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Abstract 
Statistical downscaling (SD) analyzes relationship between local-scale response and global-scale 
predictors. The SD model can be used to forecast rainfall (local-scale) using global-scale precipita-
tion from global circulation model output (GCM). The objectives of this research were to deter-
mine the time lag of GCM data and build SD model using PCR method with time lag of the GCM pre-
cipitation data. The observations of rainfall data in Indramayu were taken from 1979 to 2007 
showing similar patterns with GCM data on 1st grid to 64th grid after time shift (time lag). The time 
lag was determined using the cross-correlation function. However, GCM data of 64 grids showed 
multicollinearity problem. This problem was solved by principal component regression (PCR), but 
the PCR model resulted heterogeneous errors. PCR model was modified to overcome the errors 
with adding dummy variables to the model. Dummy variables were determined based on partial 
least squares regression (PLSR). The PCR model with dummy variables improved the rainfall pre-
diction. The SD model with lag-GCM predictors was also better than SD model without lag-GCM. 
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1. Introduction 
Climate change is the average change of one or more elements of weather in a particular area. One of the climate 
change phenomena in Indonesia is the change of rainfall amount at some places. The change will have a wide 
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impact on various sectors, particularly the agricultural sector. The uncertain impact of climate change will affect 
the increase or decrease in agricultural production. Therefore, the estimation of rainfall gives a positive contri-
bution to agriculture. 

Rainfall is a common variable in research related to the impact of climate change. Rainfall estimation in In-
donesia needs to develop the climate models with high resolution on a local-scale by considering global atmos-
pheric circulation information such as global circulation model output (GCM) [1]. However, the information 
from GCM is still in global-scale and unavailiable for smaller scale phenomena. Techniques of statistical down-
scaling (SD) may be used to obtain local-scale climate information from GCM [2]. Generally, GCM data have 
large dimension and high correlation between the grid so that the common method in SD model is principal 
component regression (PCR) [1]. 

SD modeling requires a strong relationship between rainfall and GCM precipitation data to describe the local 
climate variability well [3]. A strong relationship (high correlation) will produce a similar pattern between those 
data. However, the pattern of the GCM precipitation data was not the same as the pattern of rainfall data. There 
was time shift (time lag) on the GCM data. Therefore, determining the time lag is needed to be applied to GCM 
precipitation data. The time lag of GCM precipitation data can be determined by the highest cross-correlation 
between rainfall and GCM precipitation data calculated using the cross-correlation function (CCF). 

SD technique with multirespon PLSR method had been used to forecast rainfall in Indramayu District [4]. 
Furthermore, PLSR, weighted least squares regression (WLSR), and PCR methods were also used to forecast 
rainfall in Sukadana weather station based on satellite data of tropical rainfall measuring mission (TRMM) [5]. 
In this research GCM data with time lag was used. Therefore, the objectives of the research were to determine 
the time lag of GCM data and build SD model using PCR method with time lag of the GCM precipitation data. 

2. Material and Methods 
2.1. Data 
The data used in this research was GCM precipitation (mm/month) from climate model intercomparison project 
(CMIP5) as predictor variables and rainfall data (mm/month) in Indramayu district as response variable from 
1979 to 2008. CMIP5 GCM data was downloaded from website http://www.climatexp.knmi.nl/ issued by the 
Netherlands KNMI.  

The domain size of GCM used in this research was 8 × 8 square grid (2.5˚ × 2.5˚ for each grid) from 98.75˚E 
to 116.25˚E and from −16.25˚S to 1.25˚N above area of Indramayu. The size of domain 8 × 8 grids over the area 
of Indramayu showed that the estimate was more consistent and not sensitive to outliers [6]. 

2.2. Methods 
The steps of the analysis in this research were: 

1) Determine the time lag of GCM data using CCF. If ( )r lxy  is cross-correlation between the x  and y  
series at time lag- l , ( )C lxy  is covariance between x  and y  at time lag- l , Sx  and S y  are the standard 
deviation of x  and y  series respectively, the CCF can be formulated as Equation (1). 

( ) ( )r l C l S S=xy xy x y                                     (1) 

2) Identify multicollinearity precipitation data using variance inflation factors (VIF). 
3) Apply SD technique using PCR method.  
PCR method begins with principal component analysis (PCR) to produce new components that are not corre-

lated with each other and referred to as the principal component (PC). The thj  PC is given by Equation (2). 

1 1 2 2j j j j jp pe e e′= = + + +w e X x x x                               (2) 

where ( )Var j j j jλ′= =Σw e e  and ( )Cov , 0j j j j′ ′′= =Σw w e e . jλ  and je  row are eigenvalue and eigen- 
vector of the variance covariance matrix X . 

The general model of PCR can be formulated as Equation (3) [7]. 

= +y Wα ε                                         (3) 

Furthermore, the PCR model with r  component can be written as Equation (4). 

http://www.climatexp.knmi.nl/
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0 r rα= + +1y W α ε                                    (4) 

where ( )2~ 0,N σε  is error vektor of size 1n× , y  is response variable vector of size 1n× , 0α  is intercept, 
1  is vector that all element is one of size 1n× , rW  is PC matrix of size n r× , and rα  is PC coefficient 
vector of size 1r× . Estimator of regression coefficients using the least squares method can be formulated as 
Equation (5). 

( ) 1ˆr r r r
−′ ′=α W W W y                                   (5) 

If errors of PCR model indicated that conditions were not homogeneous, then the dummy variables would be 
added to the PCR model. Dummy variables were determined by the result of grouping between the X -score 
and Y -score. The plots between X -scores and Y -score were obtained from PLSR method. 

If 1 2, , , p′  =  X x x x  is a matrix of predictor variables, the PLSR method produces new components, 
which are called X -scores ( ),  1, 2, ,a a A= t . It is defined in Equation (6) with the X -weight coefficients 
are denoted by jaw  [8]. 

        1, 2, ,    1, 2, ,ia ja ijjt w x T i n j p= ⇒ = = =∑  XW                 (6) 

The X -scores ( at ’s) have the following properties: 
• They are multiplied by the loadings ajm , so that the X -errors ( )ije  in Equation (7) are small. 

  ij ia aj ijax t m e ′= + ⇒ = +∑ X TP E                         (7) 

• The X -scores are good predictor of Y  with the weights akc  and errors ikf  in Equation (8). 

  ik ak ia ikay c t f ′= + ⇒ = +∑ Y TC F                        (8) 

• The Y -scores ( au ’s) were calculated using Equation (9). 

a a a a′=u Yc c c                                  (9) 

4) Step 1-3 used data in period 1979-2007 and validation of the model used data period 2008. 

3. Results and Discussion 
3.1. Data Exploration 
3.1.1. Time Lag of GCM Precipitation Data 
Cross-correlation function was used to calculate the highest cross-correlation between the precipitation and 
rainfall data. The highest cross-correlation determined the time lag of GCM precipitation data. Based on Figure 
1(a), the plot of rainfall in Indramayu showed that the highest average rainfall occurred in January and February, 
while the precipitation plots of 1X  showed in March (Figure 1(c)). Consequently the correlation between 
rainfall data and the precipitation data of 1X  was low. Therefore, the CCF was used to determine the time lag 
of GCM precipitation data. 

Figure 1(b) showed that precipitation 1X  had the highest cross-correlation (time lag) with rainfall data on 
the 2nd time lag. January rainfall occurred in March on the precipitation data 1X . Therefore, the 2-month was 
lagged on the precipitation data 1X . The results on Figure 1(d) showed that the scatter pattern of precipitation 
data 1X  with time lag following the rainfall pattern so that could improve the correlation between rainfall data 
and the precipitation data of 1X . In the same way, the time lag was also determined on the precipitation data 
from 2X  to 64X . The farthest shift occurred at 10th time lag. However, the time lag of precipitation data gen-
erally occurred at first time lag. 

The calculations showed that the time lag determination on GCM data might optimize the relationship be-
tween the precipitation and rainfall data. The number of GCM grid with lag (lag-GCM) which had a correlation 
larger than 0.7 with rainfall data was 73%. Meanwhile, the correlation between the rainfall and precipitation data 
without lag (GCM) larger than 0.7 only reached 9%. 

3.1.2. Variance Inflation Factors 
The calculations showed that the time lag determination on GCM data might optimize the relationship between 
the precipitation and rainfall data. The number of GCM grid with lag (lag-GCM) which had a correlation larger  
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(a)                                              (b) 

   
(c)                                                (d) 

Figure 1. (a) Plot of rainfall; (b) CCF between rainfall and X1; (c) Plot of precipitation X1; (d) Plot of precipitation 
X1 with time lag.                                                                                 

 
than 0.7 with rainfall data was 73%. Meanwhile, the correlation between the rainfall and precipitation data 
without lag (GCM) larger than 0.7 only reached 9%. 

3.2. Statistical Downscaling Model 
3.2.1. Principal Component Regression 
PCR is a method that can be used to overcome the problem of multicollinearity on predictor variables. Modeling 
using the PCR method begins with PCA to reduce the dimensions or to overcome the problems of multicolli-
nearity. The number of PC used in the PCR model were selected based on the cumulative proportion of the total 
variability in the ranged from 65% to 95%. Table 1 showed that the PC1 on lag-GCM data was better in ex-
plaining data diversity than PC1 on GCM data. However, the next components on the lag-GCM data had a cu-
mulative proportion which is relatively similar to the GCM data. The first 4 PC could explain 95% of the data 
variability. Thus, there were 4 PCR models based on the number of the PC that used, both the lag-GCM and 
GCM data. 

The modeling results indicated the PCR model on lag-GCM data was better in explaining the data diversity 
than on data GCM (Table 2). The significant difference was shown by the model PC1R with 2R  values of  
34.2% on GCM data and of 62% on lag-GCM data. This was caused by the proportion of PC1 variability on the 
GCM data was only 69%, while on the lag-GCM data was 83%. On average, PCR model on lag-GCM data had 
higher 2R  (ranged from 62% to 63%) than 2R  (ranged from 34.2% to 62%) on GCM data. In addition, the 
root mean squared error (RMSE) value ranged from 66.67 to 67.33 on lag-GCM data and from 67.15 to 88.58 
on GCM data. This indicated that the determination of time lag for the GCM precipitation data was able to 
increase the 2R  value around 9.7% and lowered RMSE value around 9.7. 

The error was analyzed on the PC1R model using GCM and lag-GCM data. Figure 2(a) and Figure 2(b) 
showed that the error scatter formed a divergent pattern. The higher fitted rainfall gave the bigger absolute value  
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Table 1. Eigenvalue and diversity proportion of 5 PCs for GCM and lag-GCM data.                                   

Predictor 
GCM  Lag-GCM 

Eigenvalue Proportion of 
diversity 

Cumulative 
proportion  Eigenvalue Proportion of 

diversity 
Cumulative 
proportion 

PC1 44.27 0.69 0.69  53.16 0.83 0.83 

PC2 11.9 0.17 0.88  3.81 0.06 0.89 

PC3 4.33 0.07 0.94  2.68 0.04 0.93 

PC4 1.36 0.02 0.97  1.15 0.02 0.95 

PC5 0.46 0.01 0.97  0.66 0.01 0.96 

 
Table 2. RMSE and R2 values of each model with GCM and lag-GCM data.                                         

Model Component 
GCM  Lag-GCM 

RMSE R2  RMSE R2 

PC1R PC1 88.58 34.2%  67.33 62.0% 

PC2R PC1, PC2 67.15 55.7%  67.15 62.3% 

PC3R PC1, PC2, PC3 69.6 59.6%  66.67 63.0% 

PC4R PC1, PC2, PC3, PC4 67.62 62.0%  66.69 63.0% 

 

 
(a)                                                     (b) 

Figure 2. Error plots of PC1R model with (a) GCM data and (b) lag-GCM data.                                        
 
of errors. This case indicated heterogeneous in error. The condition of error heterogeneity also occurred in the 
PC2R, PC3R, and PC4R models on lag-GCM and GCM data. Therefore, the PCR models were modified by the 
addition of dummy variables. 

3.2.2. Principal Component Regression with Dummy Variables 
Dummy variables in the PCR models overcome the problems of error heterogeneity. Dummy variables were de-
termined based on the result of grouping from PLSR method. Figure 3 showed the five groups of rainfall data 
based on dominant color group. The first group generally occurred from May to October with the intensity from 
0 to 110.53 mm/month, the second group generally occurred in March, April, and November with the intensity 
from 110.54 to 235.07 mm/month, third group generally occurred in December withthe intensity from 235.08 to 
353.73 mm/month, fourth group generally occurred in February with the intensity from 353.74 to 454.73 
mm/month, and fifth group generally occurred in January withthe intensity more than 454.73 mm/month. This 
grouping was based on the discriminant analysis and a percentage of 94.8% clustering accuracy. Thus, the four 
dummy variables were added to the PCR models. 

Table 3 showed the PCR models with dummy variables (PCRD) gave a better model than the PCR models 
without dummy variables. PCRD models gave 2R  ranged from 91.2% to 93% on GCM data and from 92.9% 
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to 93.4% on lag-GCM data (Table 3). The addition of dummy variables in the PCR models increased the model 
performance to explain variability of rainfall around 39.68% on GCM data and around 30.53% on lag-GCM da-
ta. The RMSE values were relative small, ranged from 29.09 to 32.56 on GCM data and from 28.73 to 29.34 on 
lag-GCM data. But on average, PCRD models using lag-GCM data gave higher 2R  values (93.10%) than us-
ing the GCM data (92.55%). 

The error diagnosis of PC1RD model using GCM and lag-GCM data showed 5 groups of error (Figure 4(a) 
and Figure 4(b)). Grouping was caused by the addition of dummy variables in PCR models. However, the error 
scatter patterns of each group in Figure 4(a) and Figure 4(b) were more homogeneous than the error scatter 
pattern in the PCR models. The conditions of homogeneous in error were also indicated by the PC2RD, PC3RD, 
and PC4RD models on GCM and lag-GCM data. It meant, the addition of dummy variables in the PCR models 
gave model that was more homogeneous in error than the PCR models without dummy variables. 

3.2.3. Model Validation and Selection 
Model validation stage based on the root mean squared error of prediction (RMSEP) and correlation values 
between actual rainfall and estimated rainfall using GCM and lag-GCM data. Based on Table 4, the esti-
mated rainfall data using lag-GCM was better than using the GCM data. The estimated value of PCR models 
on lag-GCM had higher correlation (ranged from 0.88 to 0.91) and lower RMSEP (ranged from 71.91 to 
77.29) than correlation (ranged from 79.93 to 103.74) and RMSEP (84.22) of PCR models on GCM data. In 
addition, the PCRD models gave estimator for rainfall with RMSEP ranged from 28.48 to 31.04 on lag-GCM 
data and RMSEP ranged from 31.51 to 35.06 on GCM data, the correlation ranged of 0.99 and from 0.97 to 
0.98 respectively. Generally, the PCRD model that involving PC1 on lag-GCM gave the best estimated 
model for rainfall that had the smallest RMSEP (28.48) and correlation 0.99. 
 

 
Figure 3. Plot of Y-score and X-score.                                              

 
Table 3. RMSE and R2 values of each model with GCM and lag-GCM data.                                         

Model 
GCM  Lag-GCM 

RMSE R2  RMSE R2 

PC1RD 32.56 91.2%  29.34 92.9% 

PC2RD 29.11 93.0%  29.22 92.9% 

PC3RD 29.09 93.0%  28.73 93.2% 

PC4RD 29.13 93.0%  28.43 93.4% 
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(a)                                                      (b) 

Figure 4. Error plots of PC1RD model with (a) GCM and (b) lag-GCM data.                                  
 
Table 4. RMSEP and correlation values of each model with lag-GCM and GCM data.                             

Model 
Lag-GCM  GCM 

RMSEP Correlation  RMSEP Correlation 

PC1R 74.95 0.9  103.74 0.74 

PC2R 77.29 0.88  91.87 0.81 

PC3R 71.91 0.91  89.62 0.82 

PC4R 73.02 0.91  79.93 0.9 

PC1RD 28.48 0.99  35.06 0.97 

PC2RD 29.33 0.99  31.51 0.98 

PC3RD 30.29 0.99  31.73 0.98 

PC4RD 31.04 0.99  31.81 0.98 

 
Figure 5(a) and Figure 5(b) showed that the results of estimated rainfall were lower than the actual rain-

fall from January to March. However, the estimators were higher than the actual rainfall from April to De-
cember. PCR models on lag-GCM data could estimate rainfall data that follows the actual rainfall patterns, 
particularly from June to December. In addition, the estimator using lag-GCM data was closer to actual val-
ue (Figure 5(a)). However, the estimator using GCM data was not following the actual rainfall patterns, es-
pecially PC1R model (Figure 5(b)). The distance between the estimated and the actual values was quite 
distant. Similar to the PCR models, PCRD models using data lag-GCM also showed better performance than 
using the GCM data (Figure 6(a) and Figure 6(b)). On average, the distance between the actual and the es-
timated values of PCRD models using data lag-GCM were closer than using the GCM data (Figure 6(a)). 
This meant that the determination of time lag for the GCM precipitation data gave estimator more accurate 
in the SD model than GCM data without it. 

Figure 6 showed that the PCRD models captured the better rainfall pattern than PCR models (Figure 5). 
PCRD models were more accurate in estimating rainfall, particularly at high intensity rainfall (from January 
to March). The distance between the actual and the estimated values of PCRD models were relatively closer 
than the estimated from PCR models. Figure 5 showed that the PCR model failed estimating rainfall from 
January to March. It indicated that addition of dummy variables in the PCR models could fix the estimated 
rainfall. But on average, PCRD model using lag-GCM data were more accurate in giving the estimated rain-
fall than PCR model. 
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(a)                                                      (b) 

Figure 5. Estimated rainfall plot of PCR models with (a) lag-GCM and (b) GCM data.                             
 

 
(a)                                                      (b) 

Figure 6. Estimated rainfall plot of PCRD models with (a) lag-GCM and (b) GCM data.                          

4. Conclusion 
Cross-correlation between rainfall and GCM precipitation data has an important role in modeling of statis-
tical downscaling. The highest cross-correlation determined the time lag that optimized the relationship be-
tween rainfall data and the data of GCM precipitation, so it improved the accuracy prediction of rainfall data. 
Estimation of rainfall using the GCM precipitation data with time lag was more accurate than using GCM 
precipitation data without time lag. The PCR models with dummy variables and using GCM precipitation 
data with time lag gave better estimated rainfall than PCR models without dummy variables. The model in-
volving one principal component was the best model that had high correlation (0.99) and the smallest 
RMSEP (28.84). 
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