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Abstract 
The aim of this paper is to propose some diagnostic methods in stochastic restricted linear regres-
sion models. A review of stochastic restricted linear regression models is given. For the model, this 
paper studies the method and application of the diagnostic mostly. Firstly, review the estimators 
of this model. Secondly, show that the case deletion model is equivalent to the mean shift outlier 
model for diagnostic purpose. Then, some diagnostic statistics are given. At last, example is given 
to illustrate our results. 
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1. Introduction 
In a linear regression, the ordinary least squares estimator (LS) is unbiased and has minimum variance among all 
linear unbiased estimators and has been treated as the best estimator for a long time. When the addition of sto-
chastic linear restrictions on the unknown parameter vector was assumed to be held, Theil [1] proposed the or-
dinary mixed estimator (OME). Hubert and Wijekoon [2] proposed the stochastic restricted Liu estimator 
(SRLE). And Li and Yang [3] introduced the stochastic restricted ridge estimator (SRRE) by grating the ORE 
into the mixed estimation procedure. Wu [4] discussed stochastic restricted r k−  class estimator and stochastic 
restricted r d−  class estimator in linear regression model. When the prior information and the sample infor-
mation were not equally important, Schafrin and Toutenburg [5] introduced the method of weighted mixed re-
gression and developed the weighted mixed estimator (WME). Li and Yang [6] grated the ORE into the 
weighted mixed estimation procedure and proposed the weighted mixed ridge estimator. Liu, et al. [7] proposed 
the stochastic weighted mixed almost unbiased ridge estimator by combining the WME and the AURE and also 
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proposed the stochastic weighted mixed almost unbiased Liu estimator by combining the WME and the AULE 
in a linear regression model. He and Wu [8] proposed a new estimator to combat the multicollinearity in the li-
near model when there were stochastic linear restrictions on the regression coefficients. The new estimator is con-
structed by combining the ordinary mixed estimator (OME) and the principal components regression (PCR) esti-
mator, which is called the stochastic restricted principal components (SRPC) regression estimator. Liu, Yang and 
Wu [9] introduced the weighted mixed almost unbiased ridge estimator (WMAURE) based on the weighted mixed 
estimator (WME) and the almost unbiased ridge estimator (AURE) in linear regression model. They discussed 
superiorities of the new estimator under the quadratic bias (QB) and the mean square error matrix (MSEM) cri-
teria. Wu and Liu [10] considered several estimators for estimating the stochastic restricted ridge regression es-
timators. A simulation study has been conducted to compare the performance of the estimators. The result from 
the simulation study shows that stochastic restricted ridge regression estimators outperform mixed estimator. 

Nearly forty years, the diagnosis and influence analysis of linear regression model has been fully developed 
(R.D. Cook and S. Weisberg [11], Wei, et al. [12]). Jiawei Wang [13] discussed the linear regression model with 
the random constraints, introduced its residuals and showed that the CDM was equivalent to the mean shift out-
lier model for diagnostics purpose based on general least square estimate. Lian Yang and Hu Yang [14] dealt 
with the data deleted model and the mean shift model under ellipsoidal restriction and obtained the equivalence 
of the diagonal statistic between the two models. Lu Wang [15] discussed the statistical diagnostic of multiva-
riate linear regression model with linear restriction. 

However, statistical diagnostics of stochastic restricted linear regression models based on stochastic restricted 
ridge estimator (SRRE) are studied in this paper. The paper is organized as follows. The model and the estima-
tors are reviewed in Section 2. We show that the case deletion model is equivalent to the mean shift outlier 
model for diagnostic purpose in Section 3. Some diagnostic statistics are given in Section 4. The example to il-
lustrate our results is given in Section 5. 

2. Review of Stochastic Restricted Linear Regression Model 
Consider the following linear model: 

= +Y Xβ ε ,                                       (1) 

where Y  is an 1n×  vector of observation, X  is an n p×  design matrix of rank p , β  is a 1p×  vector 
denoting unknown coefficients, and ε  is an 1n×  random error vector with ( )E = 0ε  and ( ) 2Cov σ=ε I . 

Suppose that β  satisfies the following stochastic restriction, that is, 
= +r Rβ e ,                                       (2) 

where R  is a j p×  nonzero matrix with ( )rank j=R  and r  is a known vector, ( )E = 0e  and 
( ) 2Cov σ=e W . In this paper, we assumed that ε  is independent of e . And now model (1) is called stochas-

tic restricted linear regression model. 

2.1. Estimates of Model 
Using the mixed approach, Durbin [16], Theil and Goldberger [17] introduced the mixed estimator (ME), which 
is defined as follows: 

( ) ( )11 1ˆ −− −′ ′ ′ ′= + +β X X R W R X y R W r .                           (3) 

The mixed estimator is an unbiased estimator. However, when multicollinearity exists, the mixed estimator is 
no longer a good estimator. 

Ozkale [18] proposed the following stochastic restricted ridge estimator (SRRE): 

( ) ( ) ( )11 1ˆ ,     0k k k
−− −′ ′ ′ ′= + + + >β X X R W R I X y R W r .                   (4) 

The result from the simulation study shows that SRRE outperform ME (see Wu and Liu [19]). 

2.2. Estimating k 
The most classical ridge estimator for linear regression is the following: 
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2

1 2
max

ˆ
ˆ

k σ
α

= , 

proposed by Hoerl and Kennard [20], where 2
maxα̂  denote the maximum element of OLS

ˆQβ ,  

( )1diag , , pλ λ′ ′ = Q X XQ , ( ) 1
OLS

ˆ −′ ′=β X X X y , and 2σ̂  is the estimator of 2σ . Hoerl, et al. [21] introduced  

an alternative of the estimator of k , which is defined as follows: 
2

2
OLS OLS

ˆ
ˆ ˆ

pk σ
=

′β β
. 

In Schaefer, et al. [22], a modified version of this estimator is proposed as follows:  

3 2
max

1
ˆ

k
α

= . 

In Kibria, et al. [23], a new estimator is proposed as follows: 

2

4 2

ˆ
median

ˆ
ik

α
σ

 
 =
 
 

. 

This paper selects 4k  to estimate k  below. 

3. Diagnostic Methods 
3.1. Case-Deletion Model 
Consider the stochastic restricted linear model, where the j -th case ( )T ,j jyx  is deleted, { }1 2, , , tj i i i∈ = J . 

1
 ,   

p

k i ki k
i

y x kβ ε
=


= + ∉


 = +

∑ J

r Rβ e
                              (5) 

This model is called case-deletion model. Supposed that the SRRE of the coefficient function β  in model (5) 

is ( ) ( )ˆ kJβ . 

In order to study the influence of the j -th case ( )T ,j jyx , and compare the difference between ( )ˆ kβ  and 

( ) ( )ˆ kJβ . The important result as following theorem. 

Theorem 1. For model (5), the SRRE of β  is  

( ) ( ) ( ) ( ) 11 1ˆ ˆ ˆJk k
−− −′ ′= − −J J JJβ β A X I X A X ε                         (6) 

and 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )2 22 Tˆ ˆ ˆ ˆ ˆ ˆˆ ˆ2k k k k k k k k= + − − − − − −J J J JJ J J JRSS RSS X β β ε ε X β β X β β  (7) 

where 1 k−′ ′= + +A X X R W R I , ( ) ( )ˆˆ k k= −J J Jε Y X β . 
Proof: Let ( )X J  and ( )Y J  corresponding to X  and Y  to delete the cases which belong to J . For 

model (5), we use the SRRE obtained that  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

11 1

11 1

ˆ

            .

k k

k

−− −

−− −

   ′ ′ ′ ′= + + +   

′ ′ ′ ′ ′ ′= + + − + −

J

J J J J

β X J X J R W R I X J Y J R W r

X X R W R I X X X Y R W r X Y
 

Supposed that 1 k−′ ′= + +A X X R W R I , ( ) ( )ˆˆ k k= −J J Jε Y X β , then 
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( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

1 1

11 1 1 1 1

1 11 1 1 1 1 1

1 1

ˆ

           

ˆ ˆ           

ˆ           

J

k

k k

k

− −

−− − − − −

− −− − − − − −

− −

′ ′ ′ ′= − + −

 ′ ′ ′ ′ ′= + − + −  

′ ′ ′ ′ ′ ′= − + − − −

′ ′= − −

J J J JJ

J J J J J

J J J J J J J J J J J J

J J J

β A X X X Y R W r X Y

A A X I X A X X A X Y R W r X Y

β A X Y A X I X A X X β A X I X A X X A X Y

β A X Ι X A X ( ) ( )

( ) ( ) ( )

1 1 1

11 1

ˆ

ˆ ˆ           J

k

k k

− − −

−− −

 ′ ′− − + 

′ ′= − −

J J J J J J J

J J J

I X A X Y X β X A X Y

β A X I X A X ε

 

which leads to (6). 
Because 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

2 2 2

2 2

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ           

k k k

k k k k k k

= − = − − −

= − + − − − + −

J JJ J J J

J J JJ J

RSS Y J X J β Y Xβ Y X β

Y Xβ X β β Y X β X β β
 

and ( )( ) ( )
T T Tˆ ˆk k− = − = 0Y Xβ X Y X β X X , 

hence 

( ) ( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

22 2

2T

2 22 T

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ              2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ           2 .

k k k k

k k k k k

k k k k k k k k

= − + − − −

− − − − −

= + − − − − − −

J JJ J

J J J JJ J

J J J JJ J J

RSS Y Xβ X β β Y X β

Y X β X β β X β β

RSS X β β ε ε X β β X β β

 

3.2. Mean Shift Outlier Model 
The other common statistical diagnosis model is the mean shift outlier model (MSOM). For the stochastic re-
stricted linear regression model, the corresponding MSOM is 

1

1

 ,   

,  

p

j i ji j
i

p

j i ji j j
i

y x j

y x j

β ε

β γ ε

=

=


= + ∉




= + + ∈

 = +



∑

∑

J

J

r Rβ e

                               (8) 

where the parameter jγ  are number, which describe the outlier. Let the SRRE of model (8) are ( )ˆ
mJ kβ  and 

γ̂ . The corresponding matrix formula of model (8) as follows: 

,
.

= + +
 = +

εY Xβ Dγ
r Rβ e

                                   (9) 

where ( )1
, ,

ti id d= D , 
ti

d  is a n-dimensional vector, the ti -th component is 1, and the other are zero. 

Theorem 2. For model (8), there are ( ) ( ) ( )ˆ ˆ
mJk k=Jβ β , and ( ) 11ˆ ˆ

−− ′= − J J Jγ I X A X e . 

Proof: By the matrix form of model (8), we obtained  

.      
= +      

      0
Y X D β ε
r R γ e

 

On the other hand, by the formula of calculating the inverse matrix of partitioned matrix, we have 
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( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

11 1

1 1 1 1 11 1 1 1 1 1

1 11 1

ˆ

ˆ
mJ

i

kk

k k k k d

k

−− −

− − − − −− − − − − −

− −− − −

     ′ ′ ′ ′ ′+ +  
=        ′ ′      

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + + + − + + − + + −
=

′ ′ ′ ′− − + + −

J J J J

J J J

YX X R W R I X D X R Wβ
rD X I D 0γ

X X R W R I X X R W R I X D I X A X D X X X R W R I X X R W R I X I X A X

I X A X D X X X R W R I I X A( )

( ) ( ) ( )

( )

11

1

11 1

11

     

ˆ ˆ
.

ˆ

k k

−

−

−− −

−−

 
 
  ′ 

 ′ ′  
× ×   ′   

 ′ ′− − =   ′− 

J

J J J J

J J J

X

YX R W
rD 0

β A X I X A X ε

I X A X e

 

which leads to ( ) ( ) ( )ˆ ˆ
mJk k=Jβ β  and ( ) 11ˆ ˆ

−− ′= − J J Jγ I X A X e . 

4. Diagnostical Statistics 
4.1. Generalized Cook Distance 
Let M  is a nonnegetive matrix and C  is one real number. The generalized Cook distance of the j -th case 
is defined as follows: 

( ) ( ) ( )( ) ( ) ( ) ( )( )Tˆ ˆ ˆ ˆ
.

j j
j

k k k k− −
=

β β M β β
CD

C
                        (10) 

Theorem 3. Supposed that 
T

2σ̂ ∗=
M HH
C

, then the generalized Cook distance of the j -th case is  

( ) ( ) ( )( ) ( ) ( ) ( )( )T T T

2 2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
j j

j

k k k k

σ σ∗ ∗

− −
= =

β β HH β β ξ ξCD  

where ( )T

1
ˆ ˆ ˆ, , nξ ξ= ξ , ( )ˆ ˆ ˆi i iy y jξ = − . 

Proof: Because 

( )

( )

( )

( )

( )

( ) ( ) ( )
( ) ( ) ( )

1

111 12
1

221 22T

1 2

11 1 12 2 1
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ˆ
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ˆ ˆ ˆ
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p
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   = ⋅   
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β

β
H β

β

β

( ) ( ) ( )

1

2

1 2 2

ˆ
ˆ

.

ˆˆ ˆ ˆ nn np pk x k x kβ β β

         =       + +   





y
y

y

 

Substituting these results into (9) gives 
T

2

ˆ ˆ
.

ˆj σ ∗=
ξ ξCD  

4.2. W-K Statistic 
W-K statistic is advanced from the view of data fitting. Considering the influence of the j -th case. In order to 
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eliminate the influence of scale, it is also need to divide the variance of estimator ( )ˆVar jy . Because the keys-
tone is to review the influence of deleting the j -th case. Hence, 2σ̂ ∗  is substituted by ( )2ˆ jσ ∗ . Then, the W-K 
statistic can be expressed as follows: 

( )
( )2

ˆ ˆ
.

ˆ
j j

j

y y j
jσ ∗

−
=WK                                   (11) 

4.3. Covariance Ratio Statistic 

( )( )ˆVar kβ  is to measure the superiorities of ( )ˆ kβ . The covariance ratio statistic is defined as follows: 

( ) ( )( )
( )( )

ˆVar

ˆVar

j

j

k

k
=

β
CR

β
, 

which measure the influence of the j -th case. 

5. Monte Carlo Experiments 
In order to illustrate the validity of above results, extensive Monte Carlo sampling experiments were conducted. 
To evaluate the finite-sample performance of our proposed method, we simulate 60 random samples from the 
following model: 

( )2
1 1 2 2 ,     ~ 0,2 .y x x Nβ β ε ε= + +  

The stochastic restricts as follows: 

( )1 11 12 1

2 21 22 2

,     ~ ,
r R R

N
r R R

β
β

    
= +    

    
0e e I  

where 1

2

9.44906
5.05461

r
r
   

=   
  

, 11 12

21 22

1 0.2
0.3 2

R R
R R

   
=   
  

. In order to checkout the validity of our proposed metho-  

dology, we change the value of the first, 125th and 374th data. For every case, it is easy to obtain jCD , jWK  
and jCR . 

From the Figure 1, Figure 2, Figure 3, we can see that in most cases, the value of are reasonably close to one 
fixed value. Following the definition and properties of diagnosis statistics, we can diagnose the strong influence 
points, the value of which deviate from the average seriously. Figure 2 and Figure 3 show that the first and the 
third data are strong influence points. Indeed, our results are illustrated. 
 

 
Figure 1. Generalized cook distance jCD .                      
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Figure 2. W-K statistic jWK .                                  

 

 
Figure 3. Covariance ratio statistic jCR .                            

6. Conclusion 
In this paper, stochastic restricted linear regression models are revisited. Useful diagnostic methods are derived. 
Through simulation study, we illustrate that our proposed methods can work fairly well. 
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