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Abstract

In this paper, we define the Weibull kernel and use it to nonparametric estimation of the proba-
bility density function (pdf) and the hazard rate function for independent and identically distri-
buted (iid) data. The bias, variance and the optimal bandwidth of the proposed estimator are in-
vestigated. Moreover, the asymptotic normality of the proposed estimator is investigated. The
performance of the proposed estimator is tested using simulation study and real data.
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1. Introduction

Hazard rate functions can be used for several statistical analyses in medicine, engineering and economics. For
instance, they are commonly used when presenting results in clinical trials involving survival data.

Several methods for hazard function estimation have been considered in the literature. Hazard function esti-
mation by nonparametric methods has an advantage in flexibility because no formal assumptions are made about
the mechanism that generates the sample order or the randomness. Estimators of the hazard function based on
kernel smoothing have been studied extensively. For instance, see [1]-[5].

The performance of the estimator at boundary points differs from the interior points due to so-called “boun-
dary effects” that occur in nonparametric curve estimation problems; more specifically, the bias of the estimator
at boundary points. To remove those boundary effects in kernel density estimation, a variety of methods have
been developed in the literature. Some well-known methods are summarized below:

1) The reflection method [6]-[8].
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2) The local linear method [9] [10].

In [11] this problem is solved by replacing the symmetric kernels by asymmetric Gamma kernel which never
assigns weight outside the support.

A lot of people who care of estimation do many specific distributions, such as normal, log-normal, gamma
and inverse-gamma distributions, and this makes us pose a question which is: is there any other distributions
which can be used as a kernel in the estimation and then give us acceptable results?

In this paper, we propose the Weibull kernel which also never assigns weight outside the support. The Wei-
bull distribution is a continuous probability distribution. It is named after Waloddi Weibull, who described it in
detail in 1951, although it was first identified by Frchet (1927) and first applied by Rosin and Rammler (1933)
to describe a particle size distribution.

This paper is organised in five sections. In the first section, we present some information about kernel
smoothing, hazard functions and the proposed kernel. In the second section, we introduce some definitions and
relations, and state the conditions under which the results of the paper will be proved. In the third section, we
investigate the bias, variance and optimal bandwidth of the Weibull kernel estimator. In the fourth section, we
investigate the asymptotic normality of the Weibull kernel estimator of the pdf and of the hazard function esti-
mator. In the fifth section, the performance of the proposed estimator will be tested via two applications, simu-
lated and real data.

2. Preliminaries

In this section, we state the conditions under which the results of the paper will be proved. Also, we mention the
definition of gamma function and some relations related to it, then we will define Weibull kernel.

Conditions

1) Let {xi }i”:l be a random sample from a distribution of unknown probability density function f defined on
[O,oo) such that f has a continuous second derivative.

2) [x*(f")’(x)dx<e and O<J‘¥dx<oo.
[ x4 172 (x) dx _&xp(=7)In(8)

J.Lx)dx 4ny

3) , Where y =0.5772156649 is Euler’s constant.
4) h is smoothing parameter satisfying h +ih —0 as n—o oo,
n

The Gamma function is defined to be the improper integral:
F(x):J':tX’lexp(—t)dt, x>1

The Taylor expansion about zero of F(1+ x) and L is available and given by:

I'(x)

I'(1+x) =l—;/x+%[;/2 +%]x2 +0(x*) 2 1-yx

1 2 1 n’ 3 3\ o
——=X+¥X +E(7 —ij +o(x )~x

(%)

Also, T'(1)=-y.
On the other hand, notice that:

lim, [T (1+ X)ﬁ = exp[limHo MJ = exp(limﬁo %) = exp[L(l)) =exp(-7)
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1
Moreover, the difference between (1-yx)x and exp(—;/) gets small when x — 0, we can approximate

(1-»x)x by exp(-y).
In this paper we consider the following Weibull kernel function:

KW(x,lj(t)=F(Hh){tmm)flexp _(Mf o

1
X

h hx X

If a random variable Y has a pdf K, (x%j (t),then E(Y)=x, and the variance is

var (Y = Xz(r(u 2h)_1j

r'(1+h)

We propose the following estimator of the probability density function f () , the Weibull estimator,
F00-23 K, (x2](x)
ni3 h

3. Bias, Variance and Optimal Bandwidth

Proposition 1.
The bias of the proposed estimator is given by:

Bias(fA(x)):lx2 {M—qf"(xﬁo(l) (1.1)

2 r(1+h)

Proof:

e(F00)= [ k[ %)) F )ty =E(1 ()

where & follows a Weibull distribution with scale parameter 1“(+h) and shape parameter % and from
+
the expression of the mean and variance of Weibull distribution we deduce that the mean is x, = E(&,)=x
I'(1+2h
and V, =Var(&)=x (—)2—1 :
(F2+h)

The Taylor expansion about x, for f (&) is:
f(é:X):f(luX)+f'(IuX)(gx_IUX)-"%f”(ﬂX)(‘fx_ﬂX)z"'o(l)'
s, E(f(£))- f(x)+%f”(x)var(§x)+o(l).

['(1+2h)

E(f(¢))= f(X)+%XZ((F(1+h))2 _1J £7(x)+0(1). (1.2)

Hence,
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Proposition 2.
The variance of the proposed estimator is given by:

Var(7 () = X (r (@)} £ (1) o(n ) )
T -l o]
Wh:(x’%JWtI“)T ] e o)
gafsenfegonf” | (rotonf
A [Pt 2 (204

2\ X

1 [ 1)ﬁ (r(u+ h))% ot 2'T(+h) {2“t1‘§(1+ h)T'1 oxp _(2“tl"§(1+ h)]i

2\ x xh

1 1y
~ 1(r(1+ h))h ot 2T h)|:2“t1"(1+ h)}h ox
X

X xh

(mf

Using the transformation z =2"t we get:

KZ[X,EJ(z)zl[Mf(ihf1.2hr(1+h)[zr(“h)flexp _[zl‘(1+h)f ‘Zh

"\Uh 2 X 2 xh X

:(lj““(r(uh)] Z;1_r(1+h)[zr(1+h)}ﬁ‘lexp _[zr(uh)ji oaen

xh X

Therefore,

E{Kj(x,%)(z)} = E{Bx,hnx*l‘_lf (m,)

() [

and n, follows as Weibull distribution with mean , = E(7,)=x and variance

Var(n )= x? r(1+2h)
Vo =var(n,) [(F(1+h))2 1}

where

B
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1
The Taylor expansion of 7! 't (n,) isas follows:

m%lf( K ji +/¢“ (o }(n - 1)

1

H"lj(ﬁ_zj *t(u )+2G—) P (u )+ﬂi‘_lf"(ﬂx)}('7x—ﬂx)2+°(h2)

So,

+xilf”(x)} X2 [—(F 1+2h))2 —l]+o(h‘2)
(X)X {@ 1]f"(x)+h{(1_h)(1_zh)xi‘3f(x)

+2(h—h2)xi2f’(x)} X {%—quo(h‘z)

This implies that

E{waflf (7, )} 2 (P n) 1 ()2 (T (1) {—(iﬁii:} —1] £(x)

11 (1-h)(1-2h) ; (x)+2(h—h2) f’(x)}[r(l;%)z—l}’o(h"z)

+h?2°" (F(1+h))h{ . (F(1+h))
Therefore,
var(f () - 2:: (P (0= 2(1 (x)+0() +o(nn?)
_ 2:: (FL+h) 1 (x)+o(nn?).

Optimal Bandwidth:
First of all, we will define MSE and Mean Integrated Squared Error (MISE) as follows:

MSE(]‘A):{%X [(Fﬁif‘;; 1Jf”(X)+o(1)} +48—r:x(r(1+h))%f(x)+o(n*1h*2)
L(1+2h) 2 "2 (x +i + h x)+o(n*h?
"4 [(F(l+ ))2 1J () 4nx(r(1 ) £ (x)+o(nh?)
raszn) ) ., B
-1 [(mm))z 1]f (02 (@) (3

Therefore,
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2
. h 1
|\/||SE(f)=l M—l jx4f"2(x)dx+8—(r(1+h))hjf(x)dx (1.4)
4 (F(1+ h)) 4n X
The Taylor expansion of 8" is given as follow:
2
In(8

8" =1+hin(8)+h ( n(2 ) +0(h*)~1+hin(8)

Therefore, we can approximate MISE to be:
~ 2 lexp(-y)
MISE(f):Zl[l—th] +2T(1+hln(8)), (1.5)

f
where, 1, =[x*f"(x)dx and I, = E(X)dx.

We will now find the optimal bandwidth by minimizing (1.5) with respect to h, so we have

dMIj:(f)=_7I1+2yzllh+Izexp(;ry]/)ln(S). L6)
d* MISE(f)
TzZ}/ l,>0. (1.7)
Setting (1.6) equal zero yields the optimal bandwidth h,, for the given pdf and kernel:
_ 4yl -1, exp(-y)In(8) L9)

opt

8ny°l,

In addition, (1.7) proves that this value minimize (1.5). Substituting (1.8) for h in (1.5) gives the minimum
MISE for the given pdf and kerne which is given by:

wise, = [ 22P()NE))" 1 exp(7) L+1n(g) il =1 @) (E) (1.9)
*g 4nyl, 4n 8ny21, -

Note that h,, depend on the sample size n, the kernel and on the unknown pdf.

4. Asymptotic Normality

In this section, we state the main two theorems talking about the asymptotic normality for the proposed estima-
tor and an important lemma which we will use in the second main theorem.

Definition 1. A hazard rate function is defined as the probability of an event happening in a short time inter-
val. More precisely, it is defined as:

P(X< X
F(x) - tim PX X )

The hazard rate function can be written as the ratio between the pdf f() and the survivor function
S(.)=1-F(.) asfollows:

, Xx>0.

The kernel estimator of S(.) is S(x)=1-F(x) where,
~ X~ 18 px 1
f(0-L T =23 Kw(u,ﬁj(xi)du

Definition 2. We defined the proposed estimator for the hazard rate function to be:
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f
() =)
S(x)
Theorem 1. Under conditions 1, 2, and 3, the following holds
~2n nh ) d f (X)
27— (f(0)-1(x) N(O, . (1.10)

(ren)
Proof:

Let V, =Kw(x,%j(xi), i=1,2,---,n. Then f(x)zlzf V., where V_,i=12,.-,n are independent
n

-1 'ni?

and identically distributions (iid) and o2 <o .

We show now that the Liapounov condition is satisfied, that is for some & >0,
ElV, ~E(V,)["
=1 -

n502+5 (Vn)

lim

n—oo

First of all, we have:

T q2+8 - (%—l}(h&) %
v = I'(1+h) tF(1+h)} exp _(2+5)[tl"(1+h)j  is0
| hx 1L X X
1
- s S (E-1)(ze) L
_[rasn Tl (2+9) zl“(1+h)] (2+6) exp _[zl‘(1+h)] r(2e8)
| hx ] X X
1 1 1
(h-1)2+)+h | T (1+h) o zI'(1+h) (Fflj(w) I'(1+h)| zI'(1+h) (Fflj zl(1+h)\p
=(2+6) exp| -| ———~
hx X hx X X
16 1, 1
:(2+5)(h—1)(2+o‘)+h h_l_éz[i-1](1+5){l"(l+h)} h F(1+h){zr(1+h)}[h ]exp _(zl"(l+h)jh
X hx X X
(3-1)asa) r(1+h){zr(1+h)}(m (zr(1+h)Ji
=az" exp| —
hx X X
1+6
h
where, o = (2+§)(h71)(2+§)+h h9 {M} . Then we have:
X

1

£ Iway(%ﬂ]uﬂn F(l+h){yr(l+h)}(hl)exp _(yr(uh)Jh o~

0 hx X

_ E(agxh_é_lf (gx)],

where, £, follows a Weibull distribution with mean x4, = E(gx): X and variance
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,| T(1+2h)
var($, ) =x"| ——=-1|.
S G

4o o
The Taylor expansion of & " ’ 1f (z;x) about the mean g, =x is as follows:

& (E)- xhhb"’lf(x){(¥—5 1) M_o2f(x)+xl;5_5_lf'(x)}(§x_x)

{(%—5 1)(%—5 2) ﬁ’“f(x)

1+6

+2(T—5 1] 1+5bvzf'(x)+x1+h§51f"(x)}(§x—x)2+o(h‘2)
E( le_é_lf(§X)]=x?_5_lf(x)+{(%—5 1)(%—5—2)&5‘5‘%@)

+2(¥—5 1} IR f’(x)+x1+“§_5_lf"(x)}le—(ll:(lJrZh) —1]+o(h2)

W5 o 148

=x " (X)+h?x P [H, (1+6-8h—2h)x*°f (x)

+2hH X272 £/(x)+h?x 7 f "(x)] x? [%—1}+0(h2),

where H; =1+6-5h-h.
Therefore,
1+0
E(Vo[7)=(2+8)" M 2 T (L) [ £ (x)+0(h) (1.12)
Now substituting § =0, the following is hold:

Var(V,) = 2" 2h [T (L ) £ (x)+0(h),

Hence,

146

E(Vn)2+5S F[\/n|2+5 )hl 2+5+hh15 51|:l_, 1+h:|h f

ElV, -
|V§ 2 s 2+6
2o V,) Nt () P%Zhulﬁ~hm]hf }2
140

(2 5)h12+6+h _61|:F1+h:|h f()

2+6

()| 2 [ 1(9]

The last term vanishes as n — 0, since condition 4 implies that h— 0 and nh — o . Also, the remaining
component of the last term are bounded from condition 2.
Lemma 1. Under conditions 1, 2 and 3 the following holds

—0

Jnh |F (x) - F (x)| —2—0 (L12)
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Proof:
First of all, we have from the definition of F (x) the following relations:

HK[ j duf (y)dy=[[" K( j f(y)dydu=[ E(f(&,))du
:.[Ox[f(u)+%u{%—l}f”(u)}du+o(1):F(x)+o(l)

where ¢, is defined as in Proposition 1. This implies that, EF (x)-F(x)=0(1)
Therefore,

1, . 1
(nh)z|EF (x)-F (x)| = o((nh)ZJ—pm
On the other hand, F (x) can be written as follows:

SO (IS TOLTEES IEY

n

where W, ( IK( j

Now, given £>0, &>0, then we have:
E[F(x)-EF (x|
be(nh) (1+9)

P[(nh);‘lf(x)—Elf(x)‘>g}s

=272 (nh)"™” E|F (x)- EF ()

2426

3w ()~ EW (x)

i=1

_ g (nh)l+b' n22E

1+6

<o (nn) " S e, ()

The second term vanishesas n— o and h — 0, since from 1.2 we have
(n—lh)hﬁ Z|EW 2125 (( ’lh)lﬂ;)

Further, by replacing 6 with 25 in (1.11) and assuming that

1+6

N e #(n*h) Z|EW

1426

5 =(2+28)"EEIN (L n) ]

we have:

1+0

P{(nh)Z‘F(x)— EF (x)|> g} <22 (n7n)"" S EM ()

i=1

1 2426

L 2-28 101+ 5 A [P X

=220 nj'o J'O{kw(u,ﬁj(y)} duf (y)dy
1 2428

_ g’z’z‘sn’(shhﬁj‘o J'O {kw (u,ﬁj(y)} f (y)dydu

=& (nh) j [rhﬁx‘z‘“f(x)}du+o((nh)_§ h‘z)—>0

2+26

(nh)2 |F ()~ EF (x)|—=—0,

2+25

(1.13)

(1.14)
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Since ‘If (x)-F (x)‘ < ‘If (x)-EF (X)HEIf (x)-F (x)‘ then by (1.13) and (1.14), we have:
(nh)2 [ ()~ F ()] < (nh)2 | (x)— EF (3]« (nh)2 [EF (x) - F (x)] > 0

This complete the proof of the lemma.
Theorem 2. Under conditions 1, 2, and 3, the following holds

2_§h nh (7 () -r(x « o r(x) w1
) o) ]
Proof
2 I (f(-r(x) -2 IT[{(x)_wnj
(C@+h))r \j(F(1+h))F S(x) S(x)
o /T(f(x)_f(x)_f(x)+ (X)j
\j(r(1+h))% S$(x) S(x) S(x) S(x)
zzéh [T{f RPYRNLICOCICI X]
S09Y(r(ueh) Mgy T
:2—§h nh 1 fx_fx_z’fh X) nh sl
S(X)\/(F(l+h))H ()) S(x)S(x) (T(1+h))n ) ())
d r(x)
- N[O'W(X)J

Note that the second term vanishes by (1.12), and the first term is asymptotically normally distributed by
(1.10).
Moreover, from (1.10) and (1.15) too we have:

f(x)+;x2[ L(l+2n) —1}f"(x)
+0(1)

R _E((f)(x))_ (r(+h))y
B(F)= E(($)00) S(x)
EXZ M—l f"(X)
2° [ (r@+n))
=r(x)+ S(x) +0(1)
Therefore,
1X2£r<1+2h>_1]f”(x)
2 AP
Bias(f(x)) = (r@ Stg()) +0(1)
and,

var§(0)= 2o ) A ofon)
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5. Applications

In this section, the performance of the proposed estimator in estimating the pdf and hazard rate function is tested
upon two applications using a simulated and real life data.

5.1. A Simulation Study

A sample of size 200 from the exponential distribution with pdf f (x)=exp(—x) is simulated. We computed
the bandwidth using the relation

1
hyye = 0.79RN 5, (1.16)

see [8] page 47 and it equals (0.36658).

The density and the hazard functions were estimated using the Weibull estimator. The estimated values and
the true exponential pdf are plotted in Figure 1(a), this figure shows that the performance of the Weibull esti-
mator is acceptable at the boundary near the zero. In the interior the behavior of the pdf estimator becomes more
similar as we get away from zero. Also Figure 1(b) shows that the performance of the Weibull estimator of the
hazard function is acceptable at the boundary near the zero which we concern on. The mean squared error (MSE)
of proposed estimator of the density function is equal to 0.0001393763 and for the hazard function is evaluated
for the interval [0, 0.5]—because we concern about closest values to zero—and is equal to 0.0189427.

5.2.Real Data

In this subsection, we used the suicide data given in Silverman [8], to exhibit the practical performance of the
Weibull estimator. The data gives the lengths of the treatment spells (in days) of control patients in suicide study.
We used the logarithm of the data to draw Figure 2(a) and Figure 2(b) using bandwidth equals 0.480411 which
computed by (1.16), these figures exhibit the two estimated functions of the probability density and hazard rate
functions, respectively.

6. Comment and Conclusion

In this paper, we have proposed a new kernel estimator of the hazard rate function for (iid) data based on the
Weibull kernel with nonnegative support; we showed that the bias depends on the smoothing parameter h and
the estimated point x, and it goes to zero as h — 0, also it gets small for the values of x closed to zero. The va-
riance was investigated and we noticed that it depends also on h and x. On the other hand, it goes to zero as
h — 0, and gets large at the values of x close to zero. Moreover, the optimal bandwidth and the asymptotic
normality were investigated.

3547 3547
X - - - Weibull kernel X - - - Weibull kernel
304 ! —— True density function I —— True hazard function
AV e 1
| 3.0
I I
25! & !
o
% 2.0+ N |
[ = 1
E = 20 |
z 157, g .
Q 1 < |
< . = !
1.0 15 B
\ -
I P
0.5 ' PN
1.0 ——="
0.0 ‘

Figure 1. (a) The Weibull kernel estimator of the density function; (b) The hazard rate function for the simulated data of the

exponential distribution.
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Time Time
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Figure 2. (a) The Weibull kernel estimator of the density function; (b) The hazard rate function for the suicide data.

In addition, the performance of the proposed estimator is tested in two applications. In a simulation study us-
ing exponential sample we noticed that the performance of the proposed estimator is acceptable, and gives a
small MSE.

Using real data, we exhibited the practical performance of the Weibull estimator.
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