does not affect the process of making friends; an individual’s 
friends’ BMI change does not affect his/her own BMI. Note that when we use the complete data of 624 indivi- 
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Figure 1. The histogram of BMI change for the school of Jeffer- 
son High in Add Health data.                               

 

 
Figure 2. The scatter plot of individuals’ BMI change versus 
average friends’ BMI change for the school of Jefferson 
High in Add Health data.                                    

 
Table 3. MLE parameter estimations using simulated data.                                                       

Description Parameter True value MLE (S.E.) 

Rate of events λ  1 1.08 (0.17) 

Coeff. of trend γ  0.001 0.002 (0.004) 

Network effect α  0.1 0.12 (0.03) 

Standard deviation of noise σ  0.1 0.07 (0.02) 

Coeff. of outdegree 1θ  −3.43 −3.72 (0.35) 

Coeff. of reciprocity 2θ  2.33 1.63 (1.22) 

Coeff. of transitive triplets 3θ  0.50 0.39 (0.79) 

Coeff. of BMI similarity 4θ  0.39 0.71 (1.26) 

 
duals, we got significant effect of selection ( )0.0309p =  and influence ( )0.0002 .p =  The insignificant 
results here are due to reduced sample size and lost information in missing values. 

4. Discussion 
We have developed a joint social network and behavior evolution model. In our model, behavior changes are  
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Table 4. Estimated ABSM using Jefferson High grade 11 data.                                                    

 Estimate S.E. P value 

Network dynamics    

1. Rate: rate friendship 4.7385 (0.4698) <1e−4 

2. Eval: outdegree (density) −3.0952 (0.1425) <1e−4 

3. Eval: reciprocity 2.3959 (0.2244) <1e−4 

4. Eval: transitive triplets 0.5471 (0.0800) <1e−4 

5. Eval: same sex 0.2099 (0.1517) 0.083 

6. Eval: BMI similarity 0.5425 (0.6607) 0.206 

Behavior dynamics    

7. Rate: rate BMI period 1 2.8444 (0.5431) <1e−4 

8. Eval: BMI linear shape 0.1737 (0.0853) 0.021 

9. Eval: BMI quadratic shape −0.0504 (0.0225) 0.013 

10. Eval: BMI similarity 1.6567 (1.8186) 0.181 

 
Table 5. MLE parameter estimations using Jefferson High grade 11 data.                                            

Description Parameter MLE (S.E.) 

Rate of events λ  2.59 (1.22) 

Coeff. of trend γ  0.00 (0.00) 

Network effect α  0.02 (0.05) 

Standard deviation of noise σ  1.20 (0.39) 

Coeff. of outdegree 1θ  −3.25 (0.15) 

Coeff. of reciprocity 2θ  2.19 (0.38) 

Coeff. of transitive triplets 3θ  0.59 (0.07) 

Coeff. of BMI similarity 4θ  0.36 (0.41) 

 
consistent over time. That is, Z∆  and 1 2Z Z∆ + ∆  have the same distributions. Our model is robust to scaling 
of behavior variables, and parameter values are easy to interpret. In addition, this framework may be readily 
expanded to study valued networks. 

The field of social network analysis is a relatively young field. However, useful contributions are being made 
today. The range of applications is vast, from the contagion of health behaviors described in this paper [20], to 
the study of group formations in human societies [21]. Further advances will require improved statistical 
methods (to deal with different types of behaviors departing from the discrete choice model), as well as more 
extensive empirical data sets incorporating social networks. Many future studies will use continuous outcome 
measures; we hope the method presented here will be valuable in extending the ABSM to such outcomes. 

Our model does require intensive computation. However, we are confident that more efficient algorithms can 
be developed. Though our model requires specific assumptions, we have demonstrated that these assumptions 
are reasonably easy to satisfy using real data. Sensitivity analysis will ultimately be required to determine if our 
model works well when some of the assumptions are violated. 
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